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MODULE 1: INTRODUCTION TO
FUNCTIONS

FUNCTIONS AND FUNCTION NOTATION

Learning Outcomes

Determine whether a relation represents a function.
Find the value of a function.
Determine whether a function is one-to-one.
Use the vertical line test to identify functions.
Graph the functions listed in the library of functions.

A jetliner changes altitude as its distance from the starting point of a flight increases. The weight of a
growing child increases with time. In each case, one quantity depends on another. There is a relationship
between the two quantities that we can describe, analyze, and use to make predictions. In this section, we
will analyze such relationships.

Determining Whether a Relation Represents a Function

A relation is a set of ordered pairs. The set of the first components of each ordered pair is called the
domain and the set of the second components of each ordered pair is called the range. Consider the
following set of ordered pairs. The first numbers in each pair are the first five natural numbers. The second
number in each pair is twice that of the first.

The domain is . The range is .

Note that each value in the domain is also known as an input value. The input values are values of
the independent variable which often labeled with the lowercase letter . Each value in the range is also
known as an output value. The output values are values of the dependent variable which is often labeled
lowercase letter .

A function is a relation that assigns a single value in the range to each value in the domain. In other words
no x-values are repeated. For our example that relates the first five natural numbers to numbers double
their values, this relation is a function because each element in the domain, , is paired with
exactly one element in the range, .

Now let’s consider the set of ordered pairs that relates the terms “even” and “odd” to the first five natural
numbers. It would appear as
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A GENERAL NOTE: FUNCTION

A function is a relation in which each possible input value leads to exactly one output value. We say “the
output is a function of the input.”
The input values make up the domain, and the output values make up the range.

HOW TO: GIVEN A RELATIONSHIP BETWEEN TWO QUANTITIES,
DETERMINE WHETHER THE RELATIONSHIP IS A FUNCTION.

1. Identify the input values.
2. Identify the output values.
3. If each input value leads to only one output value, the relationship is a function. If any input value

leads to two or more outputs, the relationship as a function.

EXAMPLE 1: DETERMINING IF MENU PRICE LISTS ARE FUNCTIONS

The coffee shop menu, shown in Figure 2 consists of items and their prices.

1. Is price a function of the item?
2. Is the item a function of the price?

Notice that each element in the domain, is not paired with exactly one element in the range,
. For example, the term “odd” corresponds to three values from the domain, and the

term “even” corresponds to two values from the range, . This violates the definition of a function, so
this relation is not a function.

Figure 1 compares relations that are functions and not functions.

Figure 1. (a) This relationship is a function because each input is associated with a single output. Note that input  and  both give output .
(b) This relationship is also a function. In this case, each input is associated with a single output. (c) This relationship is not a function
because input  is associated with two different outputs.
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Figure 2

Answer

1. Let’s begin by considering the input as the items on the menu. The output values are then the prices.
See Figure 2.

Figure 2

Each item on the menu has only one price, so the price is a function of the item.
2. Two items on the menu have the same price. If we consider the prices to be the input values and the

items to be the output, then the same input value could have more than one output associated with it.
See Figure 3.

Figure 3

6



EXAMPLE 2: DETERMINING IF CLASS GRADE RULES ARE FUNCTIONS

In a particular math class, the overall percent grade corresponds to a grade point average. Is grade point
average a function of the percent grade? Is the percent grade a function of the grade point average? The
table below shows a possible rule for assigning grade points.

Percent Grade 0–56 57–61 62–66 67–71 72–77 78–86 87–91 92–100

Grade Point Average 0.0 1.0 1.5 2.0 2.5 3.0 3.5 4.0

Answer
For any percent grade earned, there is an associated grade point average, so the grade point average is a
function of the percent grade. In other words, if we input the percent grade, the output is a specific grade
point average.
In the grading system given, there is a range of percent grades that correspond to the same grade point
average. For example, students who receive a grade point average of 3.0 could have a variety of percent
grades ranging from 78 all the way to 86. Thus, percent grade is not a function of grade point average.

A YouTube element has been excluded from this version of the text. You can view it online here:
https://courses.lumenlearning.com/precalculus/?p=10706

Therefore, the item is a not a function of price.

Try It

The table below lists the five greatest baseball players of all time in order of rank.

Player Rank

Babe Ruth 1

Willie Mays 2

Ty Cobb 3

Walter Johnson 4

Hank Aaron 5
a) Is the rank a function of the player name?
b) Is the player name a function of the rank?
Answer
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A GENERAL NOTE: FUNCTION NOTATION

The notation  defines a function named . This is read as  is a function of  The letter 
represents the input value, or independent variable. The letter , or , represents the output value, or
dependent variable.

EXAMPLE 3: USING FUNCTION NOTATION FOR DAYS IN A MONTH

Use function notation to represent a function whose input is the name of a month and output is the number
of days in that month.
Answer
The number of days in a month is a function of the name of the month, so if we name the function , we
write  or . The name of the month is the input to a “rule” that associates a
specific number (the output) with each input.

Figure 4

a. yes;

b. yes. (Note: If two players had been tied for, say, 4th place, then the name would not have been a
function of rank.)

Using Function Notation

Once we determine that a relationship is a function, we need to display and define the functional
relationships so that we can understand and use them, and sometimes also so that we can program them
into computers. There are various ways of representing functions. A standard function notation is one
representation that facilitates working with functions.

To represent “height is a function of age,” we start by identifying the descriptive variables  for height and 
 for age. The letters , and  are often used to represent functions just as we use , and  to represent

numbers and , and  to represent sets.

Remember, we can use any letter to name the function; the notation  shows us that  depends on .
The value  must be put into the function  to get a result. The parentheses indicate that age is input into the
function; they do not indicate multiplication.

We can also give an algebraic expression as the input to a function. For example  means “first add
a and b, and the result is the input for the function f.” The operations must be performed in this order to
obtain the correct result.
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For example, , because March has 31 days. The notation  reminds us that the
number of days,  (the output), is dependent on the name of the month,  (the input).

Analysis of the Solution

Note that the inputs to a function do not have to be numbers; function inputs can be names of people,
labels of geometric objects, or any other element that determines some kind of output. However, most of
the functions we will work with in this book will have numbers as inputs and outputs.

EXAMPLE 4: INTERPRETING FUNCTION NOTATION

A function  gives the number of police officers, , in a town in year . What does 
 represent?

Answer
When we read , we see that the input year is 2005. The value for the output, the number of
police officers , is 300. Remember, . The statement  tells us that in the year
2005 there were 300 police officers in the town.

Q & A

Instead of a notation such as , could we use the same symbol for the output as for the
function, such as , meaning “y is a function of x?”
Yes, this is often done, especially in applied subjects that use higher math, such as physics and
engineering. However, in exploring math itself we like to maintain a distinction between a function such as 

, which is a rule or procedure, and the output  we get by applying  to a particular input . This is why
we usually use notation such as , and so on.

Representing Functions Using Tables

A common method of representing functions is in the form of a table. The table rows or columns display the
corresponding input and output values. In some cases, these values represent all we know about the
relationship; other times, the table provides a few select examples from a more complete relationship.

The table below lists the input number of each month (January = 1, February = 2, and so on) and the output
value of the number of days in that month. This information represents all we know about the months and
days for a given year (that is not a leap year). Note that, in this table, we define a days-in-a-month function 
where  identifies months by an integer rather than by name.

Month number,  (input) 1 2 3 4 5 6 7 8 9 10 11 12

Days in month,  (output) 31 28 31 30 31 30 31 31 30 31 30 31

The table below defines a function . Remember, this notation tells us that  is the name of the
function that takes the input  and gives the output .

1 2 3 4 5

8 6 7 6 8

The table below displays the age of children in years and their corresponding heights. This table displays
just some of the data available for the heights and ages of children. We can see right away that this table

9



EXAMPLE 5: IDENTIFYING TABLES THAT REPRESENT FUNCTIONS

Which table, a), b), or c), represents a function (if any)?
a)

Table A
Input Output

2 1

5 3

8 6

b)

Table B
Input Output

–3 5

0 1

4 5

c)

Table C
Input Output

1 0

5 2

5 4

Answer
a) and b) define functions. In both, each input value corresponds to exactly one output value. c) does not
define a function because the input value of 5 corresponds to two different output values.
When a table represents a function, corresponding input and output values can also be specified using
function notation.
The function represented by a) can be represented by writing

HOW TO: GIVEN A TABLE OF INPUT AND OUTPUT VALUES, DETERMINE
WHETHER THE TABLE REPRESENTS A FUNCTION.

1. Identify the input and output values.
2. Check to see if each input value is paired with only one output value. If so, the table represents a

function.

does not represent a function because the same input value, 5 years, has two different output values, 40 in.
and 42 in.

Age in years,  (input) 5 5 6 7 8 9 10

Height in inches,  (output) 40 42 44 47 50 52 54
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EXAMPLE 6: EVALUATING FUNCTIONS

Given the function , evaluate .
Answer
To evaluate , we substitute the value 4 for the input variable  in the given function.

Therefore, for an input of 4, we have an output of 24.

A YouTube element has been excluded from this version of the text. You can view it online here:
https://courses.lumenlearning.com/precalculus/?p=10706

HOW TO: GIVEN THE FORMULA FOR A FUNCTION, EVALUATE.

1. Replace the input variable in the formula with the value provided.
2. Calculate the result.

Similarly, the statements   represent the function in b).
c) cannot be expressed in a similar way because it does not represent a function.

When we know an input value and want to determine the corresponding output value for a function, we
evaluate the function. Evaluating will always produce one result because each input value of a function
corresponds to exactly one output value.

When we know an output value and want to determine the input values that would produce that output
value, we set the output equal to the function’s formula and solve for the input. Solving can produce more
than one solution because different input values can produce the same output value.

Evaluating Functions in Algebraic Forms

When we have a function in formula form, it is usually a simple matter to evaluate the function. For example
the function  can be evaluated by squaring the input value, multiplying by 3, and then
subtracting the product from 5.

11



EXAMPLE 7: EVALUATING FUNCTIONS AT SPECIFIC VALUES

Evaluate  at

1. 
2. 
3. 
4. 

Answer
Replace the  in the function with each specified value.

1. Because the input value is a number, 2, we can use algebra to simplify.

2. In this case, the input value is a letter so we cannot simplify the answer any further.

3. With an input value of , we must use the distributive property.

4. In this case, we apply the input values to the function more than once, and then perform algebraic
operations on the result. We already found that

and we know that

Now we combine the results and simplify.

Try It

Given the function , evaluate .
Answer
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A YouTube element has been excluded from this version of the text. You can view it online here:
https://courses.lumenlearning.com/precalculus/?p=10706

EXAMPLE 8: SOLVING FUNCTIONS

Given the function , solve for .
Answer

If , either  or  (or both of them equal 0). We will set each factor
equal to 0 and solve for  in each case.

This gives us two solutions. The output  when the input is either  or .
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Figure 5

We can also verify by graphing as in Figure 5. The graph verifies that  and .
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A YouTube element has been excluded from this version of the text. You can view it online here:
https://courses.lumenlearning.com/precalculus/?p=10706

HOW TO: GIVEN A FUNCTION IN EQUATION FORM, WRITE ITS
ALGEBRAIC FORMULA.

1. Solve the equation to isolate the output variable on one side of the equal sign, with the other side as
an expression that involves only the input variable.

2. Use all the usual algebraic methods for solving equations, such as adding or subtracting the same
quantity to or from both sides, or multiplying or dividing both sides of the equation by the same
quantity.

EXAMPLE 9: FINDING AN EQUATION OF A FUNCTION

Express the relationship  as a function , if possible.
Answer
To express the relationship in this form, we need to be able to write the relationship where  is a function
of , which means writing it as p = expression involving n.

Therefore,  as a function of  is written as

Analysis of the Solution

It is important to note that not every relationship expressed by an equation can also be expressed as a
function with a formula.

Try It

Given the function , solve .
Answer

Evaluating Functions Expressed in Formulas

Some functions are defined by mathematical rules or procedures expressed in equation form. If it is
possible to express the function output with a formula involving the input quantity, then we can define a
function in algebraic form. For example, the equation  expresses a functional relationship
between  and . We can rewrite it to decide if  is a function of .
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A YouTube element has been excluded from this version of the text. You can view it online here:
https://courses.lumenlearning.com/precalculus/?p=10706

EXAMPLE 10: EXPRESSING THE EQUATION OF A CIRCLE AS A FUNCTION

Does the equation  represent a function with  as input and  as output? If so, express the
relationship as a function .
Answer
First we subtract  from both sides.

 
We get two outputs corresponding to the same input, so this relationship cannot be represented as a
single function

Q & A

Are there relationships expressed by an equation that do represent a function but which still
cannot be represented by an algebraic formula?
Yes, this can happen. For example, given the equation , if we want to express  as a function
of , there is no simple algebraic formula involving only  that equals . However, each  does determine
a unique value for , and there are mathematical procedures by which  can be found to any desired
accuracy. In this case we say that the equation gives an implicit (implied) rule for  as a function of , even
though the formula cannot be written explicitly.

Try It

If , express  as a function of .
Answer

Evaluating a Function Given in Tabular Form
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HOW TO: GIVEN A FUNCTION REPRESENTED BY A TABLE, IDENTIFY
SPECIFIC OUTPUT AND INPUT VALUES.

1. Find the given input in the row (or column) of input values.
2. Identify the corresponding output value paired with that input value.
3. Find the given output values in the row (or column) of output values, noting every time that output

value appears.
4. Identify the input value(s) corresponding to the given output value.

EXAMPLE 11: EVALUATING AND SOLVING A TABULAR FUNCTION

Using the table below,

1. Evaluate .
2. Solve .

n 1 2 3 4 5

g(n) 8 6 7 6 8

Answer

Evaluating  means determining the output value of the function  for the input value of .
The table output value corresponding to  is 7, so .

As we saw above, we can represent functions in tables. Conversely, we can use information in tables to
write functions, and we can evaluate functions using the tables. For example, how well do our pets recall the
fond memories we share with them? There is an urban legend that a goldfish has a memory of 3 seconds,
but this is just a myth. Goldfish can remember up to 3 months, while the beta fish has a memory of up to 5
months. And while a puppy’s memory span is no longer than 30 seconds, the adult dog can remember for 5
minutes. This is meager compared to a cat, whose memory span lasts for 16 hours.

The function that relates the type of pet to the duration of its memory span is more easily visualized with the
use of a table. See the table below.

Pet Memory span in hours

Puppy 0.008

Adult dog 0.083

Cat 16

Goldfish 2160

Beta fish 3600

At times, evaluating a function in table form may be more useful than using equations. Here let us call the
function .

The domain of the function is the type of pet and the range is a real number representing the number of
hours the pet’s memory span lasts. We can evaluate the function  at the input value of “goldfish.” We
would write . Notice that, to evaluate the function in table form, we identify the input
value and the corresponding output value from the pertinent row of the table. The tabular form for function 
seems ideally suited to this function, more so than writing it in paragraph or function form.
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Solving  means identifying the input values, , that produce an output value of 6. The table
below shows two solutions:  and .

n 1 2 3 4 5

g(n) 8 6 7 6 8

When we input 2 into the function , our output is 6. When we input 4 into the function , our output is also
6.

EXAMPLE 12: READING FUNCTION VALUES FROM A GRAPH

Given the graph in Figure 6,

1. Evaluate .
2. Solve .

 
 
 

Try It

Using the table in Example 11, evaluate  .
Answer

Finding Function Values from a Graph

Evaluating a function using a graph also requires finding the corresponding output value for a given input
value, only in this case, we find the output value by looking at the graph. Solving a function equation using a
graph requires finding all instances of the given output value on the graph and observing the corresponding
input value(s).
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Figure 6

Answer

1. To evaluate , locate the point on the curve where , then read the y-coordinate of that point.
The point has coordinates , so . See Figure 7.
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Figure 7

2. To solve , we find the output value  on the vertical axis. Moving horizontally along the line 
, we locate two points of the curve with output value   and . These points

represent the two solutions to   or . This means  and , or
when the input is  or  the output is See Figure 8.
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Figure 8

Try It

Using Figure 6, solve .
Answer

 or 

Determining Whether a Function is One-to-One

Some functions have a given output value that corresponds to two or more input values. For example, in the
following stock chart the stock price was $1000 on five different dates, meaning that there were five different
input values that all resulted in the same output value of $1000.

However, some functions have only one input value for each output value, as well as having only one output
for each input. We call these functions one-to-one functions. As an example, consider a school that uses
only letter grades and decimal equivalents, as listed in.
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A GENERAL NOTE: ONE-TO-ONE FUNCTION

A one-to-one function is a function in which each output value corresponds to exactly one input value.

EXAMPLE 13: DETERMINING WHETHER A RELATIONSHIP IS A ONE-TO-
ONE FUNCTION

Is the area of a circle a function of its radius? If yes, is the function one-to-one?
Answer
A circle of radius  has a unique area measure given by , so for any input, , there is only one
output, . The area is a function of radius .
If the function is one-to-one, the output value, the area, must correspond to a unique input value, the
radius. Any area measure  is given by the formula . Because areas and radii are positive
numbers, there is exactly one solution: . So the area of a circle is a one-to-one function of the
circle’s radius.

Letter grade Grade point average

A 4.0

B 3.0

C 2.0

D 1.0

This grading system represents a one-to-one function, because each letter input yields one particular grade
point average output and each grade point average corresponds to one input letter.

To visualize this concept, let’s look again at the two simple functions sketched in (a)and (b) of Figure 10.

Figure 10

The function in part (a) shows a relationship that is not a one-to-one function because inputs  and  both
give output . The function in part (b) shows a relationship that is a one-to-one function because each input
is associated with a single output.

Try It

1. Is a balance a function of the bank account number?
2. Is a bank account number a function of the balance?
3. Is a balance a one-to-one function of the bank account number?

Answer
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1. yes, because each bank account has a single balance at any given time.
2. no, because several bank account numbers may have the same balance.
3. no, because the same output may correspond to more than one input.

Using the Vertical Line Test

As we have seen in some examples above, we can represent a function using a graph. Graphs display a
great many input-output pairs in a small space. The visual information they provide often makes
relationships easier to understand. By convention, graphs are typically constructed with the input values
along the horizontal axis and the output values along the vertical axis.

The most common graphs name the input value  and the output value , and we say  is a function of , or 
 when the function is named . The graph of the function is the set of all points  in the plane

that satisfies the equation . If the function is defined for only a few input values, then the graph of
the function is only a few points, where the x-coordinate of each point is an input value and the y-coordinate
of each point is the corresponding output value. For example, the black dots on the graph in Figure 11 tell us
that  and . However, the set of all points  satisfying  is a curve. The curve
shown includes  and  because the curve passes through those points.

Figure 11

The vertical line test can be used to determine whether a graph represents a function. If we can draw any
vertical line that intersects a graph more than once, then the graph does not define a function because a
function has only one output value for each input value.
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HOW TO: GIVEN A GRAPH, USE THE VERTICAL LINE TEST TO DETERMINE
IF THE GRAPH REPRESENTS A FUNCTION.

1. Inspect the graph to see if any vertical line drawn would intersect the curve more than once.
2. If there is any such line, then the graph does not represent a function.

EXAMPLE 14: APPLYING THE VERTICAL LINE TEST

Which of the graphs represent(s) a function 

Figure 13

Answer
If any vertical line intersects a graph more than once, the relation represented by the graph is not a
function. Notice that any vertical line would pass through only one point of the two graphs shown in parts
(a) and (b) of Figure 13. From this we can conclude that these two graphs represent functions. The third
graph does not represent a function because, at most x-values, a vertical line would intersect the graph at
more than one point.

Figure 12
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Figure 14

A YouTube element has been excluded from this version of the text. You can view it online here:
https://courses.lumenlearning.com/precalculus/?p=10706
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HOW TO: GIVEN A GRAPH OF A FUNCTION, USE THE HORIZONTAL LINE
TEST TO DETERMINE IF THE GRAPH REPRESENTS A ONE-TO-ONE

FUNCTION.

1. Inspect the graph to see if any horizontal line drawn would intersect the curve more than once.
2. If there is any such line, determine that the function is not one-to-one.

Try It

Does the graph in Figure 15 represent a function?

Figure 15

Answer

Yes.

Using the Horizontal Line Test

Once we have determined that a graph defines a function, an easy way to determine if it is a one-to-one
function is to use the horizontal line test. Draw horizontal lines through the graph. If any horizontal line
intersects the graph more than once, then the graph does not represent a one-to-one function.
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EXAMPLE 15: APPLYING THE HORIZONTAL LINE TEST

Consider the functions (a), and (b)shown in the graphs in Figure 16.

Figure 16

Are either of the functions one-to-one?
Answer
The function in (a) is not one-to-one. The horizontal line shown in Figure 17 intersects the graph of the
function at two points (and we can even find horizontal lines that intersect it at three points.)
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Figure 17

The function in (b) is one-to-one. Any horizontal line will intersect a diagonal line at most once.

Identifying Basic Toolkit Functions
In this text we will be exploring functions—the shapes of their graphs, their unique characteristics, their
algebraic formulas, and how to solve problems with them. When learning to read, we start with the alphabet.
When learning to do arithmetic, we start with numbers. When working with functions, it is similarly helpful to
have a base set of building-block elements. We call these our “toolkit functions,” which form a set of basic
named functions for which we know the graph, formula, and special properties. Some of these functions are
programmed to individual buttons on many calculators. For these definitions we will use  as the input
variable and  as the output variable.

We will see these toolkit functions, combinations of toolkit functions, their graphs, and their transformations
frequently throughout this book. It will be very helpful if we can recognize these toolkit functions and their
features quickly by name, formula, graph, and basic table properties. The graphs and sample table values
are included with each function shown below.
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Toolkit Functions

Name Function Graph

Constant , where  is a
constant

Identity

Absolute value
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Toolkit Functions

Name Function Graph

Quadratic

Cubic

Reciprocal
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Toolkit Functions

Name Function Graph

Reciprocal
squared

Square root

Cube root

Key Equations
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dependent variable

domain

function

horizontal line test

independent variable

input

one-to-one function

output

range

Constant function , where  is a constant

Identity function

Absolute value function

Quadratic function

Cubic function

Reciprocal function

Reciprocal squared function

Square root function

Cube root function

 

Key Concepts

A relation is a set of ordered pairs. A function is a specific type of relation in which each domain value,
or input, leads to exactly one range value, or output.
Function notation is a shorthand method for relating the input to the output in the form .
In tabular form, a function can be represented by rows or columns that relate to input and output values.
To evaluate a function, we determine an output value for a corresponding input value. Algebraic forms of
a function can be evaluated by replacing the input variable with a given value.
To solve for a specific function value, we determine the input values that yield the specific output value.
An algebraic form of a function can be written from an equation.
Input and output values of a function can be identified from a table.
Relating input values to output values on a graph is another way to evaluate a function.
 function is one-to-one if each output value corresponds to only one input value.
A graph represents a function if any vertical line drawn on the graph intersects the graph at no more
than one point.
The graph of a one-to-one function passes the horizontal line test.

Glossary

an output variable

the set of all possible input values for a relation

a relation in which each input value yields a unique output value

a method of testing whether a function is one-to-one by determining whether any
horizontal line intersects the graph more than once

an input variable

each object or value in a domain that relates to another object or value by a relationship known as a
function

a function for which each value of the output is associated with a unique input value

each object or value in the range that is produced when an input value is entered into a function

the set of output values that result from the input values in a relation
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relation

vertical line test

a set of ordered pairs

a method of testing whether a graph represents a function by determining whether a
vertical line intersects the graph no more than once
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DOMAIN AND RANGE

Learning Outcomes

Find the domain of a function defined by an equation.
Find the domain of a function from its graph.
Graph piecewise-defined functions.

If you’re in the mood for a scary movie, you may want to check out one of the five most popular horror
movies of all time—I am Legend, Hannibal, The Ring, The Grudge, and The Conjuring. Figure 1 shows the
amount, in dollars, each of those movies grossed when they were released as well as the ticket sales for
horror movies in general by year. Notice that we can use the data to create a function of the amount each
movie earned or the total ticket sales for all horror movies by year. In creating various functions using the
data, we can identify different independent and dependent variables, and we can analyze the data and the
functions to determine the domain and range. In this section, we will investigate methods for determining
the domain and range of functions such as these.

Figure 1. Based on data compiled by www.the-numbers.com.
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Find the domain of a function de�ned by an equation

In Functions and Function Notation, we were introduced to the concepts of domain and range. In this
section we will practice determining domains and ranges for specific functions. Keep in mind that, in
determining domains and ranges, we need to consider what is physically possible or meaningful in real-
world examples, such as tickets sales and year in the horror movie example above. We also need to
consider what is mathematically permitted. For example, we cannot include any input value that leads us to
take an even root of a negative number if the domain and range consist of real numbers. Or in a function
expressed as a formula, we cannot include any input value in the domain that would lead us to divide by 0.

Figure 2

We can visualize the domain as a “holding area” that contains “raw materials” for a “function machine” and
the range as another “holding area” for the machine’s products.

We can write the domain and range in interval notation, which uses values within brackets or parentheses
to describe a set of numbers. In interval notation, we use a square bracket [ when the set includes the
endpoint and a parenthesis ( to indicate that the endpoint is either not included or the interval is unbounded.
For example if a person has $100 to spend, he or she would need to express the interval that is more than 0
and less than or equal to 100 and write . We will discuss interval notation in greater detail later.

Let’s turn our attention to finding the domain of a function whose equation is provided. Oftentimes finding the
domain of such functions involves remembering three different forms. First, if the function has no
denominator or even root, the domain could be all real numbers. Second, if there is a denominator in the
function’s equation, exclude values in the domain that force the denominator to be zero. Third, if there is an
even root, exclude values that would make the radicand negative.

Before we begin, let us review the conventions of interval notation:
The lowest term from the interval is written first.
The greatest term in the interval is written second, following a comma.
Parentheses, ( or ), are used to signify that an endpoint is not included, called exclusive.
Brackets, [ or ], are used to indicate that an endpoint is included, called inclusive.

The table below gives a summary of interval notation.
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EXAMPLE 1: FINDING THE DOMAIN OF A FUNCTION AS A SET OF
ORDERED PAIRS

Find the domain of the following function:  .
Answer
First identify the input values. The input value is the first coordinate in an ordered pair. There are no
restrictions, as the ordered pairs are simply listed. The domain is the set of the first coordinates of the
ordered pairs.

Try It

Find the domain of the function:

Answer

35



HOW TO: GIVEN A FUNCTION WRITTEN IN EQUATION FORM, FIND THE
DOMAIN.

1. Identify the input values.
2. Identify any restrictions on the input and exclude those values from the domain.
3. Write the domain in interval form, if possible.

EXAMPLE 2: FINDING THE DOMAIN OF A FUNCTION

Find the domain of the function .
Answer
The input value, shown by the variable  in the equation, is squared and then the result is lowered by one.
Any real number may be squared and then be lowered by one, so there are no restrictions on the domain
of this function. The domain is the set of real numbers.
In interval form, the domain of  is .

An interactive or media element has been excluded from this version of the text. You can view it online
here: https://courses.lumenlearning.com/precalculus/?p=13664

HOW TO: GIVEN A FUNCTION WRITTEN IN AN EQUATION FORM THAT
INCLUDES A FRACTION, FIND THE DOMAIN.

1. Identify the input values.
2. Identify any restrictions on the input. If there is a denominator in the function’s formula, set the

denominator equal to zero and solve for  . If the function’s formula contains an even root, set the
radicand greater than or equal to 0, and then solve.

3. Write the domain in interval form, making sure to exclude any restricted values from the domain.

EXAMPLE 3: FINDING THE DOMAIN OF A FUNCTION INVOLVING A
DENOMINATOR (RATIONAL FUNCTION)

Find the domain of the function .
Answer

Try It

Find the domain of the function: .
Answer

Try It
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When there is a denominator, we want to include only values of the input that do not force the
denominator to be zero. So, we will set the denominator equal to 0 and solve for .

Now, we will exclude 2 from the domain. The answers are all real numbers where  or . We can
use a symbol known as the union, , to combine the two sets. In interval notation, we write the solution: 

.

Figure 3

In interval form, the domain of  is .

A YouTube element has been excluded from this version of the text. You can view it online here:
https://courses.lumenlearning.com/precalculus/?p=13664

Try It

Find the domain of the function: .
Answer

Try It
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An interactive or media element has been excluded from this version of the text. You can view it online
here: https://courses.lumenlearning.com/precalculus/?p=13664

HOW TO: GIVEN A FUNCTION WRITTEN IN EQUATION FORM INCLUDING
AN EVEN ROOT, FIND THE DOMAIN.

1. Identify the input values.
2. Since there is an even root, exclude any real numbers that result in a negative number in the

radicand. Set the radicand greater than or equal to zero and solve for .
3. The solution(s) are the domain of the function. If possible, write the answer in interval form.

EXAMPLE 4: FINDING THE DOMAIN OF A FUNCTION WITH AN EVEN
ROOT

Find the domain of the function .
Answer
When there is an even root in the formula, we exclude any real numbers that result in a negative number
in the radicand.
Set the radicand greater than or equal to zero and solve for .

Now, we will exclude any number greater than 7 from the domain. The answers are all real numbers less
than or equal to , or .

A YouTube element has been excluded from this version of the text. You can view it online here:
https://courses.lumenlearning.com/precalculus/?p=13664

Try It

Find the domain of the function .
Answer
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An interactive or media element has been excluded from this version of the text. You can view it online
here: https://courses.lumenlearning.com/precalculus/?p=13664

Q & A

Can there be functions in which the domain and range do not intersect at all?
Yes. For example, the function  has the set of all positive real numbers as its domain but the
set of all negative real numbers as its range. As a more extreme example, a function’s inputs and outputs
can be completely different categories (for example, names of weekdays as inputs and numbers as
outputs, as on an attendance chart), in such cases the domain and range have no elements in common.

Try It

In the previous examples, we used inequalities and lists to describe the domain of functions. We can also
use inequalities, or other statements that might define sets of values or data, to describe the behavior of the
variable in set-builder notation. For example,  describes the behavior of  in set-builder
notation. The braces { } are read as “the set of,” and the vertical bar | is read as “such that,” so we would
read  as “the set of x-values such that 10 is less than or equal to , and  is less than 30.”

The table below compares inequality notation, set-builder notation, and interval notation.

Inequality Notation Set-builder Notation Interval Notation

5 < h ≤ 10 { h | 5 < h ≤ 10} (5, 10]

5 ≤ h < 10 { h | 5 ≤ h < 10} [5, 10]

5 < h < 10 { h | 5 < 10 } (5, 10)

h < 10 { h | h < 10 } ( −∞, 10)

h ≥ 10 { h | h ≥ 10 } [10, ∞ )

All real numbers ℝ ( −∞, ∞ )
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A YouTube element has been excluded from this version of the text. You can view it online here:
https://courses.lumenlearning.com/precalculus/?p=13664

A YouTube element has been excluded from this version of the text. You can view it online here:
https://courses.lumenlearning.com/precalculus/?p=13664

 

A GENERAL NOTE: SET-BUILDER NOTATION AND INTERVAL NOTATION

Set-builder notation is a method of specifying a set of elements that satisfy a certain condition. It takes the
form  which is read as, “the set of all  such that the statement about  is true.”
For example,

To combine two intervals using inequality notation or set-builder notation, we use the word “or.” As we saw in
earlier examples, we use the union symbol, , to combine two unconnected intervals. For example, the
union of the sets  and  is the set . It is the set of all elements that belong to one
or the other (or both) of the original two sets. For sets with a finite number of elements like these, the
elements do not have to be listed in ascending order of numerical value. If the original two sets have some
elements in common, those elements should be listed only once in the union set. For sets of real numbers
on intervals, another example of a union is

This video describes how to use interval notation to describe a set.

This video describes how to use Set-Builder notation to describe a set.
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Interval notation is a way of describing sets that include all real numbers between a lower limit that may
or may not be included and an upper limit that may or may not be included. The endpoint values are listed
between brackets or parentheses. A square bracket indicates inclusion in the set, and a parenthesis
indicates exclusion from the set. For example,

HOW TO: GIVEN A LINE GRAPH, DESCRIBE THE SET OF VALUES USING
INTERVAL NOTATION.

1. Identify the intervals to be included in the set by determining where the heavy line overlays the real
line.

2. At the left end of each interval, use [ with each end value to be included in the set (solid dot) or ( for
each excluded end value (open dot).

3. At the right end of each interval, use ] with each end value to be included in the set (filled dot) or ) for
each excluded end value (open dot).

4. Use the union symbol  to combine all intervals into one set.

EXAMPLE 5: DESCRIBING SETS ON THE REAL-NUMBER LINE

Describe the intervals of values shown in Figure 4 using inequality notation, set-builder notation, and
interval notation.

Figure 4

 
Answer
To describe the values, , included in the intervals shown, we would say, ”  is a real number greater than
or equal to 1 and less than or equal to 3, or a real number greater than 5.”

Inequality

Set-builder notation

Interval notation

Remember that, when writing or reading interval notation, using a square bracket means the boundary is
included in the set. Using a parenthesis means the boundary is not included in the set.

Try It

Given Figure 5, specify the graphed set in

1. words
2. set-builder notation
3. interval notation
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Figure 5

Answer

1. Values that are less than or equal to –2, or values that are greater than or equal to –1 and less than 3.
2. 
3. 

Finding Domain and Range from Graphs

Another way to identify the domain and range of functions is by using graphs. Because the domain refers to
the set of possible input values, the domain of a graph consists of all the input values shown on the x-axis.
The range is the set of possible output values, which are shown on the y-axis. Keep in mind that if the graph
continues beyond the portion of the graph we can see, the domain and range may be greater than the
visible values. See Figure 6.
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Figure 6
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EXAMPLE 6: FINDING DOMAIN AND RANGE FROM A GRAPH

Find the domain and range of the function  whose graph is shown in Figure 7.

Figure 7

 
Answer
We can observe that the horizontal extent of the graph is –3 to 1, so the domain of  is .

We can observe that the graph extends horizontally from  to the right without bound, so the domain is 
. The vertical extent of the graph is all range values  and below, so the range is . Note that

the domain and range are always written from smaller to larger values, or from left to right for domain, and
from the bottom of the graph to the top of the graph for range.
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Figure 8

The vertical extent of the graph is 0 to –4, so the range is .

An interactive or media element has been excluded from this version of the text. You can view it online
here: https://courses.lumenlearning.com/precalculus/?p=13664

TRY IT 9
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A YouTube element has been excluded from this version of the text. You can view it online here:
https://courses.lumenlearning.com/precalculus/?p=13664

EXAMPLE 7: FINDING DOMAIN AND RANGE FROM A GRAPH OF OIL
PRODUCTION

Find the domain and range of the function  whose graph is shown in Figure 9.

Figure 9. (credit: modification of work by the U.S. Energy Information Administration)

Answer
The input quantity along the horizontal axis is “years,” which we represent with the variable  for time. The
output quantity is “thousands of barrels of oil per day,” which we represent with the variable  for barrels.
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The graph may continue to the left and right beyond what is viewed, but based on the portion of the graph
that is visible, we can determine the domain as  and the range as approximately 

.
In interval notation, the domain is [1973, 2008], and the range is about [180, 2010]. For the domain and
the range, we approximate the smallest and largest values since they do not fall exactly on the grid lines.

Q & A

Can a function’s domain and range be the same?
Yes. For example, the domain and range of the cube root function are both the set of all real numbers.

Try It

Given the graph in Figure 10, identify the domain and range using interval notation.

Figure 10

Answer

Domain = [1950, 2002]   Range = [47,000,000, 89,000,000]

Finding Domain and Range from Graphs

We will now return to our set of toolkit functions to determine the domain and range of each.
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11

Figure 11. For the constant function , the domain consists of all real numbers; there are no
restrictions on the input. The only output value is the constant , so the range is the set  that contains this
single element. In interval notation, this is written as , the interval that both begins and ends with .
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12

Figure 12. For the identity function , there is no restriction on . Both the domain and range are
the set of all real numbers.
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13

Figure 13. For the absolute value function , there is no restriction on . However, because
absolute value is defined as a distance from 0, the output can only be greater than or equal to 0.
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14

Figure 14. For the quadratic function , the domain is all real numbers since the horizontal
extent of the graph is the whole real number line. Because the graph does not include any negative values
for the range, the range is only nonnegative real numbers.
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15

Figure 15. For the cubic function , the domain is all real numbers because the horizontal extent
of the graph is the whole real number line. The same applies to the vertical extent of the graph, so the
domain and range include all real numbers.
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16

Figure 16. For the reciprocal function , we cannot divide by 0, so we must exclude 0 from the
domain. Further, 1 divided by any value can never be 0, so the range also will not include 0. In set-builder
notation, we could also write , the set of all real numbers that are not zero.

53



17

Figure 17. For the reciprocal squared function , we cannot divide by , so we must exclude 
from the domain. There is also no  that can give an output of 0, so 0 is excluded from the range as well.
Note that the output of this function is always positive due to the square in the denominator, so the range
includes only positive numbers.
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18

Figure 18. For the square root function , we cannot take the square root of a negative real
number, so the domain must be 0 or greater. The range also excludes negative numbers because the
square root of a positive number  is defined to be positive, even though the square of the negative number 

 also gives us .
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HOW TO: GIVEN THE FORMULA FOR A FUNCTION, DETERMINE THE
DOMAIN AND RANGE.

1. Exclude from the domain any input values that result in division by zero.
2. Exclude from the domain any input values that have nonreal (or undefined) number outputs.
3. Use the valid input values to determine the range of the output values.
4. Look at the function graph and table values to confirm the actual function behavior.

EXAMPLE 8: FINDING THE DOMAIN AND RANGE USING TOOLKIT
FUNCTIONS

19

Figure 19. For the cube root function , the domain and range include all real numbers. Note
that there is no problem taking a cube root, or any odd-integer root, of a negative number, and the resulting
output is negative (it is an odd function).
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Find the domain and range of .
Answer
There are no restrictions on the domain, as any real number may be cubed and then subtracted from the
result.
The domain is  and the range is also .

EXAMPLE 9: FINDING THE DOMAIN AND RANGE

Find the domain and range of .
Answer
We cannot evaluate the function at  because division by zero is undefined. The domain is 

. Because the function is never zero, we exclude 0 from the range. The range is 
.

EXAMPLE 10: FINDING THE DOMAIN AND RANGE

Find the domain and range of .
Answer
We cannot take the square root of a negative number, so the value inside the radical must be
nonnegative.

The domain of  is .
We then find the range. We know that , and the function value increases as  increases
without any upper limit. We conclude that the range of  is .

Analysis of the Solution

Figure 20 represents the function .
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Figure 20

Try It

Find the domain and range of .
Answer

Domain:    Range: 

Graphic Piecewise-De�ned Functions

Sometimes, we come across a function that requires more than one formula in order to obtain the given
output. For example, in the toolkit functions, we introduced the absolute value function . With a
domain of all real numbers and a range of values greater than or equal to 0, absolute value can be defined
as the magnitude, or modulus, of a real number value regardless of sign. It is the distance from 0 on the
number line. All of these definitions require the output to be greater than or equal to 0.

If we input 0, or a positive value, the output is the same as the input.

If we input a negative value, the output is the opposite of the input.

Because this requires two different processes or pieces, the absolute value function is an example of a
piecewise function. A piecewise function is a function in which more than one formula is used to define the
output over different pieces of the domain.

We use piecewise functions to describe situations in which a rule or relationship changes as the input value
crosses certain “boundaries.” For example, we often encounter situations in business for which the cost per
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A GENERAL NOTE: PIECEWISE FUNCTION

A piecewise function is a function in which more than one formula is used to define the output. Each
formula has its own domain, and the domain of the function is the union of all these smaller domains. We
notate this idea like this:

In piecewise notation, the absolute value function is

HOW TO: GIVEN A PIECEWISE FUNCTION, WRITE THE FORMULA AND
IDENTIFY THE DOMAIN FOR EACH INTERVAL.

1. Identify the intervals for which different rules apply.
2. Determine formulas that describe how to calculate an output from an input in each interval.
3. Use braces and if-statements to write the function.

EXAMPLE 11: WRITING A PIECEWISE FUNCTION

A museum charges $5 per person for a guided tour with a group of 1 to 9 people or a fixed $50 fee for a
group of 10 or more people. Write a function relating the number of people, , to the cost, .
Answer
Two different formulas will be needed. For n-values under 10, C=5n. For values of n that are 10 or greater,
C=50.

Analysis of the Solution

The function is represented in Figure 21. The graph is a diagonal line from  to  and a
constant after that. In this example, the two formulas agree at the meeting point where , but not all
piecewise functions have this property.

piece of a certain item is discounted once the number ordered exceeds a certain value. Tax brackets are
another real-world example of piecewise functions. For example, consider a simple tax system in which
incomes up to $10,000 are taxed at 10%, and any additional income is taxed at 20%. The tax on a total
income, S, would be 0.1S if  $10,000 and 1000 + 0.2 (S – $10,000), if S> $10,000.
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Figure 21

A YouTube element has been excluded from this version of the text. You can view it online here:
https://courses.lumenlearning.com/precalculus/?p=13664

EXAMPLE 12: WORKING WITH A PIECEWISE FUNCTION
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A cell phone company uses the function below to determine the cost, , in dollars for  gigabytes of data
transfer.

Find the cost of using 1.5 gigabytes of data and the cost of using 4 gigabytes of data.
Answer
To find the cost of using 1.5 gigabytes of data, C(1.5), we first look to see which part of the domain our
input falls in. Because 1.5 is less than 2, we use the first formula.

To find the cost of using 4 gigabytes of data, C(4), we see that our input of 4 is greater than 2, so we use
the second formula.

Analysis of the Solution

The function is represented in Figure 22. We can see where the function changes from a constant to a
shifted and stretched identity at . We plot the graphs for the different formulas on a common set of
axes, making sure each formula is applied on its proper domain.

Figure 22

HOW TO: GIVEN A PIECEWISE FUNCTION, SKETCH A GRAPH.

1. Indicate on the x-axis the boundaries defined by the intervals on each piece of the domain.
2. For each piece of the domain, graph on that interval using the corresponding equation pertaining to

that piece. Do not graph two functions over one interval because it would violate the criteria of a
function.
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(a) ; (b) ; (c) 

Figure 23

EXAMPLE 13: GRAPHING A PIECEWISE FUNCTION

Sketch a graph of the function.

Answer
Each of the component functions is from our library of toolkit functions, so we know their shapes. We can
imagine graphing each function and then limiting the graph to the indicated domain. At the endpoints of
the domain, we draw open circles to indicate where the endpoint is not included because of a less-than or
greater-than inequality; we draw a closed circle where the endpoint is included because of a less-than-or-
equal-to or greater-than-or-equal-to inequality.
Below are the three components of the piecewise function graphed on separate coordinate systems.

Now that we have sketched each piece individually, we combine them in the same coordinate plane.
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Figure 24

Analysis of the Solution

Note that the graph does pass the vertical line test even at  and  because the points  and
 are not part of the graph of the function, though  and  are.

Try It

Graph the following piecewise function.

Answer
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interval notation

piecewise function

set-builder notation

An interactive or media element has been excluded from this version of the text. You can view it online
here: https://courses.lumenlearning.com/precalculus/?p=13664

Q&A

Can more than one formula from a piecewise function be applied to a value in the domain?
No. Each value corresponds to one equation in a piecewise formula.

Try It

Key Concepts

The domain of a function includes all real input values that would not cause us to attempt an undefined
mathematical operation, such as dividing by zero or taking the square root of a negative number.
The domain of a function can be determined by listing the input values of a set of ordered pairs.
The domain of a function can also be determined by identifying the input values of a function written as
an equation.
Interval values represented on a number line can be described using inequality notation, set-builder
notation, and interval notation.
For many functions, the domain and range can be determined from a graph.
An understanding of toolkit functions can be used to find the domain and range of related functions.
A piecewise function is described by more than one formula.
A piecewise function can be graphed using each algebraic formula on its assigned subdomain.

Glossary

a method of describing a set that includes all numbers between a lower limit and an upper
limit; the lower and upper values are listed between brackets or parentheses, a square bracket
indicating inclusion in the set, and a parenthesis indicating exclusion

a function in which more than one formula is used to define the output

a method of describing a set by a rule that all of its members obey; it takes the form 

64



Licensing & Attributions

CC licensed content, Speci�c attribution

Precalculus. Authored by: OpenStax College. Provided by: OpenStax. Located at: http://cnx.org/contents/fd53eae1-fa23-47c7-bb1b-972349835c3c@5.175:1/Preface. License: CC BY: Attribution

RATES OF CHANGE AND BEHAVIOR OF
GRAPHS

Learning Outcomes

Find the average rate of change of a function.
Use a graph to determine where a function is increasing, decreasing, or constant.
Use a graph to locate local and absolute maxima and local minima.

Gasoline costs have experienced some wild fluctuations over the last several decades. The table below
(Note: http://www.eia.gov/totalenergy/data/annual/showtext.cfm?t=ptb0524. Accessed 3/5/2014.) lists the
average cost, in dollars, of a gallon of gasoline for the years 2005–2012. The cost of gasoline can be
considered as a function of year.

2005 2006 2007 2008 2009 2010 2011 2012

2.31 2.62 2.84 3.30 2.41 2.84 3.58 3.68

If we were interested only in how the gasoline prices changed between 2005 and 2012, we could compute
that the cost per gallon had increased from $2.31 to $3.68, an increase of $1.37. While this is interesting, it
might be more useful to look at how much the price changed per year. In this section, we will investigate
changes such as these.

Finding the Average Rate of Change of a Function

The price change per year is a rate of change because it describes how an output quantity changes relative
to the change in the input quantity. We can see that the price of gasoline in the table above did not change
by the same amount each year, so the rate of change was not constant. If we use only the beginning and
ending data, we would be finding the average rate of change over the specified period of time. To find the
average rate of change, we divide the change in the output value by the change in the input value.

The Greek letter  (delta) signifies the change in a quantity; we read the ratio as “delta-y over delta-x” or
“the change in  divided by the change in .” Occasionally we write  instead of , which still represents
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EXAMPLE 1: COMPUTING AN AVERAGE RATE OF CHANGE

Using the data in the table below, find the average rate of change of the price of gasoline between 2007
and 2009.

2005 2006 2007 2008 2009 2010 2011 2012

2.31 2.62 2.84 3.30 2.41 2.84 3.58 3.68

Answer
In 2007, the price of gasoline was $2.84. In 2009, the cost was $2.41. The average rate of change is

A GENERAL NOTE: RATE OF CHANGE

A rate of change describes how an output quantity changes relative to the change in the input quantity.
The units on a rate of change are “output units per input units.”
The average rate of change between two input values is the total change of the function values (output
values) divided by the change in the input values.

HOW TO: GIVEN THE VALUE OF A FUNCTION AT DIFFERENT POINTS,
CALCULATE THE AVERAGE RATE OF CHANGE OF A FUNCTION FOR THE

INTERVAL BETWEEN TWO VALUES  AND .

1. Calculate the difference .
2. Calculate the difference .
3. Find the ratio .

the change in the function’s output value resulting from a change to its input value. It does not mean we are
changing the function into some other function.

In our example, the gasoline price increased by $1.37 from 2005 to 2012. Over 7 years, the average rate of
change was

On average, the price of gas increased by about 19.6¢ each year.

Other examples of rates of change include:
A population of rats increasing by 40 rats per week
A car traveling 68 miles per hour (distance traveled changes by 68 miles each hour as time passes)
A car driving 27 miles per gallon (distance traveled changes by 27 miles for each gallon)
The current through an electrical circuit increasing by 0.125 amperes for every volt of increased voltage
The amount of money in a college account decreasing by $4,000 per quarter
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Analysis of the Solution

Note that a decrease is expressed by a negative change or “negative increase.” A rate of change is
negative when the output decreases as the input increases or when the output increases as the input
decreases.

A YouTube element has been excluded from this version of the text. You can view it online here:
https://courses.lumenlearning.com/precalculus/?p=13679

EXAMPLE 2: COMPUTING AVERAGE RATE OF CHANGE FROM A GRAPH

Given the function  shown in Figure 1, find the average rate of change on the interval .

The following video provides another example of how to find the average rate of change between two points
from a table of values.

Try It

Using the data in the table below, find the average rate of change between 2005 and 2010.

2005 2006 2007 2008 2009 2010 2011 2012

2.31 2.62 2.84 3.30 2.41 2.84 3.58 3.68
Answer

 per year.
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Figure 1

Answer

Figure 2

At , the graph shows . At , the graph shows .
The horizontal change  is shown by the red arrow, and the vertical change  is shown
by the turquoise arrow. The output changes by –3 while the input changes by 3, giving an average rate of
change of

68



Analysis of the Solution

Note that the order we choose is very important. If, for example, we use , we will not get the correct
answer. Decide which point will be 1 and which point will be 2, and keep the coordinates fixed as 
and .

EXAMPLE 3: COMPUTING AVERAGE RATE OF CHANGE FROM A TABLE

After picking up a friend who lives 10 miles away, Anna records her distance from home over time. The
values are shown in the table below. Find her average speed over the first 6 hours.

t (hours) 0 1 2 3 4 5 6 7

D(t) (miles) 10 55 90 153 214 240 282 300

Answer
Here, the average speed is the average rate of change. She traveled 282 miles in 6 hours, for an average
speed of

The average speed is 47 miles per hour.

Analysis of the Solution

Because the speed is not constant, the average speed depends on the interval chosen. For the interval
[2,3], the average speed is 63 miles per hour.

EXAMPLE 4: COMPUTING AVERAGE RATE OF CHANGE FOR A FUNCTION
EXPRESSED AS A FORMULA

Compute the average rate of change of  on the interval 
Answer
We can start by computing the function values at each endpoint of the interval.

Now we compute the average rate of change.
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A YouTube element has been excluded from this version of the text. You can view it online here:
https://courses.lumenlearning.com/precalculus/?p=13679

An interactive or media element has been excluded from this version of the text. You can view it online
here: https://courses.lumenlearning.com/precalculus/?p=13679

EXAMPLE 5: FINDING THE AVERAGE RATE OF CHANGE OF A FORCE

The electrostatic force , measured in newtons, between two charged particles can be related to the
distance between the particles , in centimeters, by the formula . Find the average rate of
change of force if the distance between the particles is increased from 2 cm to 6 cm.
Answer
We are computing the average rate of change of  on the interval .

The following video provides another example of finding the average rate of change of a function given a
formula and an interval.

Try It

Find the average rate of change of  on the interval .
Answer

Try It
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The average rate of change is  newton per centimeter.

EXAMPLE 6: FINDING AN AVERAGE RATE OF CHANGE AS AN
EXPRESSION

Find the average rate of change of  on the interval . The answer will be an
expression involving .
Answer
We use the average rate of change formula.

This result tells us the average rate of change in terms of  between  and any other point . For
example, on the interval , the average rate of change would be .

Try It

Find the average rate of change of  on the interval .
Answer

As part of exploring how functions change, we can identify intervals over which the function is changing in
specific ways. We say that a function is increasing on an interval if the function values increase as the input
values increase within that interval. Similarly, a function is decreasing on an interval if the function values
decrease as the input values increase over that interval. The average rate of change of an increasing
function is positive, and the average rate of change of a decreasing function is negative. Figure 3 shows
examples of increasing and decreasing intervals on a function.

71



A YouTube element has been excluded from this version of the text. You can view it online here:
https://courses.lumenlearning.com/precalculus/?p=13679

Figure 3. The function  is increasing on  and is decreasing on 
.

This video further explains how to find where a function is increasing or decreasing.

While some functions are increasing (or decreasing) over their entire domain, many others are not. A value
of the input where a function changes from increasing to decreasing (as we go from left to right, that is, as
the input variable increases) is called a local maximum. If a function has more than one, we say it has local
maxima. Similarly, a value of the input where a function changes from decreasing to increasing as the input
variable increases is called a local minimum. The plural form is “local minima.” Together, local maxima and
minima are called local extrema, or local extreme values, of the function. (The singular form is “extremum.”)
Often, the term local is replaced by the term relative. In this text, we will use the term local.

Clearly, a function is neither increasing nor decreasing on an interval where it is constant. A function is also
neither increasing nor decreasing at extrema. Note that we have to speak of local extrema, because any
given local extremum as defined here is not necessarily the highest maximum or lowest minimum in the
function’s entire domain.
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For the function in Figure 4, the local maximum is 16, and it occurs at . The local minimum is 
and it occurs at .

Figure 4

To locate the local maxima and minima from a graph, we need to observe the graph to determine where the
graph attains its highest and lowest points, respectively, within an open interval. Like the summit of a roller
coaster, the graph of a function is higher at a local maximum than at nearby points on both sides. The graph
will also be lower at a local minimum than at neighboring points. Figure 5 illustrates these ideas for a local
maximum.
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A GENERAL NOTE: LOCAL MINIMA AND LOCAL MAXIMA

A function  is an increasing function on an open interval if  for any two input values  and 
in the given interval where .
A function  is a decreasing function on an open interval if  for any two input values  and 
in the given interval where .
A function  has a local maximum at  if there exists an interval  with  such that, for
any  in the interval , . Likewise,  has a local minimum at  if there exists an
interval  with  such that, for any  in the interval , .

EXAMPLE 7: FINDING INCREASING AND DECREASING INTERVALS ON A
GRAPH

Given the function  in the graph below, identify the intervals on which the function appears to be
increasing.

Figure 5. Definition of a local maximum.

These observations lead us to a formal definition of local extrema.
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Figure 6

Answer
We see that the function is not constant on any interval. The function is increasing where it slants upward
as we move to the right and decreasing where it slants downward as we move to the right. The function
appears to be increasing from  to  and from  on.
In interval notation, we would say the function appears to be increasing on the interval (1,3) and the
interval .

Analysis of the Solution

Notice in this example that we used open intervals (intervals that do not include the endpoints), because
the function is neither increasing nor decreasing at  ,  , and  . These points are the local
extrema (two minima and a maximum).

EXAMPLE 8: FINDING LOCAL EXTREMA FROM A GRAPH

Graph the function . Then use the graph to estimate the local extrema of the function and
to determine the intervals on which the function is increasing.
Answer
Using technology, we find that the graph of the function looks like that in Figure 7. It appears there is a low
point, or local minimum, between  and , and a mirror-image high point, or local maximum,
somewhere between  and .
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Figure 7

Analysis of the Solution

Most graphing calculators and graphing utilities can estimate the location of maxima and minima. Figure
7 provides screen images from two different technologies, showing the estimate for the local maximum
and minimum.

Figure 8

Based on these estimates, the function is increasing on the interval 
and . Notice that, while we expect the extrema to be symmetric, the two different technologies
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agree only up to four decimals due to the differing approximation algorithms used by each. (The exact
location of the extrema is at , but determining this requires calculus.)

An interactive or media element has been excluded from this version of the text. You can view it online
here: https://courses.lumenlearning.com/precalculus/?p=13679

EXAMPLE 9: FINDING LOCAL MAXIMA AND MINIMA FROM A GRAPH

For the function  whose graph is shown in Figure 9, find all local maxima and minima.

Try It

Graph the function  to estimate the local extrema of the function. Use these
to determine the intervals on which the function is increasing and decreasing.
Answer

The local maximum is 28 at x = -1 and the local minimum is -80 at x = 5. The function is increasing on 
 and decreasing on .

Try It
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Figure 9

Answer
Observe the graph of . The graph attains a local maximum at  because it is the highest point in an
open interval around . The local maximum is the  -coordinate at , which is .
The graph attains a local minimum at  because it is the lowest point in an open interval around 

. The local minimum is the y-coordinate at , which is .

Analyzing the Toolkit Functions for Increasing or
Decreasing Intervals

We will now return to our toolkit functions and discuss their graphical behavior in the table below.
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Function Increasing/Decreasing Example

Constant Function
Neither increasing nor decreasing

 

Identity Function
 Increasing

Quadratic Function
Increasing on 

Decreasing on 

Minimum at 

Cubic Function
Increasing

 Reciprocal
Decreasing 

Reciprocal Squared Increasing on 

Decreasing on 

Cube Root

 

Increasing

 

Square Root
Increasing on 
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A GENERAL NOTE: ABSOLUTE MAXIMA AND MINIMA

The absolute maximum of  at  is  where  for all  in the domain of .

Function Increasing/Decreasing Example

Absolute Value Increasing on 

Decreasing on 
 

Use A Graph to Locate the Absolute Maximum and Absolute
Minimum

There is a difference between locating the highest and lowest points on a graph in a region around an open
interval (locally) and locating the highest and lowest points on the graph for the entire domain. The 
coordinates (output) at the highest and lowest points are called the absolute maximum and absolute
minimum, respectively.

To locate absolute maxima and minima from a graph, we need to observe the graph to determine where the
graph attains it highest and lowest points on the domain of the function. See Figure 10.

Figure 10

Not every function has an absolute maximum or minimum value. The toolkit function  is one such
function.
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The absolute minimum of  at  is  where  for all  in the domain of .

EXAMPLE 10: FINDING ABSOLUTE MAXIMA AND MINIMA FROM A
GRAPH

For the function  shown in Figure 11, find all absolute maxima and minima.

Figure 11

Answer
Observe the graph of . The graph attains an absolute maximum in two locations,  and ,
because at these locations, the graph attains its highest point on the domain of the function. The absolute
maximum is the y-coordinate at  and , which is .
The graph attains an absolute minimum at , because it is the lowest point on the domain of the
function’s graph. The absolute minimum is the y-coordinate at , which is .

Key Equations

Average rate of change
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absolute maximum

absolute minimum

average rate of change

decreasing function

increasing function

local extrema

local maximum

local minimum

rate of change

Key Concepts

A rate of change relates a change in an output quantity to a change in an input quantity. The average
rate of change is determined using only the beginning and ending data.
Identifying points that mark the interval on a graph can be used to find the average rate of change.
Comparing pairs of input and output values in a table can also be used to find the average rate of
change.
An average rate of change can also be computed by determining the function values at the endpoints of
an interval described by a formula.
The average rate of change can sometimes be determined as an expression.
A function is increasing where its rate of change is positive and decreasing where its rate of change is
negative.
A local maximum is where a function changes from increasing to decreasing and has an output value
larger (more positive or less negative) than output values at neighboring input values.
A local minimum is where the function changes from decreasing to increasing (as the input increases)
and has an output value smaller (more negative or less positive) than output values at neighboring input
values.
Minima and maxima are also called extrema.
We can find local extrema from a graph.
The highest and lowest points on a graph indicate the maxima and minima.

Glossary

the greatest value of a function over an interval

the lowest value of a function over an interval

the difference in the output values of a function found for two values of the input
divided by the difference between the inputs

a function is decreasing in some open interval if  for any two input values 
 and  in the given interval where 

a function is increasing in some open interval if  for any two input values 
and  in the given interval where 

collectively, all of a function’s local maxima and minima

a value of the input where a function changes from increasing to decreasing as the input
value increases.

a value of the input where a function changes from decreasing to increasing as the input
value increases.

the change of an output quantity relative to the change of the input quantity
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COMPOSITION OF FUNCTIONS

Learning Outcomes

Combine functions using algebraic operations.
Create a new function by composition of functions.
Evaluate composite functions.
Find the domain of a composite function.
Decompose a composite function into its component functions.

Suppose we want to calculate how much it costs to heat a house on a particular day of the year. The cost to
heat a house will depend on the average daily temperature, and in turn, the average daily temperature
depends on the particular day of the year. Notice how we have just defined two relationships: The cost
depends on the temperature, and the temperature depends on the day.

Figure 1

Using descriptive variables, we can notate these two functions. The function  gives the cost  of
heating a house for a given average daily temperature in  degrees Celsius. The function  gives the
average daily temperature on day  of the year. For any given day,  means that the cost
depends on the temperature, which in turns depends on the day of the year. Thus, we can evaluate the cost
function at the temperature . For example, we could evaluate  to determine the average daily
temperature on the 5th day of the year. Then, we could evaluate the cost function at that temperature. We
would write .

By combining these two relationships into one function, we have performed function composition, which is
the focus of this section.

Combining Functions Using Algebraic Operations

Function composition is only one way to combine existing functions. Another way is to carry out the usual
algebraic operations on functions, such as addition, subtraction, multiplication and division. We do this by
performing the operations with the function outputs, defining the result as the output of our new function.

Suppose we need to add two columns of numbers that represent a husband and wife’s separate annual
incomes over a period of years, with the result being their total household income. We want to do this for
every year, adding only that year’s incomes and then collecting all the data in a new column. If  is the
wife’s income and  is the husband’s income in year , and we want  to represent the total income,
then we can define a new function.
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EXAMPLE 1: PERFORMING ALGEBRAIC OPERATIONS ON FUNCTIONS

Find and simplify the functions  and , given  and . Are
they the same function?
Answer
Begin by writing the general form, and then substitute the given functions.

                    

No, the functions are not the same.
Note: For , the condition  is necessary because when , the denominator is equal to 0,
which makes the function undefined.

If this holds true for every year, then we can focus on the relation between the functions without reference to
a year and write

Just as for this sum of two functions, we can define difference, product, and ratio functions for any pair of
functions that have the same kinds of inputs (not necessarily numbers) and also the same kinds of outputs
(which do have to be numbers so that the usual operations of algebra can apply to them, and which also
must have the same units or no units when we add and subtract). In this way, we can think of adding,
subtracting, multiplying, and dividing functions.

For two functions  and  with real number outputs, we define new functions , and 
by the relations

Try It

Find and simplify the functions  and .

Are they the same function?
Answer

84



No, the functions are not the same.

Create a Function by Composition of Functions

Performing algebraic operations on functions combines them into a new function, but we can also create
functions by composing functions. When we wanted to compute a heating cost from a day of the year, we
created a new function that takes a day as input and yields a cost as output. The process of combining
functions so that the output of one function becomes the input of another is known as a composition of
functions. The resulting function is known as a composite function. We represent this combination by the
following notation:

We read the left-hand side as  composed with  at  and the right-hand side as  of  of  The two
sides of the equation have the same mathematical meaning and are equal. The open circle symbol  is
called the composition operator. We use this operator mainly when we wish to emphasize the relationship
between the functions themselves without referring to any particular input value. Composition is a binary
operation that takes two functions and forms a new function, much as addition or multiplication takes two
numbers and gives a new number. However, it is important not to confuse function composition with
multiplication because, as we learned above, in most cases .

It is also important to understand the order of operations in evaluating a composite function. We follow the
usual convention with parentheses by starting with the innermost parentheses first, and then working to the
outside. In the equation above, the function  takes the input  first and yields an output . Then the
function  takes  as an input and yields an output .

Figure 2

In general,  and  are different functions. In other words, in many cases  for all 
. We will also see that sometimes two functions can be composed only in one specific order.

For example, if  and , then

but
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A GENERAL NOTE: COMPOSITION OF FUNCTIONS

When the output of one function is used as the input of another, we call the entire operation a composition
of functions. For any input  and functions  and , this action defines a composite function, which we
write as  such that

The domain of the composite function  is all  such that  is in the domain of  and  is in the
domain of .
It is important to realize that the product of functions  is not the same as the function composition 

, because, in general, .

EXAMPLE 2: DETERMINING WHETHER COMPOSITION OF FUNCTIONS IS
COMMUTATIVE

Using the functions below, find  and . Determine whether the composition of the functions
is commutative.

          
Answer
Let’s begin by substituting  into .

Now we can substitute  into .

We find that , so the operation of function composition is not commutative.

EXAMPLE 3: INTERPRETING COMPOSITE FUNCTIONS

The function  gives the number of calories burned completing  sit-ups, and  gives the number of
sit-ups a person can complete in  minutes. Interpret .
Answer
The inside expression in the composition is . Because the input to the s-function is time, 
represents 3 minutes, and  is the number of sit-ups completed in 3 minutes.
Using  as the input to the function  gives us the number of calories burned during the number of
sit-ups that can be completed in 3 minutes, or simply the number of calories burned in 3 minutes (by doing
sit-ups).

These expressions are not equal for all values of , so the two functions are not equal.

Note that the range of the inside function (the first function to be evaluated) needs to be within the domain of
the outside function. Less formally, the composition has to make sense in terms of inputs and outputs.

86



EXAMPLE 4: INVESTIGATING THE ORDER OF FUNCTION COMPOSITION

Suppose  gives miles that can be driven in  hours and  gives the gallons of gas used in driving 
miles. Which of these expressions is meaningful:  or 
Answer
The function  is a function whose output is the number of miles driven corresponding to the
number of hours driven.

The function  is a function whose output is the number of gallons used corresponding to the number
of miles driven. This means:

The expression  takes miles as the input and a number of gallons as the output. The function 
requires a number of hours as the input. Trying to input a number of gallons does not make sense. The
expression  is meaningless.
The expression  takes hours as input and a number of miles driven as the output. The function 
requires a number of miles as the input. Using  (miles driven) as an input value for , where
gallons of gas depends on miles driven, does make sense. The expression  makes sense, and
will yield the number of gallons of gas used, , driving a certain number of miles, , in  hours.

Q & A

Are there any situations where  and  would both be meaningful or useful
expressions?
Yes. For many pure mathematical functions, both compositions make sense, even though they usually
produce different new functions. In real-world problems, functions whose inputs and outputs have the
same units also may give compositions that are meaningful in either order.

Try It

The gravitational force on a planet a distance r from the sun is given by the function . The
acceleration of a planet subjected to any force  is given by the function . Form a meaningful
composition of these two functions, and explain what it means.
Answer

A gravitational force is still a force, so  makes sense as the acceleration of a planet at a distance
r from the Sun (due to gravity), but  does not make sense.

Evaluating Composite Functions

Once we compose a new function from two existing functions, we need to be able to evaluate it for any input
in its domain. We will do this with specific numerical inputs for functions expressed as tables, graphs, and
formulas and with variables as inputs to functions expressed as formulas. In each case, we evaluate the
inner function using the starting input and then use the inner function’s output as the input for the outer
function.

Evaluating Composite Functions Using Tables

When working with functions given as tables, we read input and output values from the table entries and
always work from the inside to the outside. We evaluate the inside function first and then use the output of
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EXAMPLE 5: USING A TABLE TO EVALUATE A COMPOSITE FUNCTION

Using the table below, evaluate  and .

1 6 3

2 8 5

3 3 2

4 1 7

Answer
To evaluate , we start from the inside with the input value 3. We then evaluate the inside
expression  using the table that defines the function  . We can then use that result as the
input to the function , so  is replaced by 2 and we get . Then, using the table that defines the
function , we find that .

To evaluate , we first evaluate the inside expression  using the first table: . Then,
using the table for  we can evaluate

The table below shows the composite functions  and  as tables.

3 2 8 3 2

the inside function as the input to the outside function.

Try It

Using the table below, evaluate  and .

1 6 3

2 8 5

3 3 2

4 1 7
Answer

 and 
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An interactive or media element has been excluded from this version of the text. You can view it online
here: https://courses.lumenlearning.com/precalculus/?p=13685

TRY IT 4

HOW TO: GIVEN A COMPOSITE FUNCTION AND GRAPHS OF ITS
INDIVIDUAL FUNCTIONS, EVALUATE IT USING THE INFORMATION

PROVIDED BY THE GRAPHS.

1. Locate the given input to the inner function on the  axis of its graph.
2. Read off the output of the inner function from the  axis of its graph.
3. Locate the inner function output on the  axis of the graph of the outer function.
4. Read the output of the outer function from the  axis of its graph. This is the output of the composite

function.

EXAMPLE 6: USING A GRAPH TO EVALUATE A COMPOSITE FUNCTION

Using the graphs in Figure 3, evaluate .

Figure 3

Evaluating Composite Functions Using Graphs

When we are given individual functions as graphs, the procedure for evaluating composite functions is
similar to the process we use for evaluating tables. We read the input and output values, but this time, from
the  and  axes of the graphs.
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Answer

Figure 4

To evaluate , we start with the inside evaluation.
We evaluate  using the graph of , finding the input of 1 on the  axis and finding the output
value of the graph at that input. Here, . We use this value as the input to the function .

We can then evaluate the composite function by looking to the graph of , finding the input of 3 on the 
 axis and reading the output value of the graph at this input. Here, , so .

Analysis of the Solution

Figure 5 shows how we can mark the graphs with arrows to trace the path from the input value to the
output value.
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Figure 5

Try It

Using Figure 6, evaluate .

Figure 6

Answer
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An interactive or media element has been excluded from this version of the text. You can view it online
here: https://courses.lumenlearning.com/precalculus/?p=13685

TRY IT

HOW TO: GIVEN A FORMULA FOR A COMPOSITE FUNCTION, EVALUATE
THE FUNCTION.

1. Evaluate the inside function using the input value or variable provided.
2. Use the resulting output as the input to the outside function.

EXAMPLE 7: EVALUATING A COMPOSITION OF FUNCTIONS EXPRESSED
AS FORMULAS WITH A NUMERICAL INPUT

Given  and , evaluate .
Answer
Because the inside expression is , we start by evaluating  at 1.

Then , so we evaluate  at an input of 5.

Analysis of the Solution

It makes no difference what the input variables  and  were called in this problem because we evaluated
for specific numerical values.

Evaluating Composite Functions Using Formulas

When evaluating a composite function where we have either created or been given formulas, the rule of
working from the inside out remains the same. The input value to the outer function will be the output of the
inner function, which may be a numerical value, a variable name, or a more complicated expression.

While we can compose the functions for each individual input value, it is sometimes helpful to find a single
formula that will calculate the result of a composition . To do this, we will extend our idea of function
evaluation. Recall that, when we evaluate a function like , we substitute the value inside the
parentheses into the formula wherever we see the input variable.

Try It

Given  and , evaluate

A) 
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An interactive or media element has been excluded from this version of the text. You can view it online
here: https://courses.lumenlearning.com/precalculus/?p=13685

TRY IT

A GENERAL NOTE: DOMAIN OF A COMPOSITE FUNCTION

The domain of a composite function  is the set of those inputs  in the domain of  for which 
is in the domain of .

HOW TO: GIVEN A FUNCTION COMPOSITION , DETERMINE ITS
DOMAIN.

1. Find the domain of .
2. Find the domain of .
3. Find those inputs, , in the domain of  for which  is in the domain of . That is, exclude those

inputs, , from the domain of  for which  is not in the domain of . The resulting set is the
domain of .

EXAMPLE 8: FINDING THE DOMAIN OF A COMPOSITE FUNCTION

Find the domain of

Answer
The domain of  consists of all real numbers except , since that input value would cause us to
divide by 0. Likewise, the domain of  consists of all real numbers except 1. So we need to exclude from
the domain of  that value of  for which .

B) 
Answer

A. 8; B. 20

Finding the Domain of a Composite Function

As we discussed previously, the domain of a composite function such as  is dependent on the
domain of  and the domain of . It is important to know when we can apply a composite function and when
we cannot, that is, to know the domain of a function such as . Let us assume we know the domains of
the functions  and  separately. If we write the composite function for an input  as , we can see
right away that  must be a member of the domain of  in order for the expression to be meaningful,
because otherwise we cannot complete the inner function evaluation. However, we also see that  must
be a member of the domain of , otherwise the second function evaluation in  cannot be completed,
and the expression is still undefined. Thus the domain of  consists of only those inputs in the domain of 
 that produce outputs from  belonging to the domain of . Note that the domain of  composed with  is

the set of all  such that  is in the domain of  and  is in the domain of .
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An interactive or media element has been excluded from this version of the text. You can view it online
here: https://courses.lumenlearning.com/precalculus/?p=13685

TRY IT

So the domain of  is the set of all real numbers except  and . This means that

We can write this in interval notation as

EXAMPLE 9: FINDING THE DOMAIN OF A COMPOSITE FUNCTION
INVOLVING RADICALS

Find the domain of

Answer
Because we cannot take the square root of a negative number, the domain of  is . Now we check
the domain of the composite function

The domain of this function is . To find the domain of , we ask ourselves if there are any
further restrictions offered by the domain of the composite function. The answer is no, since  is a
proper subset of the domain of . This means the domain of  is the same as the domain of ,
namely, .

Analysis of the Solution

This example shows that knowledge of the range of functions (specifically the inner function) can also be
helpful in finding the domain of a composite function. It also shows that the domain of  can contain
values that are not in the domain of , though they must be in the domain of .
 

Try It

Find the domain of

Answer
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An interactive or media element has been excluded from this version of the text. You can view it online
here: https://courses.lumenlearning.com/precalculus/?p=13685

TRY IT

EXAMPLE 10: DECOMPOSING A FUNCTION

Write  as the composition of two functions.
Answer
We are looking for two functions,  and , so . To do this, we look for a function inside a
function in the formula for . As one possibility, we might notice that the expression  is the
inside of the square root. We could then decompose the function as

We can check our answer by recomposing the functions.

Another solution would be

Decomposing a Composite Function into its Component
Functions

In some cases it is necessary to decompose a complicated function. In other words we can write it as a
composition of two simpler functions. There are multiple ways to decompose a composite function, but often
one is the most obvious.

Try It

Write  as the composition of two functions.
Answer

Possible answer:

Key Equation

Composite function

Key Concepts

We can perform algebraic operations on functions.
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composite function

When functions are combined, the output of the first (inner) function becomes the input of the second
(outer) function.
The function produced by combining two functions is a composite function.
The order of function composition must be considered when interpreting the meaning of composite
functions.
A composite function can be evaluated by evaluating the inner function using the given input value and
then evaluating the outer function taking as its input the output of the inner function.
A composite function can be evaluated from a table.
A composite function can be evaluated from a graph.
A composite function can be evaluated from a formula.
The domain of a composite function consists of those inputs in the domain of the inner function that
correspond to outputs of the inner function that are in the domain of the outer function.
Just as functions can be combined to form a composite function, composite functions can be
decomposed into simpler functions.
Functions can often be decomposed in more than one way.

Glossary

the new function formed by function composition, when the output of one function is
used as the input of another
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TRANSFORMATION OF FUNCTIONS

Learning Outcomes

Graph functions using a single transformation.
Graph functions using a combination of transformations.
Determine whether a function is even, odd, or neither from its graph.
Describe transformations based on a function formula.
Give the formula of a function based on its transformations.
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Figure 1. (credit: “Misko”/Flickr)

We all know that a flat mirror enables us to see an accurate image of ourselves and whatever is behind us.
When we tilt the mirror, the images we see may shift horizontally or vertically. But what happens when we
bend a flexible mirror? Like a carnival funhouse mirror, it presents us with a distorted image of ourselves,
stretched or compressed horizontally or vertically. In a similar way, we can distort or transform mathematical
functions to better adapt them to describing objects or processes in the real world. In this section, we will
take a look at several kinds of transformations.

Graphing Functions Using Vertical and Horizontal Shifts

Often when given a problem, we try to model the scenario using mathematics in the form of words, tables,
graphs, and equations. One method we can employ is to adapt the basic graphs of the toolkit functions to
build new models for a given scenario. There are systematic ways to alter functions to construct appropriate
models for the problems we are trying to solve.

Identifying Vertical Shifts

One simple kind of transformation involves shifting the entire graph of a function up, down, right, or left.
The simplest shift is a vertical shift, moving the graph up or down, because this transformation involves
adding a positive or negative constant to the function. In other words, we add the same constant to the
output value of the function regardless of the input. For a function , the function  is
shifted vertically  units.
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A GENERAL NOTE: VERTICAL SHIFT

Given a function , a new function , where  is a constant, is a vertical shift of the
function . All the output values change by  units. If  is positive, the graph will shift up. If  is
negative, the graph will shift down.

EXAMPLE 1: ADDING A CONSTANT TO A FUNCTION

To regulate temperature in a green building, airflow vents near the roof open and close throughout the day.
Figure 2 shows the area of open vents  (in square feet) throughout the day in hours after midnight, .
During the summer, the facilities manager decides to try to better regulate temperature by increasing the
amount of open vents by 20 square feet throughout the day and night. Sketch a graph of this new function.

Answer
We can sketch a graph of this new function by adding 20 to each of the output values of the original
function. This will have the effect of shifting the graph vertically up.

Figure 2. Vertical shift by  of the cube root function .

To help you visualize the concept of a vertical shift, consider that . Therefore,  is
equivalent to . Every unit of  is replaced by , so the  value increases or decreases depending
on the value of . The result is a shift upward or downward.
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Notice that for each input value, the output value has increased by 20, so if we call the new function ,
we could write

This notation tells us that, for any value of  can be found by evaluating the function  at the same
input and then adding 20 to the result. This defines  as a transformation of the function , in this case a
vertical shift up 20 units. Notice that, with a vertical shift, the input values stay the same and only the
output values change.

0 8 10 17 19 24

0 0 220 220 0 0

20 20 240 240 20 20

HOW TO: GIVEN A TABULAR FUNCTION, CREATE A NEW ROW TO
REPRESENT A VERTICAL SHIFT.

1. Identify the output row or column.
2. Determine the magnitude of the shift.
3. Add the shift to the value in each output cell. Add a positive value for up or a negative value for down.

EXAMPLE 2: SHIFTING A TABULAR FUNCTION VERTICALLY

A function  is given below. Create a table for the function .

2 4 6 8

1 3 7 11

Answer
The formula  tells us that we can find the output values of  by subtracting 3 from the
output values of . For example:
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A GENERAL NOTE: HORIZONTAL SHIFT

Given a function , a new function , where  is a constant, is a horizontal shift of the
function . If  is positive, the graph will shift right. If  is negative, the graph will shift left.

Subtracting 3 from each  value, we can complete a table of values for .

2 4 6 8

1 3 7 11

−2 0 4 8

Analysis of the Solution

As with the earlier vertical shift, notice the input values stay the same and only the output values change.
The function  gives the height  of a ball (in meters) thrown upward from the ground
after  seconds. Suppose the ball was instead thrown from the top of a 10-m building. Relate this new
height function  to , and then find a formula for .

Identifying Horizontal Shifts

We just saw that the vertical shift is a change to the output, or outside, of the function. We will now look at
how changes to input, on the inside of the function, change its graph and meaning. A shift to the input
results in a movement of the graph of the function left or right in what is known as a horizontal shift.

Figure 5. Horizontal shift of the function . Note that  shifts the graph to the left, that is,
towards negative values of .

For example, if , then  is a new function. Each input is reduced by 2 prior to
squaring the function. The result is that the graph is shifted 2 units to the right, because we would need to
increase the prior input by 2 units to yield the same output value as given in .
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EXAMPLE 3: ADDING A CONSTANT TO AN INPUT

Returning to our building airflow example from Example 2, suppose that in autumn the facilities manager
decides that the original venting plan starts too late, and wants to begin the entire venting program 2 hours
earlier. Sketch a graph of the new function.
Answer
We can set  to be the original program and  to be the revised program.

In the new graph, at each time, the airflow is the same as the original function  was 2 hours later. For
example, in the original function , the airflow starts to change at 8 a.m., whereas for the function , the
airflow starts to change at 6 a.m. The comparable function values are . Notice also that the
vents first opened to  at 10 a.m. under the original plan, while under the new plan the vents reach 

 at 8 a.m., so .

Figure 6

In both cases, we see that, because  starts 2 hours sooner, . That means that the same
output values are reached when .

Analysis of the Solution

Note that  has the effect of shifting the graph to the left.
Horizontal changes or “inside changes” affect the domain of a function (the input) instead of the range and
often seem counterintuitive. The new function  uses the same outputs as , but matches those
outputs to inputs 2 hours earlier than those of . Said another way, we must add 2 hours to the input of

 to find the corresponding output for .
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HOW TO: GIVEN A TABULAR FUNCTION, CREATE A NEW ROW TO
REPRESENT A HORIZONTAL SHIFT.

1. Identify the input row or column.
2. Determine the magnitude of the shift.
3. Add the shift to the value in each input cell.

EXAMPLE 4: SHIFTING A TABULAR FUNCTION HORIZONTALLY

A function  is given below. Create a table for the function .

2 4 6 8

1 3 7 11

Answer
The formula  tells us that the output values of  are the same as the output value of 
when the input value is 3 less than the original value. For example, we know that . To get the
same output from the function , we will need an input value that is 3 larger. We input a value that is 3
larger for  because the function takes 3 away before evaluating the function .

We continue with the other values to create this table.

5 7 9 11

2 4 6 8

1 3 7 11

1 3 7 11

The result is that the function  has been shifted to the right by 3. Notice the output values for 
remain the same as the output values for , but the corresponding input values, , have shifted to the
right by 3. Specifically, 2 shifted to 5, 4 shifted to 7, 6 shifted to 9, and 8 shifted to 11.

Analysis of the Solution

The graph in Figure 7 represents both of the functions. We can see the horizontal shift in each point.
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Figure 7

EXAMPLE 5: IDENTIFYING A HORIZONTAL SHIFT OF A TOOLKIT
FUNCTION

This graph represents a transformation of the toolkit function . Relate this new function  to 
, and then find a formula for .
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Figure 8

Answer
Notice that the graph is identical in shape to the  function, but the x-values are shifted to the
right 2 units. The vertex used to be at (0,0), but now the vertex is at (2,0). The graph is the basic quadratic
function shifted 2 units to the right, so

Notice how we must input the value  to get the output value ; the x-values must be 2 units
larger because of the shift to the right by 2 units. We can then use the definition of the  function to
write a formula for  by evaluating .

Analysis of the Solution

To determine whether the shift is  or  , consider a single reference point on the graph. For a
quadratic, looking at the vertex point is convenient. In the original function, . In our shifted
function, . To obtain the output value of 0 from the function , we need to decide whether a plus
or a minus sign will work to satisfy . For this to work, we will need to subtract
2 units from our input values.

EXAMPLE 6: INTERPRETING HORIZONTAL VERSUS VERTICAL SHIFTS

The function  gives the number of gallons of gas required to drive  miles. Interpret 
and .
Answer
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 can be interpreted as adding 10 to the output, gallons. This is the gas required to drive 
miles, plus another 10 gallons of gas. The graph would indicate a vertical shift.

 can be interpreted as adding 10 to the input, miles. So this is the number of gallons of gas
required to drive 10 miles more than  miles. The graph would indicate a horizontal shift.

Try It

Given the function , graph the original function  and the transformation 
on the same axes. Is this a horizontal or a vertical shift? Which way is the graph shifted and by how many
units?
Answer

The graphs of  and  are shown below. The transformation is a horizontal shift. The function is
shifted to the left by 2 units.

Graphing Functions Using Re�ections about the Axes

Another transformation that can be applied to a function is a reflection over the x– or y-axis. A vertical
reflection reflects a graph vertically across the x-axis, while a horizontal reflection reflects a graph
horizontally across the y-axis. The reflections are shown in Figure 9.
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A GENERAL NOTE: REFLECTIONS

Given a function , the function  is a vertical reflection of the function , sometimes
called a reflection about (or over, or through) the x-axis.
Given a function , the function  is a horizontal reflection of the function ,
sometimes called a reflection about the y-axis.

HOW TO: GIVEN A FUNCTION, REFLECT THE GRAPH BOTH VERTICALLY
AND HORIZONTALLY.

Figure 9. Vertical and horizontal reflections of a function.

Notice that the vertical reflection produces a new graph that is a mirror image of the base or original graph
about the x-axis. The horizontal reflection produces a new graph that is a mirror image of the base or
original graph about the y-axis.
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1. Multiply all outputs by –1 for a vertical reflection. This is the same as multiplying the entire function by
-1. The new graph is a reflection of the original graph about the x-axis.

2. Multiply all inputs by –1 for a horizontal reflection. This is the same as multiplying the input variable by
-1. The new graph is a reflection of the original graph about the y-axis.

EXAMPLE 7: REFLECTING A GRAPH HORIZONTALLY AND VERTICALLY

Reflect the graph of  (a) vertically and (b) horizontally.
Answer
a. Reflecting the graph vertically means that each output value will be reflected over the horizontal t-axis
as shown in Figure 10.

Figure 10. Vertical reflection of the square root function

Because each output value is the opposite of the original output value, we can write

Notice that this is an outside change, or vertical shift, that affects the output  values, so the negative
sign belongs outside of the function.
b.
Reflecting horizontally means that each input value will be reflected over the vertical axis as shown in
Figure 11.
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Figure 11. Horizontal reflection of the square root function

Because each input value is the opposite of the original input value, we can write

Notice that this is an inside change or horizontal change that affects the input values, so the negative sign
is on the inside of the function.
Note that these transformations can affect the domain and range of the functions. While the original
square root function has domain  and range , the vertical reflection gives the  function
the range  and the horizontal reflection gives the  function the domain .

Try It

Reflect the graph of  (a) vertically and (b) horizontally.
Answer

a)

b)

108



EXAMPLE 8: REFLECTING A TABULAR FUNCTION HORIZONTALLY AND
VERTICALLY

A function  is given. Create a table for the functions below.

1. 
2. 

2 4 6 8

1 3 7 11

Answer

1. For , the negative sign outside the function indicates a vertical reflection, so the x-values stay the
same and each output value will be the opposite of the original output value.

2 4 6 8

–1 –3 –7 –11

2. For , the negative sign inside the function indicates a horizontal reflection, so each input value
will be the opposite of the original input value and the  values stay the same as the  values.

−2 −4 −6 −8

1 3 7 11

Try It

−2 0 2 4

5 10 15 20

Using the function  given in the table above, create a table for the functions below.

a. 

b. 
Answer

-2 0 2 4

-2 0 2 4

15 10 5 unknown
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A YouTube element has been excluded from this version of the text. You can view it online here:
https://courses.lumenlearning.com/precalculus/?p=13717

Determining Even and Odd Functions

Some functions exhibit symmetry so that reflections result in the original graph. For example, horizontally
reflecting the toolkit functions  or  will result in the original graph. We say that these
types of graphs are symmetric about the y-axis. Functions whose graphs are symmetric about the y-axis are
called even functions.

If the graphs of  or  were reflected over both axes, the result would be the original
graph.

Figure 12. (a) The cubic toolkit function (b) Horizontal reflection of the cubic toolkit function (c) Horizontal and vertical reflections reproduce
the original cubic function.

We say that these graphs are symmetric about the origin. A function with a graph that is symmetric about the
origin is called an odd function.

We use the expressions, “odd” and “even” because of polynomials. A polynomial function with only odd
degree terms (odd powers of x) will be an odd function. A polynomial function with only even degree terms
(even powers of x) will be an even function.

Note: A function can be neither even nor odd if it does not exhibit either symmetry. For example, 
is neither even nor odd. Also, the only function that is both even and odd is the constant function .
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A GENERAL NOTE: EVEN AND ODD FUNCTIONS

A function is called an even function if for every input 

The graph of an even function is symmetric about the  axis.
A function is called an odd function if for every input 

The graph of an odd function is symmetric about the origin.

HOW TO: GIVEN THE FORMULA FOR A FUNCTION, DETERMINE IF THE
FUNCTION IS EVEN, ODD, OR NEITHER.

1. Determine whether the function satisfies . If it does, it is even.
2. Determine whether the function satisfies . If it does, it is odd.
3. If the function does not satisfy either rule, it is neither even nor odd.

EXAMPLE 9: DETERMINING WHETHER A FUNCTION IS EVEN, ODD, OR
NEITHER

Is the function  even, odd, or neither?
Answer
Without looking at a graph, we can determine whether the function is even or odd by finding formulas for
the reflections and determining if they return us to the original function. Let’s begin with the rule for even
functions.

This does not return us to the original function, so this function is not even. We can now test the rule for
odd functions.

Because , this is an odd function.

Analysis of the Solution

Consider the graph of . Notice that the graph is symmetric about the origin. For every point  on the
graph, the corresponding point  is also on the graph. For example, (1, 3) is on the graph of ,
and the corresponding point  is also on the graph.
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Figure 13

Try It

Is the function  even, odd, or neither?
Answer

Even.

Graphing Functions Using Stretches and Compressions

Adding a constant to the inputs or outputs of a function changed the position of a graph with respect to the
axes, but it did not affect the shape of a graph. We now explore the effects of multiplying the inputs or
outputs by some quantity.

We can transform the inside (input values) of a function or we can transform the outside (output values) of a
function. Each change has a specific effect that can be seen graphically.

Vertical Stretches and Compressions

When we multiply a function by a positive constant, we get a function whose graph is stretched or
compressed vertically in relation to the graph of the original function. If the constant is greater than 1, we get
a vertical stretch; if the constant is between 0 and 1, we get a vertical compression. The graph
below shows a function multiplied by constant factors 2 and 0.5 and the resulting vertical stretch and
compression.
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A GENERAL NOTE: VERTICAL STRETCHES AND COMPRESSIONS

Given a function , a new function , where  is a constant, is a vertical stretch or vertical
compression of the function .

If , then the graph will be stretched.
If 0 < a < 1, then the graph will be compressed.
If , then there will be combination of a vertical stretch or compression with a vertical reflection.

HOW TO: GIVEN A FUNCTION, GRAPH ITS VERTICAL STRETCH.

1. Identify the value of .
2. Multiply all range values by .
3. If , the graph is stretched by a factor of .

If , the graph is compressed by a factor of .
If , the graph is either stretched or compressed and also reflected about the x-axis.

EXAMPLE 10: GRAPHING A VERTICAL STRETCH

Figure 14. Vertical stretch and compression
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Figure 15

A function  models the population of fruit flies.
A scientist is comparing this population to another population, , whose growth follows the same pattern,
but is twice as large. Sketch a graph of this population.
Answer
Because the population is always twice as large, the new population’s output values are always twice the
original function’s output values.
If we choose four reference points, (0, 1), (3, 3), (6, 2) and (7, 0) we will multiply all of the outputs by 2.
The following shows where the new points for the new graph will be located.
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Figure 16

Symbolically, the relationship is written as

This means that for any input , the value of the function  is twice the value of the function . Notice that
the effect on the graph is a vertical stretching of the graph, where every point doubles its distance from the
horizontal axis. The input values, , stay the same while the output values are twice as large as before.

HOW TO: GIVEN A TABULAR FUNCTION AND ASSUMING THAT THE
TRANSFORMATION IS A VERTICAL STRETCH OR COMPRESSION, CREATE

A TABLE FOR A VERTICAL COMPRESSION.

1. Determine the value of .
2. Multiply all of the output values by .

EXAMPLE 11: FINDING A VERTICAL COMPRESSION OF A TABULAR
FUNCTION

A function  is given in the table below. Create a table for the function .
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2 4 6 8

1 3 7 11

Answer
The formula  tells us that the output values of  are half of the output values of  with the
same inputs. For example, we know that . Then

We do the same for the other values to produce this table.

Analysis of the Solution

The result is that the function  has been compressed vertically by . Each output value is divided in
half, so the graph is half the original height.

EXAMPLE 12: RECOGNIZING A VERTICAL STRETCH

Try It

A function  is given below. Create a table for the function .

2 4 6 8

12 16 20 0
Answer

2 4 6 8

9 12 15 0
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Figure 17

The graph is a transformation of the toolkit function . Relate this new function  to , and
then find a formula for .
Answer
When trying to determine a vertical stretch or shift, it is helpful to look for a point on the graph that is
relatively clear. In this graph, it appears that . With the basic cubic function at the same input, 

. Based on that, it appears that the outputs of  are  the outputs of the function  because
. From this we can fairly safely conclude that .

We can write a formula for  by using the definition of the function .

Try It

Write the formula for the function that we get when we stretch the identity toolkit function by a factor of 3,
and then shift it down by 2 units.
Answer
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An interactive or media element has been excluded from this version of the text. You can view it online
here: https://courses.lumenlearning.com/precalculus/?p=13717

TRY IT

Horizontal Stretches and Compressions

Figure 18
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A GENERAL NOTE: HORIZONTAL STRETCHES AND COMPRESSIONS

Given a function , a new function , where  is a constant, is a horizontal stretch or
horizontal compression of the function .

If , then the graph will be compressed by .
If , then the graph will be stretched by .
If , then there will be combination of a horizontal stretch or compression with a horizontal
reflection.

HOW TO: GIVEN A DESCRIPTION OF A FUNCTION, SKETCH A
HORIZONTAL COMPRESSION OR STRETCH.

1. Write a formula to represent the function.
2. Set  where  for a compression or 

for a stretch.

EXAMPLE 13: GRAPHING A HORIZONTAL COMPRESSION

Suppose a scientist is comparing a population of fruit flies to a population that progresses through its
lifespan twice as fast as the original population. In other words, this new population, , will progress in 1
hour the same amount as the original population does in 2 hours, and in 2 hours, it will progress as much
as the original population does in 4 hours. Sketch a graph of this population.
Answer
Symbolically, we could write

See below for a graphical comparison of the original population and the compressed population.

Now we consider changes to the inside of a function. When we multiply a function’s input by a positive
constant, we get a function whose graph is stretched or compressed horizontally in relation to the graph of
the original function. If the constant is between 0 and 1, we get a horizontal stretch; if the constant is
greater than 1, we get a horizontal compression of the function.

Given a function , the form  results in a horizontal stretch or compression. Consider the
function . The graph of  is a horizontal stretch of the graph of the function  by a
factor of 2. The graph of  is a horizontal compression of the graph of the function  by a
factor of 2.
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Figure 19. (a) Original population graph (b) Compressed population graph

Analysis of the Solution

Note that the effect on the graph is a horizontal compression where all input values are half of their
original distance from the vertical axis.

EXAMPLE 14: FINDING A HORIZONTAL STRETCH FOR A TABULAR
FUNCTION

A function  is given below. Create a table for the function .

2 4 6 8

1 3 7 11

Answer
The formula  tells us that the output values for  are the same as the output values for the
function  at an input half the size. Notice that we do not have enough information to determine 
because , and we do not have a value for  in our table. Our input values to 
will need to be twice as large to get inputs for  that we can evaluate. For example, we can determine 

We do the same for the other values to produce the table below.

4 8 12 16

1 3 7 11
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Figure 20

This figure shows the graphs of both of these sets of points.

Analysis of the Solution

Because each input value has been doubled, the result is that the function  has been stretched
horizontally by a factor of 2.

EXAMPLE 15: RECOGNIZING A HORIZONTAL COMPRESSION ON A
GRAPH

Relate the function  to  in Figure 21.

Figure 21

Answer
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The graph of  looks like the graph of  horizontally compressed. Because  ends at  and
 ends at , we can see that the  values have been compressed by , because . We

might also notice that  and . Either way, we can describe this relationship as 
. This is a horizontal compression by .

Analysis of the Solution

Notice that the coefficient needed for a horizontal stretch or compression is the reciprocal of the stretch or
compression. So to stretch the graph horizontally by a scale factor of 4, we need a coefficient of  in our
function: . This means that the input values must be four times larger to produce the same result,
requiring the input to be larger, causing the horizontal stretching.

HOW TO: GIVEN A FUNCTION AND BOTH A VERTICAL AND A
HORIZONTAL SHIFT, SKETCH THE GRAPH.

1. Identify the vertical and horizontal shifts from the formula.
2. The vertical shift results from a constant added to the output. Move the graph up for a positive

constant and down for a negative constant.
3. The horizontal shift results from a constant added to the input. Move the graph left for a positive

constant and right for a negative constant.
4. Apply the shifts to the graph in either order.

EXAMPLE 16: GRAPHING COMBINED VERTICAL AND HORIZONTAL
SHIFTS

Given , sketch a graph of .
Answer
The function  is our toolkit absolute value function. We know that this graph has a V shape, with the point
at the origin. The graph of  has transformed  in two ways:  is a change on the inside of the
function, giving a horizontal shift left by 1, and the subtraction by 3 in  is a change to the
outside of the function, giving a vertical shift down by 3. The transformation of the graph is illustrated in
Figure 22.
Let us follow one point of the graph of .

The point  is transformed first by shifting left 1 unit: 

Try It

Write a formula for the toolkit square root function horizontally stretched by a factor of 3.
Answer

 so using the square root function we get 

Combining Vertical and Horizontal Shifts

Now that we have two transformations, we can combine them together. Vertical shifts are outside changes
that affect the output (  ) axis values and shift the function up or down. Horizontal shifts are inside changes
that affect the input (  ) axis values and shift the function left or right. Combining the two types of shifts will
cause the graph of a function to shift up or down and right or left.
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The point  is transformed next by shifting down 3 units: 

Figure 22

Figure 23 is the graph of .
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Figure 23

Try It

Given , sketch a graph of .
Answer
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An interactive or media element has been excluded from this version of the text. You can view it online
here: https://courses.lumenlearning.com/precalculus/?p=13717

EXAMPLE 17: IDENTIFYING COMBINED VERTICAL AND HORIZONTAL
SHIFTS

Write a formula for the graph shown in Figure 24, which is a transformation of the toolkit square root
function.

Figure 24

Answer
The graph of the toolkit function starts at the origin, so this graph has been shifted 1 to the right and up 2.
In function notation, we could write that as

Using the formula for the square root function, we can write

Analysis of the Solution

Note that this transformation has changed the domain and range of the function. This new graph has
domain  and range .

Try It

Try It

Write a formula for a transformation of the toolkit reciprocal function  that shifts the function’s
graph one unit to the right and one unit up.
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EXAMPLE 18: APPLYING A LEARNING MODEL EQUATION

A common model for learning has an equation similar to , where  is the percentage of
mastery that can be achieved after  practice sessions. This is a transformation of the function 
shown in Figure 25. Sketch a graph of .

Figure 25

Answer
This equation combines three transformations into one equation.

A horizontal reflection: 
A vertical reflection: 
A vertical shift: 

We can sketch a graph by applying these transformations one at a time to the original function. Let us
follow two points through each of the three transformations. We will choose the points (0, 1) and (1, 2).

Answer
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1. First, we apply a horizontal reflection: (0, 1) (–1, 2).
2. Then, we apply a vertical reflection: (0, −1) (1, –2).
3. Finally, we apply a vertical shift: (0, 0) (1, 1).

This means that the original points, (0,1) and (1,2) become (0,0) and (1,1) after we apply the
transformations.
In Figure 26, the first graph results from a horizontal reflection. The second results from a vertical
reflection. The third results from a vertical shift up 1 unit.

Figure 26

Analysis of the Solution

As a model for learning, this function would be limited to a domain of , with corresponding range 
.

Try It

Given the toolkit function , graph  and . Take note of any
surprising behavior for these functions.
Answer

Notice:  looks the same as  .
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A GENERAL NOTE: COMBINING TRANSFORMATIONS

When combining vertical transformations written in the form , first vertically stretch by  and
then vertically shift by .

Performing a Sequence of Transformations

When combining transformations, it is very important to consider the order of the transformations. For
example, vertically shifting by 3 and then vertically stretching by 2 does not create the same graph as
vertically stretching by 2 and then vertically shifting by 3, because when we shift first, both the original
function and the shift get stretched, while only the original function gets stretched when we stretch first.

When we see an expression such as , which transformation should we start with? The answer
here follows nicely from the order of operations. Given the output value of , we first multiply by 2,
causing the vertical stretch, and then add 3, causing the vertical shift. In other words, multiplication before
addition.

Horizontal transformations are a little trickier to think about. When we write , for example,
we have to think about how the inputs to the function  relate to the inputs to the function . Suppose we
know . What input to  would produce that output? In other words, what value of  will allow 

 We would need . To solve for , we would first subtract 3, resulting in a
horizontal shift, and then divide by 2, causing a horizontal compression.

This format ends up being very difficult to work with, because it is usually much easier to horizontally stretch
a graph before shifting. We can work around this by factoring inside the function.

Let’s work through an example.

We can factor out a 2.

Now we can more clearly observe a horizontal shift to the left 2 units and a horizontal compression.
Factoring in this way allows us to horizontally stretch first and then shift horizontally.
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When combining horizontal transformations written in the form , first horizontally shift by  and
then horizontally stretch by .
When combining horizontal transformations written in the form , first horizontally stretch by 
and then horizontally shift by .
Horizontal and vertical transformations are independent. It does not matter whether horizontal or vertical
transformations are performed first.

EXAMPLE 19: FINDING A TRIPLE TRANSFORMATION OF A TABULAR
FUNCTION

Given the table below for the function , create a table of values for the function .

6 12 18 24

10 14 15 17

Answer
There are three steps to this transformation, and we will work from the inside out. Starting with the
horizontal transformations,  is a horizontal compression by , which means we multiply each 
value by .

2 4 6 8

10 14 15 17

Looking now to the vertical transformations, we start with the vertical stretch, which will multiply the output
values by 2. We apply this to the previous transformation.

2 4 6 8

20 28 30 34

Finally, we can apply the vertical shift, which will add 1 to all the output values.

2 4 6 8

21 29 31 35

EXAMPLE 20: FINDING A TRIPLE TRANSFORMATION OF A GRAPH

Use the graph of  to sketch a graph of .
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Figure 27

Answer
To simplify, let’s start by factoring out the inside of the function.

By factoring the inside, we can first horizontally stretch by 2, as indicated by the  on the inside of the
function. Remember that twice the size of 0 is still 0, so the point (0,2) remains at (0,2) while the point
(2,0) will stretch to (4,0).
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Figure 28

Next, we horizontally shift left by 2 units, as indicated by .

131



Figure 29

Last, we vertically shift down by 3 to complete our sketch, as indicated by the  on the outside of the
function.
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An interactive or media element has been excluded from this version of the text. You can view it online
here: https://courses.lumenlearning.com/precalculus/?p=13717

TRY IT 13

Figure 30

Key Equations
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even function

horizontal compression

horizontal reflection

horizontal shift

Vertical shift  (up for  )

Horizontal shift  (right for  )

Vertical reflection

Horizontal reflection

Vertical stretch  ( )

Vertical compression  

Horizontal stretch  

Horizontal compression  (  )

Key Concepts

A function can be shifted vertically by adding a constant to the output.
A function can be shifted horizontally by adding a constant to the input.
Relating the shift to the context of a problem makes it possible to compare and interpret vertical and
horizontal shifts.
Vertical and horizontal shifts are often combined.
A vertical reflection reflects a graph about the  axis. A graph can be reflected vertically by multiplying
the output by –1.
A horizontal reflection reflects a graph about the  axis. A graph can be reflected horizontally by
multiplying the input by –1.
A graph can be reflected both vertically and horizontally. The order in which the reflections are applied
does not affect the final graph.
A function presented in tabular form can also be reflected by multiplying the values in the input and
output rows or columns accordingly.
A function presented as an equation can be reflected by applying transformations one at a time.
Even functions are symmetric about the  axis, whereas odd functions are symmetric about the origin.
Even functions satisfy the condition .
Odd functions satisfy the condition .
A function can be odd, even, or neither.
A function can be compressed or stretched vertically by multiplying the output by a constant.
A function can be compressed or stretched horizontally by multiplying the input by a constant.
The order in which different transformations are applied does affect the final function. Both vertical and
horizontal transformations must be applied in the order given. However, a vertical transformation may be
combined with a horizontal transformation in any order.

Glossary

a function whose graph is unchanged by horizontal reflection, , and is
symmetric about the  axis

a transformation that compresses a function’s graph horizontally, by multiplying
the input by a constant 

a transformation that reflects a function’s graph across the y-axis by multiplying the
input by 

a transformation that shifts a function’s graph left or right by adding a positive or negative
constant to the input
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horizontal stretch

odd function

vertical compression

vertical reflection

vertical shift

vertical stretch

a transformation that stretches a function’s graph horizontally by multiplying the input by
a constant 

a function whose graph is unchanged by combined horizontal and vertical reflection, 
, and is symmetric about the origin

a function transformation that compresses the function’s graph vertically by
multiplying the output by a constant 

a transformation that reflects a function’s graph across the x-axis by multiplying the
output by 

a transformation that shifts a function’s graph up or down by adding a positive or negative
constant to the output

a transformation that stretches a function’s graph vertically by multiplying the output by a
constant 
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ABSOLUTE VALUE FUNCTIONS

Learning Outcomes

Graph an absolute value function.
Solve an absolute value equation.
Solve an absolute value inequality.
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A GENERAL NOTE: ABSOLUTE VALUE FUNCTION

The absolute value function can be defined as a piecewise function

EXAMPLE 1: DETERMINE A NUMBER WITHIN A PRESCRIBED DISTANCE

Describe all values  within or including a distance of 4 from the number 5.

Figure 1. Distances in deep space can be measured in all directions. As such, it is useful to consider distance in terms of absolute values.
(credit: “s58y”/Flickr)

Until the 1920s, the so-called spiral nebulae were believed to be clouds of dust and gas in our own galaxy,
some tens of thousands of light years away. Then, astronomer Edwin Hubble proved that these objects are
galaxies in their own right, at distances of millions of light years. Today, astronomers can detect galaxies that
are billions of light years away. Distances in the universe can be measured in all directions. As such, it is
useful to consider distance as an absolute value function. In this section, we will investigate absolute value
functions.

Understanding Absolute Value

Recall that in its basic form , the absolute value function, is one of our toolkit functions. The
absolute value function is commonly thought of as providing the distance the number is from zero on a
number line. Algebraically, for whatever the input value is, the output is the value without regard to sign.
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Answer

Figure 2

We want the distance between  and 5 to be less than or equal to 4. We can draw a number line to
represent the condition to be satisfied.
The distance from  to 5 can be represented using the absolute value as . We want the values of 
that satisfy the condition .

Analysis of the Solution

Note that

And:

So  is equivalent to .
However, mathematicians generally prefer absolute value notation.

EXAMPLE 2: RESISTANCE OF A RESISTOR

Electrical parts, such as resistors and capacitors, come with specified values of their operating
parameters: resistance, capacitance, etc. However, due to imprecision in manufacturing, the actual values
of these parameters vary somewhat from piece to piece, even when they are supposed to be the same.
The best that manufacturers can do is to try to guarantee that the variations will stay within a specified
range, often  or .
Suppose we have a resistor rated at 680 ohms, . Use the absolute value function to express the range
of possible values of the actual resistance.
Answer
5% of 680 ohms is 34 ohms. The absolute value of the difference between the actual and nominal
resistance should not exceed the stated variability, so, with the resistance  in ohms,

Try It

Describe all values  within a distance of 3 from the number 2.
Answer

Try It

Students who score within 20 points of 80 will pass a test. Write this as a distance from 80 using absolute
value notation.
Answer
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Using the variable  for passing, .

Graphing an Absolute Value Function

The most significant feature of the absolute value graph is the corner point at which the graph changes
direction. This point is shown at the origin.

Figure 3

Figure 4 shows how to find the graph of . The graph of  has been shifted right 3
units, vertically stretched by a factor of 2, and shifted up 4 units. This means that the corner point is located
at  for this transformed function.
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EXAMPLE 3: WRITING AN EQUATION FOR AN ABSOLUTE VALUE
FUNCTION

Write an equation for the function graphed in Figure 5.

Figure 4
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Figure 5

Answer
The basic absolute value function changes direction at the origin, so this graph has been shifted to the
right 3 units and down 2 units from the basic toolkit function.
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Figure 6

We also notice that the graph appears vertically stretched, because the width of the final graph on a
horizontal line is not equal to 2 times the vertical distance from the corner to this line, as it would be for an
unstretched absolute value function. Instead, the width is equal to 1 times the vertical distance.
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Figure 7

From this information we can write the equation

Analysis of the Solution

Note that these equations are algebraically equivalent—the stretch for an absolute value function can be
written interchangeably as a vertical or horizontal stretch or compression.

Q & A
If we couldn’t observe the stretch of the function from the graphs, could we algebraically
determine it?
Yes. If we are unable to determine the stretch based on the width of the graph, we can solve for the
stretch factor by putting in a known pair of values for  and .

Now substituting in the point (1, 2)

Try It
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Q & A
Do the graphs of absolute value functions always intersect the vertical axis? The horizontal axis?
Yes, they always intersect the vertical axis. The graph of an absolute value function will intersect the
vertical axis when the input is zero.
No, they do not always intersect the horizontal axis. The graph may or may not intersect the horizontal
axis, depending on how the graph has been shifted and reflected. It is possible for the absolute value
function to intersect the horizontal axis at zero, one, or two points.

Figure 8. (a) The absolute value function does not intersect the horizontal axis. (b) The absolute value function intersects the horizontal axis
at one point. (c) The absolute value function intersects the horizontal axis at two points.

Write the equation for the absolute value function that is horizontally shifted left 2 units, is vertically
flipped, and vertically shifted up 3 units.
Answer

Solving an Absolute Value Equation

Now that we can graph an absolute value function, we will learn how to solve an absolute value equation. To
solve an equation such as , we notice that the absolute value will be equal to 8 if the quantity
inside the absolute value is 8 or -8. This leads to two different equations we can solve independently.

Knowing how to solve problems involving absolute value functions is useful. For example, we may need to
identify numbers or points on a line that are at a specified distance from a given reference point.

An absolute value equation is an equation in which the unknown variable appears in absolute value bars.
For example,
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A GENERAL NOTE: SOLUTIONS TO ABSOLUTE VALUE EQUATIONS

For real numbers  and , an equation of the form , with , will have solutions when 
or . If , the equation  has no solution.

HOW TO: GIVEN THE FORMULA FOR AN ABSOLUTE VALUE FUNCTION,
FIND THE HORIZONTAL INTERCEPTS OF ITS GRAPH.

1. Set the function equal to [latex]0[\latex].
2. Isolate the absolute value term.
3. Use  to write  or , assuming .
4. Solve for .

EXAMPLE 4: FINDING THE ZEROS OF AN ABSOLUTE VALUE FUNCTION

For the function  , find the values of   such that   .
Answer
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Figure 9

The function outputs 0 when  or .

An interactive or media element has been excluded from this version of the text. You can view it online
here: https://courses.lumenlearning.com/precalculus/?p=13736

Q & A
Should we always expect two answers when solving 
No. We may find one, two, or even no answers. For example, there is no solution to  .

HOW TO: GIVEN AN ABSOLUTE VALUE EQUATION, SOLVE IT.

1. Isolate the absolute value term.
2. Use  to write  or .
3. Solve for .

Try It

For the function , find the values of  such that .
Answer

 or 

Try It
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EXAMPLE 5: SOLVING AN ABSOLUTE VALUE EQUATION

Solve .
Answer
First we isolate the absolute value expression on one side of the equation.

The absolute value always returns a positive value, so it is impossible for the absolute value to equal a
negative value. At this point, we notice that this equation has no solutions.

An interactive or media element has been excluded from this version of the text. You can view it online
here: https://courses.lumenlearning.com/precalculus/?p=13736

Q & A
In Example 5, if the functions  and  were graphed on the same set of
axes, would the graphs intersect?
No. The graphs of  and  would not intersect. This confirms, graphically, that the equation 

 has no solution.

Try It
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Figure 10

Try It

Find where the graph of the function  intersects the horizontal and vertical axes.
Answer

, so the graph intersects the vertical axis at .  when  and  so the
graph intersects the horizontal axis at  and .

Solving an Absolute Value Inequality

Absolute value expressions may not always involve equations. Instead we may need to solve where an
expression is within a range of values. We would use an absolute value inequality to solve such an equation.
An absolute value inequality is an inequality of the form

,
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EXAMPLE 6: SOLVING AN ABSOLUTE VALUE INEQUALITY

Solve .
Answer
With both approaches, we will need to know first where the corresponding equality is true. In this case we
first will find where . We do this because the absolute value is a function with no breaks, so the
only way the function values can switch from being less than 4 to being greater than 4 is by passing
through where the values equal 4. Solve .

After determining that the absolute value is equal to 4 at  and , we know the graph can change
only from being less than 4 to greater than 4 at these values. This divides the number line up into three
intervals:

.
To determine when the function is less than 4, we could choose a value in each interval and see if the
output is less than or greater than 4, as shown in the table below.

HOW TO: GIVEN AN ABSOLUTE VALUE INEQUALITY OF THE FORM 
 FOR REAL NUMBERS  AND  WHERE  IS POSITIVE, SOLVE

THE ABSOLUTE VALUE INEQUALITY ALGEBRAICALLY.

1. Find boundary points by solving .
2. Test intervals created by the boundary points to determine where .
3. Write the interval or union of intervals satisfying the inequality in interval, inequality, or set-builder

notation.

where an expression  (and possibly but not usually  ) depends on a variable . Solving the inequality
means finding the set of all  that satisfy the inequality. Usually this set will be an interval or the union of two
intervals.

There are two basic approaches to solving absolute value inequalities: graphical and algebraic. The
advantage of the graphical approach is we can read the solution by interpreting the graphs of two functions.
The advantage of the algebraic approach is it yields solutions that may be difficult to read from the graph.

For example, we know that all numbers within 200 units of 0 may be expressed as

Suppose we want to know all possible returns on an investment if we could earn some amount of money
within $200 of $600. We can solve algebraically for the set of values  such that the distance between  and
600 is less than 200. We represent the distance between  and 600 as .

OR

This means our returns would be between $400 and $800.

Sometimes an absolute value inequality problem will be presented to us in terms of a shifted and/or
stretched or compressed absolute value function, where we must determine for which values of the input the
function’s output will be negative or positive.
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Interval test  or 

0 Greater than

6 Less than

11 Greater than

Because  is the only interval in which the output at the test value is less than 4, we can
conclude that the solution to  is , or .
To use a graph, we can sketch the function . To help us see where the outputs are 4, the
line  could also be sketched.

Figure 11. Graph to find the points satisfying an absolute value inequality.

We can see the following:
The output values of the absolute value are equal to 4 at  and .
The graph of  is below the graph of  on . This means the output values of  are less
than the output values of .
The absolute value is less than or equal to 4 between these two points, when . In interval
notation, this would be the interval .

Analysis of the Solution

For absolute value inequalities,
 and  can be rewritten 

.

The  or  symbol may be replaced by .

So, for this example, we could use this alternative approach.
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HOW TO: GIVEN AN ABSOLUTE VALUE FUNCTION, SOLVE FOR THE SET
OF INPUTS WHERE THE OUTPUT IS POSITIVE (OR NEGATIVE).

1. Set the function equal to zero and solve for the boundary points of the solution set.
2. Use test points or a graph to determine where the function’s output is positive or negative.

EXAMPLE 7: USING A GRAPHICAL APPROACH TO SOLVE ABSOLUTE
VALUE INEQUALITIES

Given the function , determine the  values for which the function values are
negative.
Answer
We are trying to determine where , which is when . We begin by isolating
the absolute value.

Next we solve for the equality .

 

Try It

Solve .
Answer

150



Figure 12

Now, we can examine the graph of  to observe where the output is negative. We will observe where the
branches are below the x-axis. Notice that it is not even important exactly what the graph looks like, as
long as we know that it crosses the horizontal axis at  and  and that the graph has been
reflected vertically.
We observe that the graph of the function is below the x-axis left of  and right of . This
means the function values are negative to the left of the first horizontal intercept at , and negative
to the right of the second intercept at . This gives us the solution to the inequality.

In interval notation, this would be .

An interactive or media element has been excluded from this version of the text. You can view it online
here: https://courses.lumenlearning.com/precalculus/?p=13736

TRY IT

Try It

Solve .
Answer

 or ; in interval notation, this would be 
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absolute value equation

absolute value inequality

 

Key Concepts

The absolute value function is commonly used to measure distances between points.
Applied problems, such as ranges of possible values, can also be solved using the absolute value
function.
The graph of the absolute value function resembles a letter V. It has a corner point at which the graph
changes direction.
In an absolute value equation, an unknown variable is the input of an absolute value function.
If the absolute value of an expression is set equal to a positive number, expect two solutions for the
unknown variable.
An absolute value equation may have one solution, two solutions, or no solutions.
An absolute value inequality is similar to an absolute value equation but takes the form 

. It can be solved by determining the boundaries of the solution
set and then testing which segments are in the set.
Absolute value inequalities can also be solved graphically.

Glossary

an equation of the form , with ; it will have solutions when  or

a relationship in the form 
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INVERSE FUNCTIONS

Learning Outcomes

Verify inverse functions.
Determine the domain and range of an inverse function, and restrict the domain of a function to make
it one-to-one.
Find or evaluate the inverse of a function.
Use the graph of a one-to-one function to graph its inverse function on the same axes.

A reversible heat pump is a climate-control system that is an air conditioner and a heater in a single device.
Operated in one direction, it pumps heat out of a house to provide cooling. Operating in reverse, it pumps
heat into the building from the outside, even in cool weather, to provide heating. As a heater, a heat pump is
several times more efficient than conventional electrical resistance heating.

If some physical machines can run in two directions, we might ask whether some of the function “machines”
we have been studying can also run backwards. Figure 1 provides a visual representation of this question.
In this section, we will consider the reverse nature of functions.
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Figure 1. Can a function “machine” operate in reverse?

Verifying That Two Functions Are Inverse Functions

Suppose a fashion designer traveling to Milan for a fashion show wants to know what the temperature will
be. He is not familiar with the Celsius scale. To get an idea of how temperature measurements are related,
he asks his assistant, Betty, to convert 75 degrees Fahrenheit to degrees Celsius. She finds the formula

and substitutes 75 for  to calculate
.

Figure 2

Knowing that a comfortable 75 degrees Fahrenheit is about 24 degrees Celsius, he sends his assistant the
week’s weather forecast for Milan, and asks her to convert all of the temperatures to degrees Fahrenheit.

At first, Betty considers using the formula she has already found to complete the conversions. After all, she
knows her algebra, and can easily solve the equation for  after substituting a value for . For example, to
convert 26 degrees Celsius, she could write
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A GENERAL NOTE: INVERSE FUNCTION

For any one-to-one function , a function  is an inverse function of  if .
This can also be written as  for all  in the domain of . It also follows that 
for all  in the domain of  if  is the inverse of .
The notation  is read  inverse.” Like any other function, we can use any variable name as the input
for , so we will often write , which we read as  inverse of 
Keep in mind that

and not all functions have inverses.

EXAMPLE 1: IDENTIFYING AN INVERSE FUNCTION FOR A GIVEN INPUT-
OUTPUT PAIR

If for a particular one-to-one function  and , what are the corresponding input and
output values for the inverse function?

After considering this option for a moment, however, she realizes that solving the equation for each of the
temperatures will be awfully tedious. She realizes that since evaluation is easier than solving, it would be
much more convenient to have a different formula, one that takes the Celsius temperature and outputs the
Fahrenheit temperature.

The formula for which Betty is searching corresponds to the idea of an inverse function, which is a function
for which the input of the original function becomes the output of the inverse function and the output of the
original function becomes the input of the inverse function.

Given a function , we represent its inverse as , read as  inverse of  The raised  is
part of the notation. It is not an exponent; it does not imply a power of  . In other words,  does not
mean  because  is the reciprocal of  and not the inverse.

The “exponent-like” notation comes from an analogy between function composition and multiplication: just
as  (1 is the identity element for multiplication) for any nonzero number , so  equals the
identity function, that is,

This holds for all  in the domain of . Informally, this means that inverse functions “undo” each other.
However, just as zero does not have a reciprocal, some functions do not have inverses.

Given a function , we can verify whether some other function  is the inverse of  by checking
whether either  or  is true. We can test whichever equation is more convenient to
work with because they are logically equivalent (that is, if one is true, then so is the other.)

For example,  and  are inverse functions.

and

A few coordinate pairs from the graph of the function  are (−2, −8), (0, 0), and (2, 8). A few coordinate
pairs from the graph of the function  are (−8, −2), (0, 0), and (8, 2). If we interchange the input and
output of each coordinate pair of a function, the interchanged coordinate pairs would appear on the graph of
the inverse function.
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Answer
The inverse function reverses the input and output quantities, so if , then  and if 

, then .
Alternatively, if we want to name the inverse function , then  and .

Analysis of the Solution

Notice that if we show the coordinate pairs in a table form, the input and output are clearly reversed.

A YouTube element has been excluded from this version of the text. You can view it online here:
https://courses.lumenlearning.com/precalculus/?p=13771

HOW TO: GIVEN TWO FUNCTIONS  AND , TEST WHETHER THE
FUNCTIONS ARE INVERSES OF EACH OTHER.

1. Determine whether  or .
2. If both statements are true, then  and . If either statement is false, then  and 

.

EXAMPLE 2: TESTING INVERSE RELATIONSHIPS ALGEBRAICALLY

Try It

Given that , what are the corresponding input and output values of the original function 
Answer
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If  and , is 
Answer

and

So

Analysis of the Solution

Notice the inverse operations are in reverse order of the operations from the original function.

EXAMPLE 3: DETERMINING INVERSE RELATIONSHIPS FOR POWER
FUNCTIONS

If  (the cube function) and , is 
Answer

No, the functions are not inverses.

Analysis of the Solution

The correct inverse to the cube is the cube root , that is, the one-third is an exponent, not a
multiplier.

Try It

If  and , is 
Answer

Yes

Try It

If , is 
Answer

Yes
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An interactive or media element has been excluded from this version of the text. You can view it online
here: https://courses.lumenlearning.com/precalculus/?p=13771

TRY IT

Q & A
Is it possible for a function to have more than one inverse?

Finding Domain and Range of Inverse Functions

The outputs of the function  are the inputs to , so the range of  is also the domain of . Likewise,
because the inputs to  are the outputs of , the domain of  is the range of . We can visualize the
situation.

Figure 3. Domain and range of a function and its inverse

When a function has no inverse function, it is possible to create a new function where that new function on a
limited domain does have an inverse function. For example, the inverse of  is ,
because a square “undoes” a square root; but the square is only the inverse of the square root on the
domain , since that is the range of .

We can look at this problem from the other side, starting with the square (toolkit quadratic) function 
. If we want to construct an inverse to this function, we run into a problem, because for every

given output of the quadratic function, there are two corresponding inputs (except when the input is 0). For
example, the output 9 from the quadratic function corresponds to the inputs 3 and –3. But an output from a
function is an input to its inverse; if this inverse input corresponds to more than one inverse output (input of
the original function), then the “inverse” is not a function at all! To put it differently, the quadratic function is
not a one-to-one function; it fails the horizontal line test, so it does not have an inverse function. In order for
a function to have an inverse, it must be a one-to-one function.

In many cases, if a function is not one-to-one, we can still restrict the function to a part of its domain on
which it is one-to-one. For example, we can make a restricted version of the square function  with
its range limited to , which is a one-to-one function (it passes the horizontal line test) and which has
an inverse (the square-root function).

If  on , then the inverse function is .

The domain of  = range of  = .
The domain of  = range of  = .
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No. If two supposedly different functions, say,  and , both meet the definition of being inverses of
another function , then you can prove that . We have just seen that some functions only have
inverses if we restrict the domain of the original function. In these cases, there may be more than one way
to restrict the domain, leading to different inverses. However, on any one domain, the original function still
has only one unique inverse.

A GENERAL NOTE: DOMAIN AND RANGE OF INVERSE FUNCTIONS

The range of a function  is the domain of the inverse function .
The domain of  is the range of .

HOW TO: GIVEN A FUNCTION, FIND THE DOMAIN AND RANGE OF ITS
INVERSE.

1. If the function is one-to-one, write the range of the original function as the domain of the inverse, and
write the domain of the original function as the range of the inverse.

2. If the domain of the original function needs to be restricted to make it one-to-one, then this restricted
domain becomes the range of the inverse function.

EXAMPLE 4: FINDING THE INVERSES OF TOOLKIT FUNCTIONS

Identify which of the toolkit functions besides the quadratic function are not one-to-one, and find a
restricted domain on which each function is one-to-one, if any. The toolkit functions are reviewed below.
We restrict the domain in such a fashion that the function assumes all y-values exactly once.

Constant Identity Quadratic Cubic Reciprocal

Reciprocal squared Cube root Square root Absolute value

Answer
The constant function is not one-to-one, and there is no domain (except a single point) on which it could
be one-to-one, so the constant function has no meaningful inverse.
The absolute value function can be restricted to the domain , where it is equal to the identity
function.
The reciprocal-squared function can be restricted to the domain .
We can see that these functions (if unrestricted) are not one-to-one by looking at their graphs. They both
would fail the horizontal line test. However, if a function is restricted to a certain domain so that it passes
the horizontal line test, then in that restricted domain, it can have an inverse.
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EXAMPLE 5: INTERPRETING THE INVERSE OF A TABULAR FUNCTION

A function  is given below, showing distance in miles that a car has traveled in  minutes. Find and
interpret .

30 50 70 90

20 40 60 70

Answer
The inverse function takes an output of  and returns an input for . So in the expression , 70 is
an output value of the original function, representing 70 miles. The inverse will return the corresponding

Figure 4. (a) Absolute value (b) Reciprocal squared

Try It

The domain of function  is  and the range of function  is . Find the domain and range
of the inverse function.
Answer

The domain of function  is  and the range of function  is .

Finding and Evaluating Inverse Functions

Once we have a one-to-one function, we can evaluate its inverse at specific inverse function inputs or
construct a complete representation of the inverse function in many cases.

Inverting Tabular Functions

Suppose we want to find the inverse of a function represented in table form. Remember that the domain of a
function is the range of the inverse and the range of the function is the domain of the inverse. So we need to
interchange the domain and range.

Each row (or column) of inputs becomes the row (or column) of outputs for the inverse function. Similarly,
each row (or column) of outputs becomes the row (or column) of inputs for the inverse function.
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input of the original function , 90 minutes, so . The interpretation of this is that, to drive 70
miles, it took 90 minutes.
Alternatively, recall that the definition of the inverse was that if , then . By this
definition, if we are given , then we are looking for a value  so that . In this case,
we are looking for a  so that , which is when .

HOW TO: GIVEN THE GRAPH OF A FUNCTION, EVALUATE ITS INVERSE AT
SPECIFIC POINTS.

1. Find the desired input on the y-axis of the given graph.
2. Read the inverse function’s output from the x-axis of the given graph.

EXAMPLE 6: EVALUATING A FUNCTION AND ITS INVERSE FROM A GRAPH
AT SPECIFIC POINTS

A function  is given in Figure 5. Find  and .

Try It

Using the table below, find and interpret (a) , and (b) .

30 50 60 70 90

20 40 50 60 70
Answer

a.  . In 60 minutes, 50 miles are traveled.

b. . To travel 60 miles, it will take 70 minutes.

Evaluating the Inverse of a Function, Given a Graph of the
Original Function

We saw in Functions and Function Notation that the domain of a function can be read by observing the
horizontal extent of its graph. We find the domain of the inverse function by observing the vertical extent of
the graph of the original function, because this corresponds to the horizontal extent of the inverse function.
Similarly, we find the range of the inverse function by observing the horizontal extent of the graph of the
original function, as this is the vertical extent of the inverse function. If we want to evaluate an inverse
function, we find its input within its domain, which is all or part of the vertical axis of the original function’s
graph.
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Figure 5

Answer
To evaluate , we find 3 on the x-axis and find the corresponding output value on the y-axis. The point 

 tells us that .
To evaluate , recall that by definition  means the value of x for which . By looking
for the output value 3 on the vertical axis, we find the point  on the graph, which means , so
by definition, .

Figure 6

Try It

Using the graph in Example 6, (a) find , and (b) estimate .
Answer
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HOW TO: GIVEN A FUNCTION REPRESENTED BY A FORMULA, FIND THE
INVERSE.

1. Make sure  is a one-to-one function.
2. Solve for .
3. Interchange  and .

EXAMPLE 7: INVERTING THE FAHRENHEIT-TO-CELSIUS FUNCTION

Find a formula for the inverse function that gives Fahrenheit temperature as a function of Celsius
temperature.

Answer

By solving in general, we have uncovered the inverse function. If
,

then
.

In this case, we introduced a function  to represent the conversion because the input and output
variables are descriptive, and writing  could get confusing.

EXAMPLE 8: SOLVING TO FIND AN INVERSE FUNCTION

Find the inverse of the function .
Answer

a. 3; b. 5.6

Finding Inverses of Functions Represented by Formulas

Sometimes we will need to know an inverse function for all elements of its domain, not just a few. If the
original function is given as a formula— for example,  as a function of  we can often
find the inverse function by solving to obtain  as a function of .

Try It

Solve for  in terms of  given 
Answer

162



So  or .

Analysis of the Solution

The domain and range of  exclude the values 3 and 4, respectively.  and  are equal at two points
but are not the same function, as we can see by creating the table below.

1 2 5

3 2 5

EXAMPLE 9: SOLVING TO FIND AN INVERSE WITH RADICALS

Find the inverse of the function .
Answer

So .
The domain of  is . Notice that the range of  is , so this means that the domain of the
inverse function  is also .

Analysis of the Solution

The formula we found for  looks like it would be valid for all real . However,  itself must have
an inverse (namely,  ) so we have to restrict the domain of  to  in order to make  a one-to-
one function. This domain of  is exactly the range of .

TRY IT

Try It

What is the inverse of the function  State the domains of both the function and the
inverse function.
Answer

; domain of ; domain of 
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An interactive or media element has been excluded from this version of the text. You can view it online
here: https://courses.lumenlearning.com/precalculus/?p=13771

 

Now that we can find the inverse of a function, we will explore the graphs of functions and their inverses. Let
us return to the quadratic function  restricted to the domain , on which this function is one-
to-one, and graph it as in Figure 7.

Figure 7. Quadratic function with domain restricted to [0, ∞).

Restricting the domain to  makes the function one-to-one (it will obviously pass the horizontal line
test), so it has an inverse on this restricted domain.

We already know that the inverse of the toolkit quadratic function is the square root function, that is, 
. What happens if we graph both  and  on the same set of axes, using the  axis for the

input to both 

We notice a distinct relationship: The graph of  is the graph of  reflected about the diagonal line 
, which we will call the identity line, shown in Figure 8.
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EXAMPLE 10: FINDING THE INVERSE OF A FUNCTION USING
REFLECTION ABOUT THE IDENTITY LINE

Given the graph of , sketch a graph of .

Figure 8. Square and square-root functions on the non-negative domain

This relationship will be observed for all one-to-one functions, because it is a result of the function and its
inverse swapping inputs and outputs. This is equivalent to interchanging the roles of the vertical and
horizontal axes.
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Figure 9

Answer
This is a one-to-one function, so we will be able to sketch an inverse. Note that the graph shown has an
apparent domain of  and range of , so the inverse will have a domain of  and
range of .
If we reflect this graph over the line , the point  reflects to  and the point  reflects to 

. Sketching the inverse on the same axes as the original graph gives us the result in Figure 10.
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Q & A
Is there any function that is equal to its own inverse?
Yes. If , then , and we can think of several functions that have this property. The
identity function does, and so does the reciprocal function, because

Any function , where  is a constant, is also equal to its own inverse.

Figure 10. The function and its inverse, showing reflection about the identity line

An interactive or media element has been excluded from this version of the text. You can view it online
here: https://courses.lumenlearning.com/precalculus/?p=13771

Try It

Key Concepts

If  is the inverse of , then
.

Each of the toolkit functions has an inverse.
For a function to have an inverse, it must be one-to-one (pass the horizontal line test).
A function that is not one-to-one over its entire domain may be one-to-one on part of its domain.
For a tabular function, exchange the input and output rows to obtain the inverse.
The inverse of a function can be determined at specific points on its graph.
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inverse function

To find the inverse of a formula, solve the equation  for  as a function of  . Then exchange
the labels  and .
The graph of an inverse function is the reflection of the graph of the original function across the line 

.

Glossary

for any one-to-one function , the inverse is a function  such that 
 for all  in the domain of ; this also implies that  for all  in the domain

of 
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MODULE 2: LINEAR FUNCTIONS

LINEAR FUNCTIONS

Learning Outcomes

Identify and Interpret the Slope and Vertical Intercept of a Line
Calculate and interpret the slope of a line.
Determine the equation of a linear function.

Introduction to Linear Functions

A bamboo forest in China (credit: “JFXie”/Flickr)

Imagine placing a plant in the ground one day and finding that it has doubled its height just a few days later.
Although it may seem incredible, this can happen with certain types of bamboo species. These members of
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Shanghai MagLev Train (credit:
“kanegen”/Flickr)

the grass family are the fastest-growing plants in the world. One species of bamboo has been observed to
grow nearly 1.5 inches every hour. (Note: http://www.guinnessworldrecords.com/records-3000/fastest-
growing-plant/) In a twenty-four hour period, this bamboo plant grows about 36 inches, or an incredible 3
feet! A constant rate of change, such as the growth cycle of this bamboo plant, is a linear function.

Recall from Functions and Function Notation that a function is a relation that assigns to every element in the
domain exactly one element in the range. Linear functions are a specific type of function that can be used to
model many real-world applications, such as plant growth over time. In this chapter, we will explore linear
functions, their graphs, and how to relate them to data.

Just as with the growth of a bamboo plant, there are many situations that
involve constant change over time. Consider, for example, the first
commercial maglev train in the world, the Shanghai MagLev Train. It
carries passengers comfortably for a 30-kilometer trip from the airport to
the subway station in only eight minutes. (Note:
http://www.chinahighlights.com/shanghai/transportation/maglev-
train.htm)

Suppose a maglev train were to travel a long distance, and that the train
maintains a constant speed of 83 meters per second for a period of time
once it is 250 meters from the station. How can we analyze the train’s
distance from the station as a function of time? In this section, we will investigate a kind of function that is
useful for this purpose, and use it to investigate real-world situations such as the train’s distance from the
station at a given point in time.

Representing Linear Functions

The function describing the train’s motion is a linear function, which is defined as a function with a constant
rate of change, that is, a polynomial of degree 1. There are several ways to represent a linear function,
including word form, function notation, tabular form, and graphical form. We will describe the train’s motion
as a function using each method.

Representing a Linear Function in Word Form

Let’s begin by describing the linear function in words. For the train problem we just considered, the following
word sentence may be used to describe the function relationship.

The train’s distance from the station is a function of the time during which the train moves at a constant
speed plus its original distance from the station when it began moving at constant speed.

The speed is the rate of change. Recall that a rate of change is a measure of how quickly the dependent
variable changes with respect to the independent variable. The rate of change for this example is constant,
which means that it is the same for each input value. As the time (input) increases by 1 second, the
corresponding distance (output) increases by 83 meters. The train began moving at this constant speed at a
distance of 250 meters from the station.

Representing a Linear Function in Function Notation

Another approach to representing linear functions is by using function notation. One example of function
notation is an equation written in the form known as the slope-intercept form of a line, where  is the input
value,  is the rate of change, and  is the initial value of the dependent variable.
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Q & A

Can the input in the previous example be any real number?
No. The input represents time, so while nonnegative rational and irrational numbers are possible, negative
real numbers are not possible for this example. The input consists of non-negative real numbers.

In the example of the train, we might use the notation  in which the total distance 
is a function of the time . The rate, , is 83 meters per second. The initial value of the dependent variable 
 is the original distance from the station, 250 meters. We can write a generalized equation to represent the

motion of the train.

Representing a Linear Function in Tabular Form

A third method of representing a linear function is through the use of a table. The relationship between the
distance from the station and the time is represented in the table in Figure 1. From the table, we can see
that the distance changes by 83 meters for every 1 second increase in time.

Figure 1. Tabular representation of the function D showing selected input and output values

Representing a Linear Function in Graphical Form

Another way to represent linear functions is visually, using a graph. We can use the function relationship
from above, , to draw a graph, represented in the graph in Figure 2. Notice the graph is a
line. When we plot a linear function, the graph is always a line.

The rate of change, which is constant, determines the slant, or slope of the line. The point at which the input
value is zero is the vertical intercept, or y-intercept, of the line. We can see from the graph that the y-
intercept in the train example we just saw is  and represents the distance of the train from the station
when it began moving at a constant speed.
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A GENERAL NOTE: LINEAR FUNCTION

A linear function is a function whose graph is a line. Linear functions can be written in the slope-intercept
form of a line

where  is the initial or starting value of the function (when input, ), and  is the constant rate of
change, or slope of the function. The y-intercept is at .

EXAMPLE 1: USING A LINEAR FUNCTION TO FIND THE PRESSURE ON A
DIVER

The pressure, , in pounds per square inch (PSI) on the diver in Figure 3 depends upon her depth below
the water surface, , in feet. This relationship may be modeled by the equation, .
Restate this function in words.

Figure 2. The graph of . Graphs of linear functions are lines because the rate of change is
constant.

Notice that the graph of the train example is restricted, but this is not always the case. Consider the graph of
the line . Ask yourself what numbers can be input to the function, that is, what is the domain
of the function? The domain is comprised of all real numbers because any number may be doubled, and
then have one added to the product.
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Figure 3. (credit: Ilse Reijs and Jan-Noud Hutten)

Answer
To restate the function in words, we need to describe each part of the equation. The pressure as a
function of depth equals four hundred thirty-four thousandths times depth plus fourteen and six hundred
ninety-six thousandths.

Analysis of the Solution

The initial value, 14.696, is the pressure in PSI on the diver at a depth of 0 feet, which is the surface of the
water. The rate of change, or slope, is 0.434 PSI per foot. This tells us that the pressure on the diver
increases 0.434 PSI for each foot her depth increases.

Determining Whether a Linear Function is Increasing,
Decreasing, or Constant
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A GENERAL NOTE: INCREASING AND DECREASING FUNCTIONS

The slope determines if the function is an increasing linear function, a decreasing linear function, or a
constant function.

.
.

.

EXAMPLE 2: DECIDING WHETHER A FUNCTION IS INCREASING,
DECREASING, OR CONSTANT

Some recent studies suggest that a teenager sends an average of 60 texts per day. (Note:
http://www.cbsnews.com/8301-501465_162-57400228-501465/teens-are-sending-60-texts-a-day-study-
says/) For each of the following scenarios, find the linear function that describes the relationship between
the input value and the output value. Then, determine whether the graph of the function is increasing,
decreasing, or constant.

1. The total number of texts a teen sends is considered a function of time in days. The input is the
number of days, and output is the total number of texts sent.

Figure 4

The linear functions we used in the two previous examples increased over time, but not every linear function
does. A linear function may be increasing, decreasing, or constant.

For an increasing function, as with the train example,

the output values increase as the input values increase.

The graph of an increasing function has a positive slope. A line with a positive slope slants upward from left
to right as in (a).

For a decreasing function, the slope is negative.

The output values decrease as the input values increase.

A line with a negative slope slants downward from left to right as in (b). If the function is constant, the output
values are the same for all input values so the slope is zero. A line with a slope of zero is horizontal as in (c).
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2. A teen has a limit of 500 texts per month in his or her data plan. The input is the number of days, and
output is the total number of texts remaining for the month.

3. A teen has an unlimited number of texts in his or her data plan for a cost of $50 per month. The input
is the number of days, and output is the total cost of texting each month.

Answer
Analyze each function.

1. The function can be represented as  where  is the number of days. The slope, 60, is
positive so the function is increasing. This makes sense because the total number of texts increases
with each day.

2. The function can be represented as  where  is the number of days. In this case,
the slope is negative so the function is decreasing. This makes sense because the number of texts
remaining decreases each day and this function represents the number of texts remaining in the data
plan after  days.

3. The cost function can be represented as  because the number of days does not affect the
total cost. The slope is 0 so the function is constant.

Calculating and Interpreting Slope

In the examples we have seen so far, we have had the slope provided for us. However, we often need to
calculate the slope given input and output values. Given two values for the input,  and , and two
corresponding values for the output,  and  —which can be represented by a set of points,  and 

—we can calculate the slope , as follows

where  is the vertical displacement and  is the horizontal displacement. Note in function notation two
corresponding values for the output  and  for the function ,  and , so we could
equivalently write

The graph in Figure 5 indicates how the slope of the line between the points, 
and , is calculated. Recall that the slope measures steepness. The greater the absolute value of the
slope, the steeper the line is.
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Q & A

Are the units for slope always  ?

Figure 5

The slope of a function is calculated by the change in  divided by the change in . It does not matter which
coordinate is used as the  and which is the , as long as each calculation is started with the
elements from the same coordinate pair.
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Yes. Think of the units as the change of output value for each unit of change in input value. An example of
slope could be miles per hour or dollars per day. Notice the units appear as a ratio of units for the output
per units for the input.

A GENERAL NOTE: CALCULATE SLOPE

The slope, or rate of change, of a function  can be calculated according to the following:

where  and  are input values,  and  are output values.

HOW TO: GIVEN TWO POINTS FROM A LINEAR FUNCTION, CALCULATE
AND INTERPRET THE SLOPE.

1. Determine the units for output and input values.
2. Calculate the change of output values and change of input values.
3. Interpret the slope as the change in output values per unit of the input value.

EXAMPLE 3: FINDING THE SLOPE OF A LINEAR FUNCTION

If  is a linear function, and  and  are points on the line, find the slope. Is this function
increasing or decreasing?
Answer
The coordinate pairs are  and . To find the rate of change, we divide the change in output by
the change in input.

We could also write the slope as . The function is increasing because .

Analysis of the Solution

As noted earlier, the order in which we write the points does not matter when we compute the slope of the
line as long as the first output value, or y-coordinate, used corresponds with the first input value, or x-
coordinate, used.

An interactive or media element has been excluded from this version of the text. You can view it online
here: https://courses.lumenlearning.com/precalculus/?p=13798

Try It

If  is a linear function, and  and  are points on the line, find the slope. Is this function
increasing or decreasing?
Answer

 ; decreasing because .

Try It
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EXAMPLE 4: FINDING THE POPULATION CHANGE FROM A LINEAR
FUNCTION

The population of a city increased from 23,400 to 27,800 between 2008 and 2012. Find the change of
population per year if we assume the change was constant from 2008 to 2012.
Answer
The rate of change relates the change in population to the change in time. The population increased by 

 people over the four-year time interval. To find the rate of change, divide the
change in the number of people by the number of years

So the population increased by 1,100 people per year.

Analysis of the Solution

Because we are told that the population increased, we would expect the slope to be positive. This positive
slope we calculated is therefore reasonable.

An interactive or media element has been excluded from this version of the text. You can view it online
here: https://courses.lumenlearning.com/precalculus/?p=13798

TRY IT

Try It

The population of a small town increased from 1,442 to 1,868 between 2009 and 2012. Find the change
of population per year if we assume the change was constant from 2009 to 2012.
Answer

 

Writing the Point-Slope Form of a Linear Equation

Up until now, we have been using the slope-intercept form of a linear equation to describe linear functions.
Here, we will learn another way to write a linear function, the point-slope form.

The point-slope form is derived from the slope formula.
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A GENERAL NOTE: POINT-SLOPE FORM OF A LINEAR EQUATION

The point-slope form of a linear equation takes the form

where  is the slope,  and  are the  and  coordinates of a specific point through which the line
passes.

Keep in mind that the slope-intercept form and the point-slope form can be used to describe the same
function. We can move from one form to another using basic algebra. For example, suppose we are given
an equation in point-slope form,  . We can convert it to the slope-intercept form as
shown.

Therefore, the same line can be described in slope-intercept form as .

Writing the Equation of a Line Using a Point and the Slope

The point-slope form is particularly useful if we know one point and the slope of a line. Suppose, for
example, we are told that a line has a slope of 2 and passes through the point . We know that 

 and that  and . We can substitute these values into the general point-slope equation.

If we wanted to then rewrite the equation in slope-intercept form, we apply algebraic techniques.

Both equations,  and , describe the same line. See Figure 6.
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EXAMPLE 5: WRITING LINEAR EQUATIONS USING A POINT AND THE
SLOPE

Write the point-slope form of an equation of a line with a slope of 3 that passes through the point .
Then rewrite it in the slope-intercept form.
Answer
Let’s figure out what we know from the given information. The slope is 3, so m = 3. We also know one
point, so we know  and . Now we can substitute these values into the general point-slope
equation.

Then we use algebra to find the slope-intercept form.

Figure 6

Try It
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An interactive or media element has been excluded from this version of the text. You can view it online
here: https://courses.lumenlearning.com/precalculus/?p=13798

TRY IT

Write the point-slope form of an equation of a line with a slope of –2 that passes through the point 
. Then rewrite it in the slope-intercept form.

Answer

; 

Writing the Equation of a Line Using Two Points

The point-slope form of an equation is also useful if we know any two points through which a line passes.
Suppose, for example, we know that a line passes through the points  and . We can use the
coordinates of the two points to find the slope.

Now we can use the slope we found and the coordinates of one of the points to find the equation for the line.
Let use (0, 1) for our point.

As before, we can use algebra to rewrite the equation in the slope-intercept form.

Both equations describe the line shown in Figure 7.
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EXAMPLE 6: WRITING LINEAR EQUATIONS USING TWO POINTS

Write the point-slope form of an equation of a line that passes through the points (5, 1) and (8, 7). Then
rewrite it in the slope-intercept form.
Answer
Let’s begin by finding the slope.

So . Next, we substitute the slope and the coordinates for one of the points into the general point-
slope equation. We can choose either point, but we will use .

The point-slope equation of the line is . To rewrite the equation in slope-intercept form,
we use algebra.

Figure 7
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The slope-intercept equation of the line is .

Try It

Write the point-slope form of an equation of a line that passes through the points  and . Then
rewrite it in the slope-intercept form.
Answer

 ; 

Writing and Interpreting an Equation for a Linear Function

Now that we have written equations for linear functions in both the slope-intercept form and the point-slope
form, we can choose which method to use based on the information we are given. That information may be
provided in the form of a graph, a point and a slope, two points, and so on. Look at the graph of the function
f in Figure 8.

Figure 8

We are not given the slope of the line, but we can choose any two points on the line to find the slope. Let’s
choose (0, 7) and (4, 4). We can use these points to calculate the slope.
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HOW TO: GIVEN THE GRAPH OF A LINEAR FUNCTION, WRITE AN
EQUATION TO REPRESENT THE FUNCTION.

1. Identify two points on the line.
2. Use the two points to calculate the slope.
3. Determine where the line crosses the y-axis to identify the y-intercept by visual inspection.
4. Substitute the slope and y-intercept into the slope-intercept form of a line equation.

EXAMPLE 7: WRITING AN EQUATION FOR A LINEAR FUNCTION

Write an equation for a linear function given a graph of f shown in Figure 10.

Now we can substitute the slope and the coordinates of one of the points into the point-slope form.

If we want to rewrite the equation in the slope-intercept form, we would find

Figure 9

If we wanted to find the slope-intercept form without first writing the point-slope form, we could have
recognized that the line crosses the y-axis when the output value is 7. Therefore, b = 7. We now have the
initial value b and the slope m so we can substitute m and b into the slope-intercept form of a line.

So the function is , and the linear equation would be .
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Figure 10

Answer
Identify two points on the line, such as (0, 2) and (–2, –4). Use the points to calculate the slope.

Substitute the slope and the coordinates of one of the points into the point-slope form.
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We can use algebra to rewrite the equation in the slope-intercept form.

Analysis of the Solution

This makes sense because we can see from Figure 11 that the line crosses the y-axis at the point (0, 2),
which is the y-intercept, so b = 2.

Figure 11

EXAMPLE 8: WRITING AN EQUATION FOR A LINEAR COST FUNCTION
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Suppose Ben starts a company in which he incurs a fixed cost of $1,250 per month for the overhead,
which includes his office rent. His production costs are $37.50 per item. Write a linear function C where
C(x) is the cost for x items produced in a given month.
Answer
The fixed cost is present every month, $1,250. The costs that can vary include the cost to produce each
item, which is $37.50 for Ben. The variable cost, called the marginal cost, is represented by 37.5. The cost
Ben incurs is the sum of these two costs, represented by .

Analysis of the Solution

If Ben produces 100 items in a month, his monthly cost is represented by

So his monthly cost would be $5,000.

EXAMPLE 9: WRITING AN EQUATION FOR A LINEAR FUNCTION GIVEN
TWO POINTS

If f is a linear function, with  , and , find an equation for the function in slope-intercept
form.
Answer
We can write the given points using coordinates.

We can then use the points to calculate the slope.

Substitute the slope and the coordinates of one of the points into the point-slope form.

We can use algebra to rewrite the equation in the slope-intercept form.

And since the function is f we write it with function notation:

Try It

If  is a linear function, with , and , find an equation for the function in slope-
intercept form.
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An interactive or media element has been excluded from this version of the text. You can view it online
here: https://courses.lumenlearning.com/precalculus/?p=13798

TRY IT 9

HOW TO: GIVEN A LINEAR FUNCTION F AND THE INITIAL VALUE AND
RATE OF CHANGE, EVALUATE F(C).

1. Determine the initial value and the rate of change (slope).
2. Substitute the values into .
3. Evaluate the function at .

EXAMPLE 10: USING A LINEAR FUNCTION TO DETERMINE THE NUMBER
OF SONGS IN A MUSIC COLLECTION

Marcus currently has 200 songs in his music collection. Every month, he adds 15 new songs. Write a
formula for the number of songs, N, in his collection as a function of time, t, the number of months. How
many songs will he own in a year?
Answer
The initial value for this function is 200 because he currently owns 200 songs, so N(0) = 200, which means
that b = 200.

Figure 12

The number of songs increases by 15 songs per month, so the rate of change is 15 songs per month.
Therefore we know that m = 15. We can substitute the initial value and the rate of change into the slope-
intercept form of a line.

Answer

Modeling Real-World Problems with Linear Functions

In the real world, problems are not always explicitly stated in terms of a function or represented with a graph.
Fortunately, we can analyze the problem by first representing it as a linear function and then interpreting the
components of the function. As long as we know, or can figure out, the initial value and the rate of change of
a linear function, we can solve many different kinds of real-world problems.
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We can write the formula .
With this formula, we can then predict how many songs Marcus will have in 1 year (12 months). In other
words, we can evaluate the function at t = 12.

Marcus will have 380 songs in 12 months.

Analysis of the Solution

Notice that N is an increasing linear function. As the input (the number of months) increases, the output
(number of songs) increases as well.

EXAMPLE 11: USING A LINEAR FUNCTION TO CALCULATE SALARY PLUS
COMMISSION

Working as an insurance salesperson, Ilya earns a base salary plus a commission on each new policy.
Therefore, Ilya’s weekly income, I, depends on the number of new policies, n, he sells during the week.
Last week he sold 3 new policies, and earned $760 for the week. The week before, he sold 5 new policies
and earned $920. Find an equation for I(n), and interpret the meaning of the components of the equation.
Answer
The given information gives us two input-output pairs: (3, 760) and (5, 920). We start by finding the rate of
change.

Keeping track of units can help us interpret this quantity. Income increased by $160 when the number of
policies increased by 2, so the rate of change is $80 per policy. Therefore, Ilya earns a commission of $80
for each policy sold during the week.
We can then solve for the initial value.

The value of b is the starting value for the function and represents Ilya’s income when n = 0, or when no
new policies are sold. We can interpret this as Ilya’s base salary for the week, which does not depend
upon the number of policies sold.
We can now write the final equation.

Our final interpretation is that Ilya’s base salary is $520 per week and he earns an additional $80
commission for each policy sold.

EXAMPLE 12: USING TABULAR FORM TO WRITE AN EQUATION FOR A
LINEAR FUNCTION
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The table below relates the number of rats in a population to time, in weeks. Use the table to write a linear
equation.

w, number of weeks 0 2 4 6

P(w), number of rats 1000 1080 1160 1240

Answer
We can see from the table that the initial value for the number of rats is 1000, so b = 1000.
Rather than solving for m, we can tell from looking at the table that the population increases by 80 for
every 2 weeks that pass. This means that the rate of change is 80 rats per 2 weeks, which can be
simplified to 40 rats per week.

If we did not notice the rate of change from the table we could still solve for the slope using any two points
from the table. For example, using (2, 1080) and (6, 1240)

Q & A

Is the initial value always provided in a table of values like the table in Example 12?
No. Sometimes the initial value is provided in a table of values, but sometimes it is not. If you see an input
of 0, then the initial value would be the corresponding output. If the initial value is not provided because
there is no value of input on the table equal to 0, find the slope, substitute one coordinate pair and the
slope into , and solve for b.

Try It

A new plant food was introduced to a young tree to test its effect on the height of the tree. The table
below shows the height of the tree, in feet, x months since the measurements began. Write a linear
function, H(x), where x is the number of months since the start of the experiment.

x 0 2 4 8 12

H(x) 12.5 13.5 14.5 16.5 18.5
Answer

Key Equations

slope-intercept form of a line

slope

point-slope form of a line

Key Concepts
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decreasing linear function

increasing linear function

linear function

point-slope form

slope

slope-intercept form

y-intercept

The ordered pairs given by a linear function represent points on a line.
Linear functions can be represented in words, function notation, tabular form, and graphical form.
The rate of change of a linear function is also known as the slope.
An equation in the slope-intercept form of a line includes the slope and the initial value of the function.
The initial value, or y-intercept, is the output value when the input of a linear function is zero. It is the y-
value of the point at which the line crosses the y-axis.
An increasing linear function results in a graph that slants upward from left to right and has a positive
slope.
A decreasing linear function results in a graph that slants downward from left to right and has a negative
slope.
A constant linear function results in a graph that is a horizontal line.
Analyzing the slope within the context of a problem indicates whether a linear function is increasing,
decreasing, or constant.
The slope of a linear function can be calculated by dividing the difference between y-values by the
difference in corresponding x-values of any two points on the line.
The slope and initial value can be determined given a graph or any two points on the line.
One type of function notation is the slope-intercept form of an equation.
The point-slope form is useful for finding a linear equation when given the slope of a line and one point.
The point-slope form is also convenient for finding a linear equation when given two points through
which a line passes.
The equation for a linear function can be written if the slope m and initial value b are known.
A linear function can be used to solve real-world problems.
A linear function can be written from tabular form.

Glossary

a function with a negative slope: If .

a function with a positive slope: If .

a function with a constant rate of change that is a polynomial of degree 1, and whose graph
is a straight line

the equation for a line that represents a linear function of the form 

the ratio of the change in output values to the change in input values; a measure of the steepness of a
line

the equation for a line that represents a linear function in the form 

the value of a function when the input value is zero; also known as initial value
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GRAPHS OF LINEAR FUNCTIONS

Learning Outcomes

Graph linear functions.
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HOW TO: GIVEN A LINEAR FUNCTION, GRAPH BY PLOTTING POINTS.

1. Choose a minimum of two input values.
2. Evaluate the function at each input value.
3. Use the resulting output values to identify coordinate pairs.
4. Plot the coordinate pairs on a grid.
5. Draw a line through the points.

EXAMPLE 1: GRAPHING BY PLOTTING POINTS

Graph  by plotting points.
Answer
Begin by choosing input values. This function includes a fraction with a denominator of 3, so let’s choose
multiples of 3 as input values. We will choose 0, 3, and 6.
Evaluate the function at each input value, and use the output value to identify coordinate pairs.

Write the equation for a linear function from the graph of a line.
Write the equation of a line parallel or perpendicular to a given line.

Two competing telephone companies offer different payment plans. The two plans charge the same rate per
long distance minute, but charge a different monthly flat fee. A consumer wants to determine whether the
two plans will ever cost the same amount for a given number of long distance minutes used. The total cost
of each payment plan can be represented by a linear function. To solve the problem, we will need to
compare the functions. In this section, we will consider methods of comparing functions using graphs.

Graphing Linear Functions

In Linear Functions, we saw that that the graph of a linear function is a straight line. We were also able to
see the points of the function as well as the initial value from a graph. By graphing two functions, then, we
can more easily compare their characteristics.

There are three basic methods of graphing linear functions. The first is by plotting points and then drawing a
line through the points. The second is by using the y-intercept and slope. And the third is by using
transformations of the identity function .

Graphing a Function by Plotting Points

To find points of a function, we can choose input values, evaluate the function at these input values, and
calculate output values. The input values and corresponding output values form coordinate pairs. We then
plot the coordinate pairs on a grid. In general, we should evaluate the function at a minimum of two inputs in
order to find at least two points on the graph. For example, given the function, , we might use the
input values 1 and 2. Evaluating the function for an input value of 1 yields an output value of 2, which is
represented by the point (1, 2). Evaluating the function for an input value of 2 yields an output value of 4,
which is represented by the point (2, 4). Choosing three points is often advisable because if all three points
do not fall on the same line, we know we made an error.
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Plot the coordinate pairs and draw a line through the points. Figure 1 shows the graph of the function 
.

Figure 1

Analysis of the Solution

The graph of the function is a line as expected for a linear function. In addition, the graph has a downward
slant, which indicates a negative slope. This is also expected from the negative constant rate of change in
the equation for the function.

Try It

Graph  by plotting points.
Answer
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Graphing a Linear Function Using y-intercept and Slope

Another way to graph linear functions is by using specific characteristics of the function rather than plotting
points. The first characteristic is its y-intercept, which is the point at which the input value is zero. To find the
y-intercept, we can set x = 0 in the equation.

The other characteristic of the linear function is its slope m, which is a measure of its steepness. Recall that
the slope is the rate of change of the function. The slope of a function is equal to the ratio of the change in
outputs to the change in inputs. Another way to think about the slope is by dividing the vertical difference, or
rise, by the horizontal difference, or run. We encountered both the y-intercept and the slope in Linear
Functions.

Let’s consider the following function.

The slope is . Because the slope is positive, we know the graph will slant upward from left to right. The y-
intercept is the point on the graph when x = 0. The graph crosses the y-axis at (0, 1). Now we know the
slope and the y-intercept. We can begin graphing by plotting the point (0,1) We know that the slope is rise
over run, . From our example, we have , which means that the rise is 1 and the run is 2. So
starting from our y-intercept (0, 1), we can rise 1 and then run 2, or run 2 and then rise 1. We repeat until we
have a few points, and then we draw a line through the points as shown in Figure 2.
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A GENERAL NOTE: GRAPHICAL INTERPRETATION OF A LINEAR
FUNCTION

In the equation 
b is the y-intercept of the graph and indicates the point (0, b) at which the graph crosses the y-axis.
m is the slope of the line and indicates the vertical displacement (rise) and horizontal displacement
(run) between each successive pair of points. Recall the formula for the slope:

Q & A

Do all linear functions have y-intercepts?
Yes. All linear functions cross the y-axis and therefore have y-intercepts. (Note: A vertical line parallel to
the y-axis does not have a y-intercept, but it is not a function.)

HOW TO: GIVEN THE EQUATION FOR A LINEAR FUNCTION, GRAPH THE
FUNCTION USING THE Y-INTERCEPT AND SLOPE.

1. Evaluate the function at an input value of zero to find the y-intercept.
2. Identify the slope as the rate of change of the input value.
3. Plot the point represented by the y-intercept.
4. Use  to determine at least two more points on the line.
5. Sketch the line that passes through the points.

Figure 2
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EXAMPLE 2: GRAPHING BY USING THE Y-INTERCEPT AND SLOPE

Graph  using the y-intercept and slope.
Answer
Evaluate the function at x = 0 to find the y-intercept. The output value when x = 0 is 5, so the graph will
cross the y-axis at (0,5).
According to the equation for the function, the slope of the line is . This tells us that for each vertical
decrease in the “rise” of –2 units, the “run” increases by 3 units in the horizontal direction. We can now
graph the function by first plotting the y-intercept in Figure 3. From the initial value (0, 5) we move down 2
units and to the right 3 units. We can extend the line to the left and right by repeating, and then draw a line
through the points.

Figure 3

Analysis of the Solution

The graph slants downward from left to right, which means it has a negative slope as expected.

Try It

Find a point on the graph we drew in Example 2 that has a negative x-value.
Answer

Possible answers include , , or .
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An interactive or media element has been excluded from this version of the text. You can view it online
here: https://courses.lumenlearning.com/precalculus/?p=13807

TRY IT

Graphing a Linear Function Using Transformations

Another option for graphing is to use transformations of the identity function  . A function may be
transformed by a shift up, down, left, or right. A function may also be transformed using a reflection, stretch,
or compression.

Vertical Stretch or Compression

In the equation , the m is acting as the vertical stretch or compression of the identity function.
When m is negative, there is also a vertical reflection of the graph. Notice in Figure 4 that multiplying the
equation of  by m stretches the graph of f by a factor of m units if m > 1 and compresses the graph
of f by a factor of m units if 0 < m < 1. This means the larger the absolute value of m, the steeper the slope.

Figure 4. Vertical stretches and compressions and reflections on the function .
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HOW TO: GIVEN THE EQUATION OF A LINEAR FUNCTION, USE
TRANSFORMATIONS TO GRAPH THE LINEAR FUNCTION IN THE FORM 

.

1. Graph .
2. Vertically stretch or compress the graph by a factor m.
3. Shift the graph up or down b units.

EXAMPLE 3: GRAPHING BY USING TRANSFORMATIONS

Vertical Shift

In , the b acts as the vertical shift, moving the graph up and down without affecting the
slope of the line. Notice in Figure 5 that adding a value of b to the equation of  shifts the graph
of f a total of b units up if b is positive and |b| units down if b is negative.

Figure 5. This graph illustrates vertical shifts of the function .

Using vertical stretches or compressions along with vertical shifts is another way to look at identifying
different types of linear functions. Although this may not be the easiest way to graph this type of function, it is
still important to practice each method.
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Graph  using transformations.
Answer
The equation for the function shows that  so the identity function is vertically compressed by .
The equation for the function also shows that b = –3 so the identity function is vertically shifted down 3
units. First, graph the identity function, and show the vertical compression.

Figure 6. The function, y = x, compressed by a factor of .
Then show the vertical shift.

Figure 7. The function , shifted down 3 units.

Try It

Graph , using transformations.
Answer
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Q & A

In Example 3, could we have sketched the graph by reversing the order of the transformations?
No. The order of the transformations follows the order of operations. When the function is evaluated at a
given input, the corresponding output is calculated by following the order of operations. This is why we
performed the compression first. For example, following the order: Let the input be 2.

Writing the Equation for a Function from the Graph of a Line

Recall that in Linear Functions, we wrote the equation for a linear function from a graph. Now we can extend
what we know about graphing linear functions to analyze graphs a little more closely. Begin by taking a look
at Figure 8. We can see right away that the graph crosses the y-axis at the point (0, 4) so this is the y-
intercept.
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HOW TO: GIVEN A GRAPH OF LINEAR FUNCTION, FIND THE EQUATION
TO DESCRIBE THE FUNCTION.

1. Identify the y-intercept of an equation.
2. Choose two points to determine the slope.

Figure 8

Then we can calculate the slope by finding the rise and run. We can choose any two points, but let’s look at
the point (–2, 0). To get from this point to the y-intercept, we must move up 4 units (rise) and to the right 2
units (run). So the slope must be

Substituting the slope and y-intercept into the slope-intercept form of a line gives
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3. Substitute the y-intercept and slope into the slope-intercept form of a line.

EXAMPLE 4: MATCHING LINEAR FUNCTIONS TO THEIR GRAPHS

Match each equation of the linear functions with one of the lines in Figure 9.

1. 
2. 
3. 
4. 

 

Figure 9

Answer
Analyze the information for each function.

1. This function has a slope of 2 and a y-intercept of 3. It must pass through the point (0, 3) and slant
upward from left to right. We can use two points to find the slope, or we can compare it with the other
functions listed. Function g has the same slope, but a different y-intercept. Lines I and III have the
same slant because they have the same slope. Line III does not pass through (0, 3) so f must be
represented by line I.

2. This function also has a slope of 2, but a y-intercept of –3. It must pass through the point (0, –3) and
slant upward from left to right. It must be represented by line III.
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3. This function has a slope of –2 and a y-intercept of 3. This is the only function listed with a negative
slope, so it must be represented by line IV because it slants downward from left to right.

4. This function has a slope of  and a y-intercept of 3. It must pass through the point (0, 3) and slant
upward from left to right. Lines I and II pass through (0, 3), but the slope of j is less than the slope of
f so the line for j must be flatter. This function is represented by Line II.

Now we can re-label the lines as in Figure 10.

Figure 10

Finding the x-intercept of a Line

So far, we have been finding the y-intercepts of a function: the point at which the graph of the function
crosses the y-axis. A function may also have an x-intercept, which is the x-coordinate of the point where the
graph of the function crosses the x-axis. In other words, it is the input value when the output value is zero.

To find the x-intercept, set a function f(x) equal to zero and solve for the value of x. For example, consider
the function shown.

Set the function equal to 0 and solve for x.
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Q & A

Do all linear functions have x-intercepts?
No. However, linear functions of the form y = c, where c is a nonzero real number are the only examples of
linear functions with no x-intercept. For example, y = 5 is a horizontal line 5 units above the x-axis. This
function has no x-intercepts.

A GENERAL NOTE: X-INTERCEPT

The x-intercept of the function is the point where the graph crosses the x-axis. Points on the x-axis have
the form (x,0) so we can find x-intercepts by setting f(x) = 0. For a linear function, we solve the equation
mx + b = 0

EXAMPLE 5: FINDING AN X-INTERCEPT

Find the x-intercept of .
Answer
Set the function equal to zero to solve for x.

The graph crosses the x-axis at the point (6,0).

The graph of the function crosses the x-axis at the point (2, 0).

Figure 11
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Analysis of the Solution

A graph of the function is shown in Figure 12. We can see that the x-intercept is (6, 0) as we expected.

Figure 12. The graph of the linear function .

Try It

Find the x-intercept of .
Answer

Describing Horizontal and Vertical Lines

There are two special cases of lines on a graph—horizontal and vertical lines. A horizontal line indicates a
constant output, or y-value. In Figure 13, we see that the output has a value of 2 for every input value. The
change in outputs between any two points, therefore, is 0. In the slope formula, the numerator is 0, so the
slope is 0. If we use m = 0 in the equation , the equation simplifies to . In other
words, the value of the function is a constant. This graph represents the function .

205



Figure 13. A horizontal line representing the function .

Figure 14

A vertical line indicates a constant input, or x-value. We can see that the input value for every point on the
line is 2, but the output value varies. Because this input value is mapped to more than one output value, a
vertical line does not represent a function. Notice that between any two points, the change in the input
values is zero. In the slope formula, the denominator will be zero, so the slope of a vertical line is undefined.

Notice that a vertical line, such as the one in Figure 15, has an x-intercept, but no y-intercept unless it’s the
line x = 0. This graph represents the line x = 2.
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A GENERAL NOTE: HORIZONTAL AND VERTICAL LINES

Lines can be horizontal or vertical.
A horizontal line is a line defined by an equation in the form .
A vertical line is a line defined by an equation in the form .

EXAMPLE 6: WRITING THE EQUATION OF A HORIZONTAL LINE

Write the equation of the line graphed in Figure 16.

Figure 15. The vertical line, x = 2, which does not represent a function.
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Figure 16

Answer
For any x-value, the y-value is –4, so the equation is y = –4.

EXAMPLE 7: WRITING THE EQUATION OF A VERTICAL LINE

Write the equation of the line graphed in Figure 17.
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Figure 17

Answer
The constant x-value is 7, so the equation is x = 7.

Determining Whether Lines are Parallel or Perpendicular

The two lines in Figure 18 are parallel lines: they will never intersect. Notice that they have exactly the
same steepness, which means their slopes are identical. The only difference between the two lines is the y-
intercept. If we shifted one line vertically toward the y-intercept of the other, they would become the same
line.
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Figure 18 Parallel lines.

Figure 19

We can determine from their equations whether two lines are parallel by comparing their slopes. If the
slopes are the same and the y-intercepts are different, the lines are parallel. If the slopes are different, the
lines are not parallel.

Unlike parallel lines, perpendicular lines do intersect. Their intersection forms a right, or 90-degree, angle.
The two lines in Figure 20 are perpendicular.
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Figure 20. Perpendicular lines.

Perpendicular lines do not have the same slope. The slopes of perpendicular lines are different from one
another in a specific way. The slope of one line is the negative reciprocal of the slope of the other line. The
product of a number and its reciprocal is 1. So, if  are negative reciprocals of one another, they
can be multiplied together to yield .

To find the reciprocal of a number, divide 1 by the number. So the reciprocal of 8 is , and the reciprocal of 
is 8. To find the negative reciprocal, first find the reciprocal and then change the sign.

As with parallel lines, we can determine whether two lines are perpendicular by comparing their slopes,
assuming that the lines are neither horizontal nor perpendicular. The slope of each line below is the negative
reciprocal of the other so the lines are perpendicular.

The product of the slopes is –1.
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EXAMPLE 8: IDENTIFYING PARALLEL AND PERPENDICULAR LINES

Given the functions below, identify the functions whose graphs are a pair of parallel lines and a pair of
perpendicular lines.

Answer
Parallel lines have the same slope. Because the functions  and  each have
a slope of 2, they represent parallel lines. Perpendicular lines have negative reciprocal slopes. Because
−2 and  are negative reciprocals, the equations,  and  represent
perpendicular lines.

Analysis of the Solution

A graph of the lines is shown in Figure 21.

Figure 21. The graph shows that the lines  and  are parallel, and the lines 
 and  are perpendicular.

A GENERAL NOTE: PARALLEL AND PERPENDICULAR LINES

Two lines are parallel lines if they do not intersect. The slopes of the lines are the same.
.

If and only if  and , we say the lines coincide. Coincident lines are the same line.
Two lines are perpendicular lines if they intersect at right angles.

.

Writing the Equation of a Line Parallel or Perpendicular to a
Given Line
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HOW TO: GIVEN THE EQUATION OF A FUNCTION AND A POINT
THROUGH WHICH ITS GRAPH PASSES, WRITE THE EQUATION OF A LINE

PARALLEL TO THE GIVEN LINE THAT PASSES THROUGH THE GIVEN
POINT.

1. Find the slope of the function.
2. Substitute the given values into either the general point-slope equation or the slope-intercept equation

for a line.
3. Simplify.

EXAMPLE 9: FINDING A LINE PARALLEL TO A GIVEN LINE

Find a line parallel to the graph of  that passes through the point (3,0).
Answer
The slope of the given line is 3. If we choose the slope-intercept form, we can substitute m = 3, x = 3, and
f(x) = 0 into the slope-intercept form to find the y-intercept.

The line parallel to f(x) that passes through (3, 0) is .

Analysis of the Solution

If we know the equation of a line, we can use what we know about slope to write the equation of a line that is
either parallel or perpendicular to the given line.

Writing Equations of Parallel Lines

Suppose for example, we are given the following equation.

We know that the slope of the line formed by the function is 3. We also know that the y-intercept is (0, 1).
Any other line with a slope of 3 will be parallel to f(x). So the lines formed by all of the following functions will
be parallel to f(x).

Suppose then we want to write the equation of a line that is parallel to f and passes through the point (1, 7).
We already know that the slope is 3. We just need to determine which value for b will give the correct line.
We can begin with the point-slope form of an equation for a line, and then rewrite it in the slope-intercept
form.

So  is parallel to  and passes through the point (1,7).

213



We can confirm that the two lines are parallel by graphing them. Figure 22 shows that the two lines will
never intersect.

Figure 22

Writing Equations of Perpendicular Lines

We can use a very similar process to write the equation for a line perpendicular to a given line. Instead of
using the same slope, however, we use the negative reciprocal of the given slope. Suppose we are given
the following function:

The slope of the line is 2, and its negative reciprocal is . Any function with a slope of  will be
perpendicular to f(x). So the lines formed by all of the following functions will be perpendicular to f(x).

As before, we can narrow down our choices for a particular perpendicular line if we know that it passes
through a given point. Suppose then we want to write the equation of a line that is perpendicular to f(x) and
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Q & A

A horizontal line has a slope of zero and a vertical line has an undefined slope. These two lines are
perpendicular, but the product of their slopes is not –1. Doesn’t this fact contradict the definition
of perpendicular lines?
No. For two perpendicular linear functions, the product of their slopes is –1. However, a vertical line is not
a function so the definition is not contradicted.

HOW TO: GIVEN THE EQUATION OF A FUNCTION AND A POINT
THROUGH WHICH ITS GRAPH PASSES, WRITE THE EQUATION OF A LINE

PERPENDICULAR TO THE GIVEN LINE.

1. Find the slope of the function.
2. Determine the negative reciprocal of the slope.
3. Substitute the new slope and the values for x and y from the coordinate pair provided into 

.
4. Solve for b.
5. Write the equation for the line.

EXAMPLE 10: FINDING THE EQUATION OF A PERPENDICULAR LINE

Find the equation of a line perpendicular to  that passes through the point (3,0).
Answer
The original line has slope m = 3, so the slope of the perpendicular line will be its negative reciprocal, or 

. Using this slope and the given point, we can find the equation for the line.

The line perpendicular to f(x) that passes through (3, 0) is .

passes through the point (4, 0). We already know that the slope is . Now we can use the point to find the
y-intercept by substituting the given values into the slope-intercept form of a line and solving for b.

The equation for the function with a slope of  and a y-intercept of 2 is
.

So  is perpendicular to  and passes through the point (4,0). Be aware that
perpendicular lines may not look obviously perpendicular on a graphing calculator unless we use the square
zoom feature.
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Analysis of the Solution

A graph of the two lines is shown in Figure 23.

Figure 23

Try It

Given the function , write an equation for the line passing through (0, 0) that is

a. parallel to h(x)
b. perpendicular to h(x)

Answer

a. 
b. 
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An interactive or media element has been excluded from this version of the text. You can view it online
here: https://courses.lumenlearning.com/precalculus/?p=13807

TRY IT

HOW TO: GIVEN TWO POINTS ON A LINE AND A THIRD POINT, WRITE
THE EQUATION OF THE PERPENDICULAR LINE THAT PASSES THROUGH

THE POINT.

1. Determine the slope of the line passing through the points.
2. Find the negative reciprocal of the slope.
3. Use the slope-intercept form or point-slope form to write the equation by substituting the known

values.
4. Simplify.

EXAMPLE 11: FINDING THE EQUATION OF A LINE PERPENDICULAR TO A
GIVEN LINE PASSING THROUGH A POINT

A line passes through the points (–2, 6) and (4, 5). Find the equation of a perpendicular line that passes
through the point (4, 5).
Answer
From the two points of the given line, we can calculate the slope of that line.

Find the negative reciprocal of the slope.

We can then solve for the y-intercept of the line passing through the point (4, 5).

The equation for the line that is perpendicular to the line passing through the two given points and also
passes through point (4, 5) is
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EXAMPLE 12: FINDING A POINT OF INTERSECTION ALGEBRAICALLY

Find the point of intersection of the lines  and .
Answer
Set .

This tells us the lines intersect when the input is .
We can then find the output value of the intersection point by evaluating either function at this input.

These lines intersect at the point .

Analysis of the Solution

Looking at Figure 24, this result seems reasonable.

Try It

A line passes through the points, (–2, –15) and (2, –3). Find the equation of a perpendicular line that
passes through the point, (6, 4).
Answer

Solving a System of Linear Equations Using a Graph

A system of linear equations includes two or more linear equations. The graphs of two lines will intersect at a
single point if they are not parallel. Two parallel lines can also intersect if they are coincident, which means
they are the same line and they intersect at every point. For two lines that are not parallel, the single point of
intersection will satisfy both equations and therefore represent the solution to the system.

To find this point when the equations are given as functions, we can solve for an input value so that 
. In other words, we can set the formulas for the lines equal to one another, and solve for the

input that satisfies the equation.
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Figure 24

Q & A

If we were asked to find the point of intersection of two distinct parallel lines, should something in
the solution process alert us to the fact that there are no solutions?
Yes. After setting the two equations equal to one another, the result would be the contradiction “0 = non-
zero real number”.

Try It

Using the graph in the Analysis of the Solution for Example 12, identify the following for the function :

a. y-intercept

b. x-intercept(s)

c. slope
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EXAMPLE 13: FINDING A BREAK-EVEN POINT

A company sells sports helmets. The company incurs a one-time fixed cost for $250,000. Each helmet
costs $120 to produce, and sells for $140.

1. Find the cost function, C, to produce x helmets, in dollars.
2. Find the revenue function, R, from the sales of x helmets, in dollars.
3. Find the break-even point, the point of intersection of the two graphs C and R.

Answer

1. he cost function in the sum of the fixed cost, $125,000, and the variable cost, $120 per helmet.

2. The revenue function is the total revenue from the sale of  helmets, .
3. The break-even point is the point of intersection of the graph of the cost and revenue functions. To

find the x-coordinate of the coordinate pair of the point of intersection, set the two equations equal,
and solve for x.

To find , evaluate either the revenue or the cost function at 12,500.

The break-even point is (12,500, 1,750,000).

Analysis of the Solution

This means if the company sells 12,500 helmets, they break even; both the sales and cost incurred
equaled 1.75 million dollars.

d. Is  parallel or perpendicular to  (or neither)?

e. Is  an increasing or decreasing function (or neither)?

f. Write a transformation description for  from the identity toolkit function .
Answer

a. 

b. 

c. Slope -1

d. Neither parallel nor perpendicular

e. Decreasing function

f. Given the identity function, perform a vertical flip (over the t-axis) and shift up 5 units.
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Figure 25

Key Concepts

Linear functions may be graphed by plotting points or by using the y-intercept and slope.
Graphs of linear functions may be transformed by using shifts up, down, left, or right, as well as through
stretches, compressions, and reflections.
The y-intercept and slope of a line may be used to write the equation of a line.
The x-intercept is the point at which the graph of a linear function crosses the x-axis.
Horizontal lines are written in the form, f(x) = b.
Vertical lines are written in the form, x = b.
Parallel lines have the same slope.
Perpendicular lines have negative reciprocal slopes, assuming neither is vertical.
A line parallel to another line, passing through a given point, may be found by substituting the slope
value of the line and the x– and y-values of the given point into the equation, , and using
the b that results. Similarly, the point-slope form of an equation can also be used.
A line perpendicular to another line, passing through a given point, may be found in the same manner,
with the exception of using the negative reciprocal slope.
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horizontal line

parallel lines

perpendicular lines

vertical line

x-intercept

A system of linear equations may be solved setting the two equations equal to one another and solving
for x. The y-value may be found by evaluating either one of the original equations using this x-value.
A system of linear equations may also be solved by finding the point of intersection on a graph.

Glossary

a line defined by , where b is a real number. The slope of a horizontal line is 0.

two or more lines with the same slope

two lines that intersect at right angles and have slopes that are negative reciprocals of
each other

a line defined by x = a, where a is a real number. The slope of a vertical line is undefined.

the point on the graph of a linear function when the output value is 0; the point at which the
graph crosses the horizontal axis
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MODELING WITH LINEAR FUNCTIONS

Learning Outcomes

Build linear models from verbal descriptions.
Build and solve systems of linear models.

Emily is a college student who plans to spend a summer in Seattle. She has saved $3,500 for her trip and
anticipates spending $400 each week on rent, food, and activities. How can we write a linear model to
represent her situation? What would be the x-intercept, and what can she learn from it? To answer these
and related questions, we can create a model using a linear function. Models such as this one can be
extremely useful for analyzing relationships and making predictions based on those relationships. In this
section, we will explore examples of linear function models.

Identifying Steps to Model and Solve Problems

When modeling scenarios with linear functions and solving problems involving quantities with a constant
rate of change, we typically follow the same problem strategies that we would use for any type of function.
Let’s briefly review them:

1. Identify changing quantities, and then define descriptive variables to represent those quantities. When
appropriate, sketch a picture or define a coordinate system.

2. Carefully read the problem to identify important information. Look for information that provides values for
the variables or values for parts of the functional model, such as slope and initial value.

3. Carefully read the problem to determine what we are trying to find, identify, solve, or interpret.
4. Identify a solution pathway from the provided information to what we are trying to find. Often this will

involve checking and tracking units, building a table, or even finding a formula for the function being
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Figure 1. (credit: EEK Photography/Flickr)

used to model the problem.
5. When needed, write a formula for the function.
6. Solve or evaluate the function using the formula.
7. Reflect on whether your answer is reasonable for the given situation and whether it makes sense

mathematically.
8. Clearly convey your result using appropriate units, and answer in full sentences when necessary.

Building Linear Models

Now let’s take a look at the student in Seattle. In her situation, there are two changing quantities: time and
money. The amount of money she has remaining while on vacation depends on how long she stays. We can
use this information to define our variables, including units.

Output: M, money remaining, in dollars
Input: t, time, in weeks

So, the amount of money remaining depends on the number of weeks: M(t)

We can also identify the initial value and the rate of change.
Initial Value: She saved $3,500, so $3,500 is the initial value for M.
Rate of Change: She anticipates spending $400 each week, so –$400 per week is the rate of change,
or slope.

Notice that the unit of dollars per week matches the unit of our output variable divided by our input variable.
Also, because the slope is negative, the linear function is decreasing. This should make sense because she
is spending money each week.
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Figure 2

The rate of change is constant, so we can start with the linear model . Then we can
substitute the intercept and slope provided.

To find the x-intercept, we set the output to zero, and solve for the input.

The x-intercept is 8.75 weeks. Because this represents the input value when the output will be zero, we
could say that Emily will have no money left after 8.75 weeks.

When modeling any real-life scenario with functions, there is typically a limited domain over which that
model will be valid—almost no trend continues indefinitely. Here the domain refers to the number of weeks.
In this case, it doesn’t make sense to talk about input values less than zero. A negative input value could
refer to a number of weeks before she saved $3,500, but the scenario discussed poses the question once
she saved $3,500 because this is when her trip and subsequent spending starts. It is also likely that this
model is not valid after the x-intercept, unless Emily will use a credit card and goes into debt. The domain
represents the set of input values, so the reasonable domain for this function is .

In the above example, we were given a written description of the situation. We followed the steps of
modeling a problem to analyze the information. However, the information provided may not always be the
same. Sometimes we might be provided with an intercept. Other times we might be provided with an output
value. We must be careful to analyze the information we are given, and use it appropriately to build a linear
model.

Using a Given Intercept to Build a Model

Some real-world problems provide the y-intercept, which is the constant or initial value. Once the y-intercept
is known, the x-intercept can be calculated. Suppose, for example, that Hannah plans to pay off a no-interest
loan from her parents. Her loan balance is $1,000. She plans to pay $250 per month until her balance is $0.
The y-intercept is the initial amount of her debt, or $1,000. The rate of change, or slope, is–$250 per month.
We can then use the slope-intercept form and the given information to develop a linear model.

Now we can set the function equal to 0, and solve for x to find the x-intercept.

The x-intercept is the number of months it takes her to reach a balance of $0. The x-intercept is 4 months,
so it will take Hannah four months to pay off her loan.

224



HOW TO: GIVEN A WORD PROBLEM THAT INCLUDES TWO PAIRS OF
INPUT AND OUTPUT VALUES, USE THE LINEAR FUNCTION TO SOLVE A

PROBLEM.

1. Identify the input and output values.
2. Convert the data to two coordinate pairs.
3. Find the slope.
4. Write the linear model.
5. Use the model to make a prediction by evaluating the function at a given x value.
6. Use the model to identify an x value that results in a given y value.
7. Answer the question posed.

EXAMPLE 1: USING A LINEAR MODEL TO INVESTIGATE A TOWN’S
POPULATION

A town’s population has been growing linearly. In 2004 the population was 6,200. By 2009 the population
had grown to 8,100. Assume this trend continues.

1. Predict the population in 2013.
2. Identify the year in which the population will reach 15,000.

Answer
The two changing quantities are the population size and time. While we could use the actual year value as
the input quantity, doing so tends to lead to very cumbersome equations because the y-intercept would
correspond to the year 0, more than 2000 years ago!
To make computation a little nicer, we will define our input as the number of years since 2004:

Input: t, years since 2004
Output: P(t), the town’s population

To predict the population in 2013 (t = 9), we would first need an equation for the population. Likewise, to
find when the population would reach 15,000, we would need to solve for the input that would provide an
output of 15,000. To write an equation, we need the initial value and the rate of change, or slope.
To determine the rate of change, we will use the change in output per change in input.

The problem gives us two input-output pairs. Converting them to match our defined variables, the year
2004 would correspond to , giving the point . Notice that through our clever choice of
variable definition, we have “given” ourselves the y-intercept of the function. The year 2009 would
correspond to , giving the point .
The two coordinate pairs are  and . Recall that we encountered examples in which we
were provided two points earlier in the chapter. We can use these values to calculate the slope.

Using a Given Input and Output to Build a Model

Many real-world applications are not as direct as the ones we just considered. Instead they require us to
identify some aspect of a linear function. We might sometimes instead be asked to evaluate the linear model
at a given input or set the equation of the linear model equal to a specified output.
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We already know the y-intercept of the line, so we can immediately write the equation:

To predict the population in 2013, we evaluate our function at t = 9.

If the trend continues, our model predicts a population of 9,620 in 2013.
To find when the population will reach 15,000, we can set  and solve for t.

Our model predicts the population will reach 15,000 in a little more than 23 years after 2004, or
somewhere around the year 2027.

An interactive or media element has been excluded from this version of the text. You can view it online
here: https://courses.lumenlearning.com/precalculus/?p=13815

TRY IT

Try It

A company sells doughnuts. They incur a fixed cost of $25,000 for rent, insurance, and other expenses. It
costs $0.25 to produce each doughnut.

1. Write a linear model to represent the cost C of the company as a function of x, the number of
doughnuts produced.

2. Find and interpret the y-intercept.

Answer

 The y-intercept is (0, 25,000). If the company does not produce a single
doughnut, they still incur a cost of $25,000.

Try It

A city’s population has been growing linearly. In 2008, the population was 28,200. By 2012, the population
was 36,800. Assume this trend continues.

1. Predict the population in 2014.
2. Identify the year in which the population will reach 54,000.

Answer

41,100; 2020

Using a Diagram to Model a Problem
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Figure 3

EXAMPLE 2: USING A DIAGRAM TO MODEL DISTANCE WALKED

Anna and Emanuel start at the same intersection. Anna walks east at 4 miles per hour while Emanuel
walks south at 3 miles per hour. They are communicating with a two-way radio that has a range of 2 miles.
How long after they start walking will they fall out of radio contact?
Answer
In essence, we can partially answer this question by saying they will fall out of radio contact when they are
2 miles apart, which leads us to ask a new question: “How long will it take them to be 2 miles apart?”
In this problem, our changing quantities are time and position, but ultimately we need to know how long
will it take for them to be 2 miles apart. We can see that time will be our input variable, so we’ll define our
input and output variables.

Input: t, time in hours.
Output: A(t), distance in miles, and E(t), distance in miles.

Because it is not obvious how to define our output variable, we’ll start by drawing a picture.
Initial Value: They both start at the same intersection
so when , the distance traveled by each person
should also be 0. Thus the initial value for each is 0.
Rate of Change: Anna is walking 4 miles per hour
and Emanuel is walking 3 miles per hour, which are
both rates of change. The slope for A is 4 and the
slope for E is 3.
Using those values, we can write formulas for the
distance each person has walked.

For this problem, the distances from the starting
point are important. To notate these, we can define a
coordinate system, identifying the “starting point” at
the intersection where they both started. Then we
can use the variable, A, which we introduced above,
to represent Anna’s position, and define it to be a
measurement from the starting point in the eastward direction. Likewise, can use the variable, E, to
represent Emanuel’s position, measured from the starting point in the southward direction. Note that in
defining the coordinate system, we specified both the starting point of the measurement and the direction
of measure.
We can then define a third variable, D, to be the measurement of the distance between Anna and
Emanuel. Showing the variables on the diagram is often helpful.
Recall that we need to know how long it takes for D, the distance between them, to equal 2 miles. Notice
that for any given input t, the outputs A(t), E(t), and D(t) represent distances.
This picture shows us that we can use the Pythagorean Theorem because we have drawn a right angle.
Using the Pythagorean Theorem, we get:

It is useful for many real-world applications to draw a picture to gain a sense of how the variables
representing the input and output may be used to answer a question. To draw the picture, first consider what
the problem is asking for. Then, determine the input and the output. The diagram should relate the variables.
Often, geometrical shapes or figures are drawn. Distances are often traced out. If a right triangle is
sketched, the Pythagorean Theorem relates the sides. If a rectangle is sketched, labeling width and height is
helpful.
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Figure 4

In this scenario we are considering only positive values of , so our distance D(t) will always be positive.
We can simplify this answer to D(t) = 5t. This means that the distance between Anna and Emanuel is also
a linear function. Because D is a linear function, we can now answer the question of when the distance
between them will reach 2 miles. We will set the output D(t) = 2 and solve for t.

They will fall out of radio contact in 0.4 hours, or 24 minutes.

Q & A

Should I draw diagrams when given information based on a geometric shape?
Yes. Sketch the figure and label the quantities and unknowns on the sketch.

EXAMPLE 3: USING A DIAGRAM TO MODEL DISTANCE BETWEEN CITIES

There is a straight road leading from the town of Westborough to Agritown 30 miles east and 10 miles
north. Partway down this road, it junctions with a second road, perpendicular to the first, leading to the
town of Eastborough. If the town of Eastborough is located 20 miles directly east of the town of
Westborough, how far is the road junction from Westborough?
Answer
It might help here to draw a picture of the situation. It would then be helpful to introduce a coordinate
system. While we could place the origin anywhere, placing it at Westborough seems convenient. This puts
Agritown at coordinates (30, 10), and Eastborough at (20, 0).
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Figure 5

Using this point along with the origin, we can find the slope of the line from Westborough to Agritown:

The equation of the road from Westborough to Agritown would be

From this, we can determine the perpendicular road to Eastborough will have slope . Because the
town of Eastborough is at the point (20, 0), we can find the equation:

We can now find the coordinates of the junction of the roads by finding the intersection of these lines.
Setting them equal,

The roads intersect at the point (18, 6). Using the distance formula, we can now find the distance from
Westborough to the junction.

Analysis of the Solution

One nice use of linear models is to take advantage of the fact that the graphs of these functions are lines.
This means real-world applications discussing maps need linear functions to model the distances between
reference points.

Try It
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HOW TO: GIVEN A SITUATION THAT REPRESENTS A SYSTEM OF LINEAR
EQUATIONS, WRITE THE SYSTEM OF EQUATIONS AND IDENTIFY THE

SOLUTION.

1. Identify the input and output of each linear model.
2. Identify the slope and y-intercept of each linear model.
3. Find the solution by setting the two linear functions equal to another and solving for x, or find the point

of intersection on a graph.

EXAMPLE 4: BUILDING A SYSTEM OF LINEAR MODELS TO CHOOSE A
TRUCK RENTAL COMPANY

Jamal is choosing between two truck-rental companies. The first, Keep on Trucking, Inc., charges an up-
front fee of $20, then 59 cents a mile. The second, Move It Your Way, charges an up-front fee of $16, then
63 cents a mile1. When will Keep on Trucking, Inc. be the better choice for Jamal?
Answer
The two important quantities in this problem are the cost and the number of miles driven. Because we
have two companies to consider, we will define two functions.

There is a straight road leading from the town of Timpson to Ashburn 60 miles east and 12 miles north.
Partway down the road, it junctions with a second road, perpendicular to the first, leading to the town of
Garrison. If the town of Garrison is located 22 miles directly east of the town of Timpson, how far is the
road junction from Timpson?
Answer

21.15 miles

Building Systems of Linear Models

Figure 6

Real-world situations including two or more linear functions may be modeled with a system of linear
equations. Remember, when solving a system of linear equations, we are looking for points the two lines
have in common. Typically, there are three types of answers possible.
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Input d, distance driven in miles

Outputs K(d): cost, in dollars, for renting from Keep on TruckingM(d) cost, in dollars, for renting
from Move It Your Way

Initial Value Up-front fee: K(0) = 20 and M(0) = 16

Rate of
Change K(d) = $0.59/mile and P(d) = $0.63/mile

A linear function is of the form . Using the rates of change and initial charges, we can write
the equations

Using these equations, we can determine when Keep on Trucking, Inc., will be the better choice. Because
all we have to make that decision from is the costs, we are looking for when Move It Your Way, will cost
less, or when . The solution pathway will lead us to find the equations for the two functions,
find the intersection, and then see where the  function is smaller.

Figure 7

These graphs are sketched in Figure 7, with K(d) in blue.
To find the intersection, we set the equations equal and solve:

This tells us that the cost from the two companies will be the same if 100 miles are driven. Either by
looking at the graph, or noting that  is growing at a slower rate, we can conclude that Keep on
Trucking, Inc. will be the cheaper price when more than 100 miles are driven, that is .

An interactive or media element has been excluded from this version of the text. You can view it online
here: https://courses.lumenlearning.com/precalculus/?p=13815

TRY IT 5
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FITTING LINEAR MODELS TO DATA

Learning Outcomes

Draw and interpret scatter plots.
Find the line of best fit.
Distinguish between linear and nonlinear relations.
Use a linear model to make predictions.

A professor is attempting to identify trends among final exam scores. His class has a mixture of students, so
he wonders if there is any relationship between age and final exam scores. One way for him to analyze the
scores is by creating a diagram that relates the age of each student to the exam score received. In this
section, we will examine one such diagram known as a scatter plot.

Drawing and Interpreting Scatter Plots

A scatter plot is a graph of plotted points that may show a relationship between two sets of data. If the
relationship is from a linear model, or a model that is nearly linear, the professor can draw conclusions
using his knowledge of linear functions. Below is a sample scatter plot.
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EXAMPLE 1: USING A SCATTER PLOT TO INVESTIGATE CRICKET CHIRPS

The table below shows the number of cricket chirps in 15 seconds, for several different air temperatures,
in degrees Fahrenheit. (Note: Selected data from http://classic.globe.gov/fsl/scientistsblog/2007/10/.
Retrieved Aug 3, 2010) Plot this data, and determine whether the data appears to be linearly related.

Chirps 44 35 20.4 33 31 35 18.5 37 26

Temperature 80.5 70.5 57 66 68 72 52 73.5 53

Answer
Plotting this data suggests that there may be a trend. We can see from the trend in the data that the
number of chirps increases as the temperature increases. The trend appears to be roughly linear, though
certainly not perfectly so.

Figure 1. A scatter plot of age and final exam score variables

Notice this scatter plot does not indicate a linear relationship. The points do not appear to follow a trend. In
other words, there does not appear to be a relationship between the age of the student and the score on the
final exam.
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Figure 2

EXAMPLE 2: FINDING A LINE OF BEST FIT

Find a linear function that fits the data in the table below by “eyeballing” a line that seems to fit.

Chirps 44 35 20.4 33 31 35 18.5 37 26

Temperature 80.5 70.5 57 66 68 72 52 73.5 53

Answer
On a graph, we could try sketching a line.
Using the starting and ending points of our hand drawn line, points (0, 30) and (50, 90), this graph has a
slope of

and a y-intercept at 30. This gives an equation of

Finding the Line of Best Fit

Once we recognize a need for a linear function to model the data in “Draw and interpret scatter plots,” the
natural follow-up question is “what is that linear function?” One way to approximate our linear function is to
sketch the line that seems to best fit the data. Then we can extend the line until we can verify the y-intercept.
We can approximate the slope of the line by extending it until we can estimate the .
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Figure 3

where c is the number of chirps in 15 seconds, and T(c) is the temperature in degrees Fahrenheit. The
resulting equation is represented in the graph below.

Analysis of the Solution

This linear equation can then be used to
approximate answers to various questions we might
ask about the trend.

Recognizing Interpolation or Extrapolation

While the data for most examples does not fall perfectly on the line, the equation is our best guess as to how
the relationship will behave outside of the values for which we have data. We use a process known as
interpolation when we predict a value inside the domain and range of the data. The process of
extrapolation is used when we predict a value outside the domain and range of the data.

The graph below compares the two processes for the cricket-chirp data addressed in Example 2. We can
see that interpolation would occur if we used our model to predict temperature when the values for chirps
are between 18.5 and 44. Extrapolation would occur if we used our model to predict temperature when the
values for chirps are less than 18.5 or greater than 44.

There is a difference between making predictions inside the domain and range of values for which we have
data and outside that domain and range. Predicting a value outside of the domain and range has its
limitations. When our model no longer applies after a certain point, it is sometimes called model
breakdown. For example, predicting a cost function for a period of two years may involve examining the
data where the input is the time in years and the output is the cost. But if we try to extrapolate a cost when x
= 50, that is in 50 years, the model would not apply because we could not account for factors fifty years in
the future.
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A GENERAL NOTE: INTERPOLATION AND EXTRAPOLATION

Different methods of making predictions are used to analyze data.
The method of interpolation involves predicting a value inside the domain and/or range of the data.
The method of extrapolation involves predicting a value outside the domain and/or range of the data.
Model breakdown occurs at the point when the model no longer applies.

EXAMPLE 3: UNDERSTANDING INTERPOLATION AND EXTRAPOLATION

Chirps 44 35 20.4 33 31 35 18.5 37 26

Temperature 80.5 70.5 57 66 68 72 52 73.5 53

Use the cricket data above to answer the following questions:

Figure 4. Interpolation occurs within the domain and range of the provided data whereas extrapolation occurs outside.
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Figure 5

1. Would predicting the temperature when crickets are chirping 30 times in 15 seconds be interpolation
or extrapolation? Make the prediction, and discuss whether it is reasonable.

2. Would predicting the number of chirps crickets will make at 40 degrees be interpolation or
extrapolation? Make the prediction, and discuss whether it is reasonable.

Answer

1. The number of chirps in the data provided varied from 18.5 to 44. A prediction at 30 chirps per 15
seconds is inside the domain of our data, so would be interpolation. Using our model:

Based on the data we have, this value seems reasonable.
2. The temperature values varied from 52 to 80.5. Predicting the number of chirps at 40 degrees is

extrapolation because 40 is outside the range of our data. Using our model:

We can compare the regions of interpolation and extrapolation using the graph below.

Analysis of the Solution

Our model predicts the crickets would chirp 8.33
times in 15 seconds. While this might be possible,
we have no reason to believe our model is valid
outside the domain and range. In fact, generally
crickets stop chirping altogether below around 50
degrees.

Try It

According to the data from the table in Example 3, what temperature can we predict it is if we counted 20
chirps in 15 seconds?
Answer

Finding the Line of Best Fit Using a Graphing Utility

While eyeballing a line works reasonably well, there are statistical techniques for fitting a line to data that
minimize the differences between the line and data values. (Note: Technically, the method minimizes the
sum of the squared differences in the vertical direction between the line and the data values.) One such
technique is called least squares regression and can be computed by many graphing calculators,
spreadsheet software, statistical software, and many web-based calculators. (Note: For example,

237



HOW TO: GIVEN DATA OF INPUT AND CORRESPONDING OUTPUTS
FROM A LINEAR FUNCTION, FIND THE BEST FIT LINE USING LINEAR

REGRESSION.

1. Enter the input in List 1 (L1).
2. Enter the output in List 2 (L2).
3. On a graphing utility, select Linear Regression (LinReg).

EXAMPLE 4: FINDING A LEAST SQUARES REGRESSION LINE

Find the least squares regression line using the cricket-chirp data in the table below.

Chirps 44 35 20.4 33 31 35 18.5 37 26

Temperature 80.5 70.5 57 66 68 72 52 73.5 53

Answer

1. Enter the input (chirps) in List 1 (L1).
2. Enter the output (temperature) in List 2 (L2). See the table below.

L1 44 35 20.4 33 31 35 18.5 37 26

L2 80.5 70.5 57 66 68 72 52 73.5 53
3. On a graphing utility, select Linear Regression (LinReg). Using the cricket chirp data from earlier, with

technology we obtain the equation:

ANALYSIS OF THE SOLUTION

Notice that this line is quite similar to the equation we “eyeballed” but should fit the data better. Notice also
that using this equation would change our prediction for the temperature when hearing 30 chirps in 15
seconds from 66 degrees to:

The graph of the scatter plot with the least squares regression line is shown in below.

http://www.shodor.org/unchem/math/lls/leastsq.html) Least squares regression is one means to determine
the line that best fits the data, and here we will refer to this method as linear regression.
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Figure 6

Q & A

Will there ever be a case where two different lines will serve as the best fit for the data?
Although there are other ways to find “best fit” lines, we will always use the least squares regression line.

Distinguishing Between Linear and Non-Linear Models

Some data exhibit strong linear trends, but other data are nonlinear. Most calculators and computer software
can also provide us with the correlation coefficient, which is a measure of how closely the line fits the data.
Many graphing calculators require the user to turn a “diagnostic on” selection to find the correlation
coefficient, which mathematicians label as r. The correlation coefficient provides an easy way to get an idea
of how close to a line the data falls.

We should compute the correlation coefficient only for data that follows a linear pattern or to determine the
degree to which a data set is linear. If the data exhibits a nonlinear pattern, the correlation coefficient for a
linear regression is meaningless. To get a sense for the relationship between the value of r and the graph of
the data, the image below shows some large data sets with their correlation coefficients. Remember, for all
plots, the horizontal axis shows the input and the vertical axis shows the output.
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A GENERAL NOTE: CORRELATION COEFFICIENT

The correlation coefficient is a value, r, between –1 and 1.
r > 0 suggests a positive (increasing) relationship
r < 0 suggests a negative (decreasing) relationship
The closer the value is to 0, the more scattered the data.
The closer the value is to 1 or –1, the less scattered the data is.

EXAMPLE 5: FINDING A CORRELATION COEFFICIENT

Calculate the correlation coefficient for cricket-chirp data in the table below.

Chirps 44 35 20.4 33 31 35 18.5 37 26

Temperature 80.5 70.5 57 66 68 72 52 73.5 53

Answer
Because the data appear to follow a linear pattern, we can use technology to calculate r. Enter the inputs
and corresponding outputs and select the Linear Regression. The calculator will also provide you with the
correlation coefficient, r = 0.9509. This value is very close to 1, which suggests a strong increasing linear
relationship.
Note: For some calculators, the Diagnostics must be turned “on” in order to get the correlation coefficient
when linear regression is performed: [2nd]>[0]>[alpha][x–1], then scroll to DIAGNOSTICSON.

EXAMPLE 6: USING A REGRESSION LINE TO MAKE PREDICTIONS

Figure 7. Plotted data and related correlation coefficients. (credit: “DenisBoigelot,” Wikimedia Commons)

Predicting with a Regression Line

Once we determine that a set of data is linear using the correlation coefficient, we can use the regression
line to make predictions. As we learned previously, a regression line is a line that is closest to the data in the
scatter plot, which means that only one such line is a best fit for the data.
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Gasoline consumption in the United States has been steadily increasing. Consumption data from 1994 to
2004 is shown in the table below. (Note:
http://www.bts.gov/publications/national_transportation_statistics/2005/html/table_04_10.html) Determine
whether the trend is linear, and if so, find a model for the data. Use the model to predict the consumption
in 2008.

Year ’94 ’95 ’96 ’97 ’98 ’99 ’00 ’01 ’02 ’03 ’04

Consumption (billions of gallons) 113 116 118 119 123 125 126 128 131 133 136

The scatter plot of the data, including the least squares regression line, is shown in Figure 8.
 

Figure 8

Answer
We can introduce new input variable, t, representing years since 1994.
The least squares regression equation is:

Using technology, the correlation coefficient was calculated to be 0.9965, suggesting a very strong
increasing linear trend.
Using this to predict consumption in 2008 ,

The model predicts 144.244 billion gallons of gasoline consumption in 2008.
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correlation coefficient

extrapolation

interpolation

least squares regression

model breakdown

Try It

Use the model we created using technology in Example 6 to predict the gas consumption in 2011. Is this
an interpolation or an extrapolation?
Answer

150.871 billion gallons; extrapolation

Key Concepts

Scatter plots show the relationship between two sets of data.
Scatter plots may represent linear or non-linear models.
The line of best fit may be estimated or calculated, using a calculator or statistical software.
Interpolation can be used to predict values inside the domain and range of the data, whereas
extrapolation can be used to predict values outside the domain and range of the data.
The correlation coefficient, r, indicates the degree of linear relationship between data.
A regression line best fits the data.
The least squares regression line is found by minimizing the squares of the distances of points from a
line passing through the data and may be used to make predictions regarding either of the variables.

Glossary

a value, r, between –1 and 1 that indicates the degree of linear correlation of
variables, or how closely a regression line fits a data set.

predicting a value outside the domain and range of the data

predicting a value inside the domain and range of the data

a statistical technique for fitting a line to data in a way that minimizes the
differences between the line and data values

when a model no longer applies after a certain point
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MODULE 3: POLYNOMIAL AND
RATIONAL FUNCTIONS

Learning Outcomes

Express square roots of negative numbers as multiples of i.
Plot complex numbers on the complex plane.
Add and subtract complex numbers.
Multiply and divide complex numbers.

The study of mathematics continuously builds upon itself. Negative integers, for example, fill a void left by
the set of positive integers. The set of rational numbers, in turn, fills a void left by the set of integers. The set
of real numbers fills a void left by the set of rational numbers. Not surprisingly, the set of real numbers has
voids as well. For example, we still have no solution to equations such as

Our best guesses might be +2 or –2. But if we test +2 in this equation, it does not work. If we test –2, it does
not work. If we want to have a solution for this equation, we will have to go farther than we have so far. After
all, to this point we have described the square root of a negative number as undefined. Fortunately, there is
another system of numbers that provides solutions to problems such as these. In this section, we will
explore this number system and how to work within it.

Express square roots of negative numbers as multiples of i
We know how to find the square root of any positive real number. In a similar way, we can find the square
root of a negative number. The difference is that the root is not real. If the value in the radicand is negative,
the root is said to be an imaginary number. The imaginary number  is defined as the square root of
negative 1.

So, using properties of radicals,

We can write the square root of any negative number as a multiple of i. Consider the square root of –25.

We use 5i and not because the principal root of 25 is the positive root.
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A GENERAL NOTE: IMAGINARY AND COMPLEX NUMBERS

A complex number is a number of the form  where
a is the real part of the complex number.
bi is the imaginary part of the complex number.

If , then  is a real number. If  and b is not equal to 0, the complex number is called an
imaginary number. An imaginary number is an even root of a negative number.

How To: Given an imaginary number, express it in standard form.

1. Write  as .
2. Express  as i.
3. Write  in simplest form.

EXAMPLE 1: EXPRESSING AN IMAGINARY NUMBER IN STANDARD FORM

Express  in standard form.
Answer

In standard form, this is .

An interactive or media element has been excluded from this version of the text. You can view it online
here: https://courses.lumenlearning.com/precalculus/?p=13827

TRY IT 2

Figure 1

A complex number is the sum of a real number and an imaginary number. A complex number is expressed
in standard form when written a + bi where a is the real part and bi is the imaginary part. For example, 
is a complex number. So, too, is .

Imaginary numbers are distinguished from real numbers because a squared imaginary number produces a
negative real number. Recall, when a positive real number is squared, the result is a positive real number
and when a negative real number is squared, again, the result is a positive real number. Complex numbers
are a combination of real and imaginary numbers.

Try It

Express  in standard form.
Answer
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A GENERAL NOTE: COMPLEX PLANE

Plot complex numbers on the complex plane

We cannot plot complex numbers on a number line as we might real numbers. However, we can still
represent them graphically. To represent a complex number we need to address the two components of the
number. We use the complex plane, which is a coordinate system in which the horizontal axis represents
the real component and the vertical axis represents the imaginary component. Complex numbers are the
points on the plane, expressed as ordered pairs (a, b), where a represents the coordinate for the horizontal
axis and b represents the coordinate for the vertical axis.

Let’s consider the number . The real part of the complex number is –2 and the imaginary part is 3i.
We plot the ordered pair  to represent the complex number .

Figure 2
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Figure 3

In the complex plane, the horizontal axis is the real axis, and the vertical axis is the imaginary axis.

HOW TO: GIVEN A COMPLEX NUMBER, REPRESENT ITS COMPONENTS
ON THE COMPLEX PLANE.

1. Determine the real part and the imaginary part of the complex number.
2. Move along the horizontal axis to show the real part of the number.
3. Move parallel to the vertical axis to show the imaginary part of the number.
4. Plot the point.

EXAMPLE 2: PLOTTING A COMPLEX NUMBER ON THE COMPLEX PLANE

Plot the complex number  on the complex plane.
Answer
The real part of the complex number is 3, and the imaginary part is –4i. We plot the ordered pair .
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Figure 4

Try It

Plot the complex number  on the complex plane.
Answer
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A GENERAL NOTE: ADDITION AND SUBTRACTION OF COMPLEX
NUMBERS

Adding complex numbers:

Subtracting complex numbers:

HOW TO: GIVEN TWO COMPLEX NUMBERS, FIND THE SUM OR
DIFFERENCE.

1. Identify the real and imaginary parts of each number.
2. Add or subtract the real parts.
3. Add or subtract the imaginary parts.

EXAMPLE 3: ADDING COMPLEX NUMBERS

Add  and .
Answer
We add the real parts and add the imaginary parts.

 Add and subtract complex numbers

Just as with real numbers, we can perform arithmetic operations on complex numbers. To add or subtract
complex numbers, we combine the real parts and combine the imaginary parts.
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HOW TO: GIVEN A COMPLEX NUMBER AND A REAL NUMBER, MULTIPLY
TO FIND THE PRODUCT.

1. Use the distributive property.
2. Simplify.

EXAMPLE 4: MULTIPLYING A COMPLEX NUMBER BY A REAL NUMBER

Find the product .
Answer
Distribute the 4.

An interactive or media element has been excluded from this version of the text. You can view it online
here: https://courses.lumenlearning.com/precalculus/?p=13827

TRY IT

Try It

Subtract  from .
Answer

Multiplying Complex Numbers

Multiplying complex numbers is much like multiplying binomials. The major difference is that we work with
the real and imaginary parts separately.

Multiplying a Complex Number by a Real Number

Let’s begin by multiplying a complex number by a real number. We distribute the real number just as we
would with a binomial. So, for example,

Figure 5

Try It
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HOW TO: GIVEN TWO COMPLEX NUMBERS, MULTIPLY TO FIND THE
PRODUCT.

1. Use the distributive property or the FOIL method.
2. Simplify.

EXAMPLE 5: MULTIPLYING A COMPLEX NUMBER BY A COMPLEX
NUMBER

Multiply .
Answer

An interactive or media element has been excluded from this version of the text. You can view it online
here: https://courses.lumenlearning.com/precalculus/?p=13827

TRY IT

Find the product .
Answer

Multiplying Complex Numbers Together

Now, let’s multiply two complex numbers. We can use either the distributive property or the FOIL method.
Recall that FOIL is an acronym for multiplying First, Outer, Inner, and Last terms together. Using either the
distributive property or the FOIL method, we get

Because , we have

To simplify, we combine the real parts, and we combine the imaginary parts.

Try It

Multiply .
Answer
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A GENERAL NOTE: THE COMPLEX CONJUGATE

The complex conjugate of a complex number  is . It is found by changing the sign of the
imaginary part of the complex number. The real part of the number is left unchanged.

When a complex number is multiplied by its complex conjugate, the result is a real number.

When a complex number is added to its complex conjugate, the result is a real number.

EXAMPLE 6: FINDING COMPLEX CONJUGATES

Find the complex conjugate of each number.

1. 
2. 

Answer

1. The number is already in the form . The complex conjugate is , or .
2. We can rewrite this number in the form  as . The complex conjugate is , or .

This can be written simply as .

Analysis of the Solution

Although we have seen that we can find the complex conjugate of an imaginary number, in practice we
generally find the complex conjugates of only complex numbers with both a real and an imaginary
component. To obtain a real number from an imaginary number, we can simply multiply by i.

Dividing Complex Numbers

Division of two complex numbers is more complicated than addition, subtraction, and multiplication because
we cannot divide by an imaginary number, meaning that any fraction must have a real-number denominator.
We need to find a term by which we can multiply the numerator and the denominator that will eliminate the
imaginary portion of the denominator so that we end up with a real number as the denominator. This term is
called the complex conjugate of the denominator, which is found by changing the sign of the imaginary part
of the complex number. In other words, the complex conjugate of  is .

Note that complex conjugates have a reciprocal relationship: The complex conjugate of  is , and
the complex conjugate of  is . Further, when a quadratic equation with real coefficients has
complex solutions, the solutions are always complex conjugates of one another.

Suppose we want to divide  by , where neither a nor b equals zero. We first write the division as
a fraction, then find the complex conjugate of the denominator, and multiply.
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HOW TO: GIVEN TWO COMPLEX NUMBERS, DIVIDE ONE BY THE OTHER.

1. Write the division problem as a fraction.
2. Determine the complex conjugate of the denominator.
3. Multiply the numerator and denominator of the fraction by the complex conjugate of the denominator.
4. Simplify.

EXAMPLE 7: DIVIDING COMPLEX NUMBERS

Divide  by .
Answer
We begin by writing the problem as a fraction. Then we multiply the numerator and denominator by the
complex conjugate of the denominator.

Note that this expresses the quotient in standard form.

EXAMPLE 8: SUBSTITUTING A COMPLEX NUMBER INTO A POLYNOMIAL
FUNCTION

Let . Evaluate .
Answer
Substitute  into the function  and simplify.

Analysis of the Solution

We write . Notice that the input is  and the output is .

Try It

Let . Evaluate .
Answer
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EXAMPLE 9: SUBSTITUTING AN IMAGINARY NUMBER IN A RATIONAL
FUNCTION

Let . Evaluate .
Answer
Substitute  and simplify.

EXAMPLE 10: SIMPLIFYING POWERS OF I

Try It

Let . Evaluate .
Answer

Simplifying Powers of i

The powers of i are cyclic. Let’s look at what happens when we raise i to increasing powers.

We can see that when we get to the fifth power of i, it is equal to the first power. As we continue to multiply
i by itself for increasing powers, we will see a cycle of 4. Let’s examine the next 4 powers of i.
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complex conjugate

complex number

complex plane

imaginary number

Evaluate .
Answer
Since , we can simplify the problem by factoring out as many factors of  as possible. To do so, first
determine how many times 4 goes into 35: .

Key Concepts

The square root of any negative number can be written as a multiple of i.
To plot a complex number, we use two number lines, crossed to form the complex plane. The horizontal
axis is the real axis, and the vertical axis is the imaginary axis.
Complex numbers can be added and subtracted by combining the real parts and combining the
imaginary parts.
Complex numbers can be multiplied and divided.
To multiply complex numbers, distribute just as with polynomials.
To divide complex numbers, multiply both the numerator and denominator by the complex conjugate of
the denominator to eliminate the complex number from the denominator.
The powers of i are cyclic, repeating every fourth one.

Glossary

the complex number in which the sign of the imaginary part is changed and the real
part of the number is left unchanged; when added to or multiplied by the original complex number, the
result is a real number

the sum of a real number and an imaginary number, written in the standard form a + bi,
where a is the real part, and bi is the imaginary part

a coordinate system in which the horizontal axis is used to represent the real part of a
complex number and the vertical axis is used to represent the imaginary part of a complex number

a number in the form bi where 
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QUADRATIC FUNCTIONS

Learning Outcomes

Identify key characteristics of parabolas from the graph.
Understand how the graph of a parabola is related to its quadratic function.
Draw the graph of a quadratic function.
Solve problems involving a quadratic function’s minimum or maximum value.
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Figure 1. An array of satellite dishes. (credit: Matthew Colvin de Valle, Flickr)

Curved antennas, such as the ones shown in the photo, are commonly used to focus microwaves and radio
waves to transmit television and telephone signals, as well as satellite and spacecraft communication. The
cross-section of the antenna is in the shape of a parabola, which can be described by a quadratic function.

In this section, we will investigate quadratic functions, which frequently model problems involving area and
projectile motion. Working with quadratic functions can be less complex than working with higher degree
functions, so they provide a good opportunity for a detailed study of function behavior.

Recognize characteristics of parabolas

The graph of a quadratic function is a U-shaped curve called a parabola. One important feature of the graph
is that it has an extreme point, called the vertex. If the parabola opens up, the vertex represents the lowest
point on the graph, or the minimum value of the quadratic function. If the parabola opens down, the vertex
represents the highest point on the graph, or the maximum value. In either case, the vertex is a turning
point on the graph. The graph is also symmetric with a vertical line drawn through the vertex, called the axis
of symmetry. These features are illustrated in Figure 2.
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EXAMPLE 1: IDENTIFYING THE CHARACTERISTICS OF A PARABOLA

Determine the vertex, axis of symmetry, zeros, and y-intercept of the parabola shown in Figure 3.

Figure 2

The y-intercept is the point at which the parabola crosses the y-axis. The x-intercepts are the points at which
the parabola crosses the x-axis. If they exist, the x-intercepts represent the zeros, or roots, of the quadratic
function, the values of x at which y = 0.
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Figure 3

Answer
The vertex is the turning point of the graph. We can see that the vertex is at (3, 1). Because this parabola
opens upward, the axis of symmetry is the vertical line that intersects the parabola at the vertex. So the
axis of symmetry is x = 3. This parabola does not cross the x-axis, so it has no real zeros. It crosses the y-
axis at (0, 7) so this is the y-intercept.

 Understand how the graph of a parabola is related to its
quadratic function

The general form of a quadratic function presents the function in the form
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where a, b, and c are real numbers and . If , the parabola opens upward. If , the parabola
opens downward. We can use the general form of a parabola to find the equation for the axis of symmetry.

The axis of symmetry is defined by . If we use the quadratic formula, , to solve 
 for the x-intercepts, or zeros, we find the value of x halfway between them is always 

, the equation for the axis of symmetry.

Figure 4 shows the graph of the quadratic function written in general form as . In this form, 
, and . Because , the parabola opens upward. The axis of symmetry is 

. This also makes sense because we can see from the graph that the vertical line 
divides the graph in half. The vertex always occurs along the axis of symmetry. For a parabola that opens
upward, the vertex occurs at the lowest point on the graph, in this instance, . The x-intercepts,
those points where the parabola crosses the x-axis, occur at  and .
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Figure 4

The standard form of a quadratic function presents the function in the form

where  is the vertex. Because the vertex appears in the standard form of the quadratic function, this
form is also known as the vertex form of a quadratic function. The function above has the standard form:  
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Figure 5

As with the general form, if , the parabola opens upward and the vertex is a minimum. If , the
parabola opens downward, and the vertex is a maximum. Figure 5 is the graph of the quadratic function
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written in standard form as . Since  in this example, . In this form, 
, and . Because , the parabola opens downward. The vertex is at .

The standard form is useful for determining how the graph is transformed from the graph of . Figure
6 is the graph of this basic function.

Figure 6

If , the graph shifts upward, whereas if , the graph shifts downward. In Figure 5, , so the
graph is shifted 4 units upward. If , the graph shifts toward the right and if , the graph shifts to the
left. In Figure 5, , so the graph is shifted 2 units to the left. The magnitude of a indicates the stretch of
the graph. If , the point associated with a particular x-value shifts farther from the x-axis, so the graph
appears to become narrower, and there is a vertical stretch. But if , the point associated with a
particular x-value shifts closer to the x-axis, so the graph appears to become wider, but in fact there is a
vertical compression. In Figure 5, , so the graph becomes narrower.

The standard form and the general form are equivalent methods of describing the same function. We can
see this by expanding out the general form and setting it equal to the standard form.
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A GENERAL NOTE: FORMS OF QUADRATIC FUNCTIONS

A quadratic function is a function of degree two. The graph of a quadratic function is a parabola. The
general form of a quadratic function is  where a, b, and c are real numbers and 

.
The standard form of a quadratic function is .
The vertex  is located at

.

HOW TO: GIVEN A GRAPH OF A QUADRATIC FUNCTION, WRITE THE
EQUATION OF THE FUNCTION IN GENERAL FORM.

1. Identify the horizontal shift of the parabola; this value is h. Identify the vertical shift of the parabola;
this value is k.

2. Substitute the values of the horizontal and vertical shift for h and k. in the function 
.

3. Substitute the values of any point, other than the vertex, on the graph of the parabola for x and .
4. Solve for the stretch factor, |a|.
5. If the parabola opens up, . If the parabola opens down,  since this means the graph was

reflected about the x-axis.
6. Expand and simplify to write in general form.

EXAMPLE 2: WRITING THE EQUATION OF A QUADRATIC FUNCTION
FROM THE GRAPH

Write an equation for the quadratic function g in the graph below as a transformation of , and
then expand the formula, and simplify terms to write the equation in general form.

For the quadratic expressions to be equal, the corresponding coefficients must be equal.
.

This gives us the axis of symmetry we defined earlier. Setting the constant terms equal:

In practice, though, it is usually easier to remember that k is the output value of the function when the input
is h, so .
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Figure 7

Answer
We can see the graph of g is the graph of  shifted to the left 2 and down 3, giving a formula in
the form .
Substituting the coordinates of a point on the curve, such as , we can solve for the stretch factor.

In standard form, the algebraic model for this graph is .
To write this in general polynomial form, we can expand the formula and simplify terms.
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Notice that the horizontal and vertical shifts of the basic graph of the quadratic function determine the
location of the vertex of the parabola; the vertex is unaffected by stretches and compressions.

Analysis of the Solution

We can check our work using the table feature on a graphing utility. First enter . Next,
select  then use  and  and select 

x –6 –4 –2 0 2

y 5 –1 –3 –1 5

The ordered pairs in the table correspond to points on the graph.

Try It

A coordinate grid has been superimposed over the quadratic path of a basketball in the picture below.
Find an equation for the path of the ball. Does the shooter make the basket?
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HOW TO: GIVEN A QUADRATIC FUNCTION IN GENERAL FORM, FIND THE
VERTEX OF THE PARABOLA.

1. Identify a, b, and c.
2. Find h, the x-coordinate of the vertex, by substituting a and b into .
3. Find k, the y-coordinate of the vertex, by evaluating .

EXAMPLE 3: FINDING THE VERTEX OF A QUADRATIC FUNCTION

Figure 8. (credit: modification of work by Dan Meyer)

Answer

The path passes through the origin and has vertex at , so . To make the
shot,  would need to be about 4 but ; he doesn’t make it.
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Find the vertex of the quadratic function . Rewrite the quadratic in standard form
(vertex form).
Answer
The horizontal coordinate of the vertex will be at

The vertical coordinate of the vertex will be at

Rewriting into standard form, the stretch factor will be the same as the  in the original quadratic.

Using the vertex to determine the shifts,

Analysis of the Solution

One reason we may want to identify the vertex of the parabola is that this point will inform us where the
maximum or minimum value of the output occurs, (k), and where it occurs, (x).

A GENERAL NOTE: DOMAIN AND RANGE OF A QUADRATIC FUNCTION

The domain of any quadratic function is all real numbers.

Try It

Given the equation , write the equation in general form and then in standard form.
Answer

 in general form;  in standard form

Finding the Domain and Range of a Quadratic Function

Any number can be the input value of a quadratic function. Therefore, the domain of any quadratic function
is all real numbers. Because parabolas have a maximum or a minimum point, the range is restricted. Since
the vertex of a parabola will be either a maximum or a minimum, the range will consist of all y-values greater
than or equal to the y-coordinate at the turning point or less than or equal to the y-coordinate at the turning
point, depending on whether the parabola opens up or down.
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The range of a quadratic function written in general form  with a positive a value is 
, or ; the range of a quadratic function written in general form with a

negative a value is , or .
The range of a quadratic function written in standard form  with a positive a value is

; the range of a quadratic function written in standard form with a negative a value is .

HOW TO: GIVEN A QUADRATIC FUNCTION, FIND THE DOMAIN AND
RANGE.

1. The domain of any quadratic function as all real numbers.
2. Determine whether a is positive or negative. If a is positive, the parabola has a minimum. If a is

negative, the parabola has a maximum.
3. Determine the maximum or minimum value of the parabola, k.
4. If the parabola has a minimum, the range is given by , or . If the parabola has a

maximum, the range is given by , or .

EXAMPLE 4: FINDING THE DOMAIN AND RANGE OF A QUADRATIC
FUNCTION

Find the domain and range of .
Answer
As with any quadratic function, the domain is all real numbers.
Because a is negative, the parabola opens downward and has a maximum value. We need to determine
the maximum value. We can begin by finding the x-value of the vertex.

The maximum value is given by .

The range is , or .

Try It

Find the domain and range of .
Answer

The domain is all real numbers. The range is , or .

 Determine a quadratic function’s minimum or maximum value
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EXAMPLE 5: FINDING THE MAXIMUM VALUE OF A QUADRATIC
FUNCTION

A backyard farmer wants to enclose a rectangular space for a new garden within her fenced backyard.
She has purchased 80 feet of wire fencing to enclose three sides, and she will use a section of the
backyard fence as the fourth side.

1. Find a formula for the area enclosed by the fence if the sides of fencing perpendicular to the existing
fence have length L.

2. What dimensions should she make her garden to maximize the enclosed area?

Answer

There are many real-world scenarios that involve finding the maximum or minimum value of a quadratic
function, such as applications involving area and revenue.

Figure 9
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Figure 10

Let’s use a diagram such as the one in Figure 10 to record the given information. It is also helpful to
introduce a temporary variable, W, to represent the width of the garden and the length of the fence section
parallel to the backyard fence.

1. We know we have only 80 feet of fence available, and , or more simply, 
. This allows us to represent the width, W, in terms of L.

Now we are ready to write an equation for the area the fence encloses. We know the area of a
rectangle is length multiplied by width, so

This formula represents the area of the fence in terms of the variable length L. The function, written in
general form, is

.
2. The quadratic has a negative leading coefficient, so the graph will open downward, and the vertex will

be the maximum value for the area. In finding the vertex, we must be careful because the equation is
not written in standard polynomial form with decreasing powers. This is why we rewrote the function in
general form above. Since a is the coefficient of the squared term, , and .

To find the vertex:

The maximum value of the function is an area of 800 square feet, which occurs when  feet. When
the shorter sides are 20 feet, there is 40 feet of fencing left for the longer side. To maximize the area, she
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should enclose the garden so the two shorter sides have length 20 feet and the longer side parallel to the
existing fence has length 40 feet.

Analysis of the Solution

This problem also could be solved by graphing the quadratic function. We can see where the maximum
area occurs on a graph of the quadratic function in Figure 11.

Figure 11

HOW TO: GIVEN AN APPLICATION INVOLVING REVENUE, USE A
QUADRATIC EQUATION TO FIND THE MAXIMUM.

1. Write a quadratic equation for revenue.
2. Find the vertex of the quadratic equation.
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3. Determine the y-value of the vertex.

EXAMPLE 6: FINDING MAXIMUM REVENUE

The unit price of an item affects its supply and demand. That is, if the unit price goes up, the demand for
the item will usually decrease. For example, a local newspaper currently has 84,000 subscribers at a
quarterly charge of $30. Market research has suggested that if the owners raise the price to $32, they
would lose 5,000 subscribers. Assuming that subscriptions are linearly related to the price, what price
should the newspaper charge for a quarterly subscription to maximize their revenue?
Answer
Revenue is the amount of money a company brings in. In this case, the revenue can be found by
multiplying the price per subscription times the number of subscribers, or quantity. We can introduce
variables, p for price per subscription and Q for quantity, giving us the equation .
Because the number of subscribers changes with the price, we need to find a relationship between the
variables. We know that currently  and . We also know that if the price rises to $32, the
newspaper would lose 5,000 subscribers, giving a second pair of values,  and . From
this we can find a linear equation relating the two quantities. The slope will be

This tells us the paper will lose 2,500 subscribers for each dollar they raise the price. We can then solve
for the y-intercept.

This gives us the linear equation  relating cost and subscribers. We now return
to our revenue equation.

We now have a quadratic function for revenue as a function of the subscription charge. To find the price
that will maximize revenue for the newspaper, we can find the vertex.

The model tells us that the maximum revenue will occur if the newspaper charges $31.80 for a
subscription. To find what the maximum revenue is, we evaluate the revenue function.

The maximum revenue is $2,528,100.

Analysis of the Solution

This could also be solved by graphing the quadratic. We can see the maximum revenue on a graph of the
quadratic function.
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Figure 12

HOW TO: GIVEN A QUADRATIC FUNCTION , FIND THE Y– AND X-
INTERCEPTS.

Finding the x– and y-Intercepts of a Quadratic Function

Much as we did in the application problems above, we also need to find intercepts of quadratic equations for
graphing parabolas. Recall that we find the y-intercept of a quadratic by evaluating the function at an input of
zero, and we find the x-intercepts at locations where the output is zero. Notice that the number of x-
intercepts can vary depending upon the location of the graph.

Figure 13. Number of x-intercepts of a parabola
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1. Evaluate  to find the y-intercept.
2. Solve the quadratic equation  to find the x-intercepts.

EXAMPLE 7: FINDING THE Y– AND X-INTERCEPTS OF A PARABOLA

Find the y– and x-intercepts of the quadratic .
Answer
We find the y-intercept by evaluating .

So the y-intercept is at .
For the x-intercepts, we find all solutions of .

In this case, the quadratic can be factored easily, providing the simplest method for solution.

 or 

So the x-intercepts are at  and .

Analysis of the Solution

By graphing the function, we can confirm that the graph crosses the y-axis at . We can also
confirm that the graph crosses the x-axis at  and .
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Figure 14

HOW TO: GIVEN A QUADRATIC FUNCTION, FIND THE X-INTERCEPTS BY
REWRITING IN STANDARD FORM.

1. Substitute a and b into .
2. Substitute x = h into the general form of the quadratic function to find k.
3. Rewrite the quadratic in standard form using h and k.

 Solve problems involving a quadratic function’s minimum or
maximum value

In Example 7, the quadratic was easily solved by factoring. However, there are many quadratics that cannot
be factored. We can solve these quadratics by first rewriting them in standard form.
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4. Solve for when the output of the function will be zero to find the x-intercepts.

EXAMPLE 8: FINDING THE X-INTERCEPTS OF A PARABOLA

Find the x-intercepts of the quadratic function .
Answer
We begin by solving for when the output will be zero.

Because the quadratic is not easily factorable in this case, we solve for the intercepts by first rewriting the
quadratic in standard form.

We know that a = 2. Then we solve for h and k.

So now we can rewrite in standard form.

We can now solve for when the output will be zero.

The graph has x-intercepts at  and .

Analysis of the Solution
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Figure 15

We can check our work by graphing the given function on a graphing utility and observing the x-intercepts.

Try It

In Try It 2, we found the standard and general form for the function . Now find the y–
and x-intercepts (if any).
Answer

y-intercept at (0, 13), No x-intercepts
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EXAMPLE 9: SOLVING A QUADRATIC EQUATION WITH THE QUADRATIC
FORMULA

Solve .
Answer

Let’s begin by writing the quadratic formula: .
When applying the quadratic formula, we identify the coefficients a, b, and c. For the equation 

, we have a = 1, b = 1, and c = 2. Substituting these values into the formula we have:

The solutions to the equation are  and  or  and .
Note that because of the i, these are non-real zeros.

EXAMPLE 10: APPLYING THE VERTEX AND X-INTERCEPTS OF A
PARABOLA

A ball is thrown upward from the top of a 40 foot high building at a speed of 80 feet per second. The ball’s
height above ground can be modeled by the equation .

a. When does the ball reach the maximum height?
b. What is the maximum height of the ball?
c. When does the ball hit the ground?

Answer
a. The ball reaches the maximum height at the vertex of the parabola.

The ball reaches a maximum height after 2.5 seconds.
b. To find the maximum height, find the y coordinate of the vertex of the parabola.

The ball reaches a maximum height of 140 feet.
c. To find when the ball hits the ground, we need to determine when the height is zero, .
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We use the quadratic formula.

Because the square root does not simplify nicely, we can use a calculator to approximate the values of the
solutions.

The second answer is outside the reasonable domain of our model, so we conclude the ball will hit the
ground after about 5.458 seconds.

Figure 16

An interactive or media element has been excluded from this version of the text. You can view it online
here: https://courses.lumenlearning.com/precalculus/?p=13836

TRY IT

Try It

A rock is thrown upward from the top of a 112-foot high cliff overlooking the ocean at a speed of 96 feet
per second. The rock’s height above ocean can be modeled by the equation .

a. When does the rock reach the maximum height?

b. What is the maximum height of the rock?

c. When does the rock hit the ocean?
Answer

a. 3 seconds  b. 256 feet  c. 7 seconds
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axis of symmetry

general form of a quadratic function

standard form of a quadratic function

vertex

vertex form of a quadratic function

zeros

Key Equations

general form of a quadratic function

the quadratic formula

standard form of a quadratic function

Key Concepts

A polynomial function of degree two is called a quadratic function.
The graph of a quadratic function is a parabola. A parabola is a U-shaped curve that can open either up
or down.
The axis of symmetry is the vertical line passing through the vertex. The zeros, or x-intercepts, are the
points at which the parabola crosses the x-axis. The y-intercept is the point at which the parabola
crosses the y-axis.
Quadratic functions are often written in general form. Standard or vertex form is useful to easily identify
the vertex of a parabola. Either form can be written from a graph.
The vertex can be found from an equation representing a quadratic function.
The domain of a quadratic function is all real numbers. The range varies with the function.
A quadratic function’s minimum or maximum value is given by the y-value of the vertex.
The minimum or maximum value of a quadratic function can be used to determine the range of the
function and to solve many kinds of real-world problems, including problems involving area and
revenue.
Some quadratic equations must be solved by using the quadratic formula.
The vertex and the intercepts can be identified and interpreted to solve real-world problems.

Glossary

a vertical line drawn through the vertex of a parabola around which the parabola is
symmetric; it is defined by .

the function that describes a parabola, written in the form 
, where a, b, and c are real numbers and .

the function that describes a parabola, written in the form 
, where  is the vertex.

the point at which a parabola changes direction, corresponding to the minimum or maximum value of
the quadratic function

another name for the standard form of a quadratic function

in a given function, the values of x at which y = 0, also called roots
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Figure 1. (credit: Jason Bay, Flickr)

POWER FUNCTIONS AND POLYNOMIAL
FUNCTIONS

Learning Outcomes

Identify power functions.
Identify end behavior of power functions.
Identify polynomial functions.
Identify the degree and leading coefficient of polynomial functions.
Identify end behavior of polynomial functions.
Identify intercepts of factored polynomial functions.

Suppose a certain species of bird thrives on a small
island. Its population over the last few years is shown
below.

Year 2009 2010 2011 2012 2013

Bird Population 800 897 992 1,083 1,169

The population can be estimated using the function , where  represents the
bird population on the island t years after 2009. We can use this model to estimate the maximum bird
population and when it will occur. We can also use this model to predict when the bird population will
disappear from the island. In this section, we will examine functions that we can use to estimate and predict
these types of changes.

Identify power functions

In order to better understand the bird problem, we need to understand a specific type of function. A power
function is a function with a single term that is the product of a real number, a coefficient, and a variable
raised to a fixed real number. (A number that multiplies a variable raised to an exponent is known as a
coefficient.)

As an example, consider functions for area or volume. The function for the area of a circle with radius r is
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A GENERAL NOTE: POWER FUNCTION

A power function is a function that can be represented in the form

where k and p are real numbers, and k is known as the coefficient.

Q & A

Is  a power function?
No. A power function contains a variable base raised to a fixed power. This function has a constant base
raised to a variable power. This is called an exponential function, not a power function.

EXAMPLE 1: IDENTIFYING POWER FUNCTIONS

Which of the following functions are power functions?

Answer
All of the listed functions are power functions.
The constant and identity functions are power functions because they can be written as  and 

 respectively.
The quadratic and cubic functions are power functions with whole number powers  and 

.
The reciprocal and reciprocal squared functions are power functions with negative whole number powers
because they can be written as  and .
The square and cube root functions are power functions with fractional powers because they can be
written as  or .

and the function for the volume of a sphere with radius r is

Both of these are examples of power functions because they consist of a coefficient,  or , multiplied by a
variable r raised to a power.

Try It

Which functions are power functions?
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Answer

 is a power function because it can be written as . The other functions are not power
functions.

 Identify end behavior of power functions

Figure 2 shows the graphs of  and , which are all power functions with
even, whole-number powers. Notice that these graphs have similar shapes, very much like that of the
quadratic function in the toolkit. However, as the power increases, the graphs flatten somewhat near the
origin and become steeper away from the origin.

Figure 2. Even-power functions

To describe the behavior as numbers become larger and larger, we use the idea of infinity. We use the
symbol  for positive infinity and  for negative infinity. When we say that “x approaches infinity,” which
can be symbolically written as , we are describing a behavior; we are saying that x is increasing
without bound.

With the even-power function, as the input increases or decreases without bound, the output values become
very large, positive numbers. Equivalently, we could describe this behavior by saying that as  approaches
positive or negative infinity, the  values increase without bound. In symbolic form, we could write

Figure 3 shows the graphs of , which are all power functions with odd,
whole-number powers. Notice that these graphs look similar to the cubic function in the toolkit. Again, as the
power increases, the graphs flatten near the origin and become steeper away from the origin.
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Figure 3. Odd-power function

These examples illustrate that functions of the form  reveal symmetry of one kind or another.
First, in Figure 2 we see that even functions of the form  are symmetric about the y-axis.
In Figure 3 we see that odd functions of the form  are symmetric about the origin.

For these odd power functions, as x approaches negative infinity,  decreases without bound. As
x approaches positive infinity,  increases without bound. In symbolic form we write
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HOW TO: GIVEN A POWER FUNCTION  WHERE N IS A NON-
NEGATIVE INTEGER, IDENTIFY THE END BEHAVIOR.

The behavior of the graph of a function as the input values get very small (  ) and get very large ( 
 ) is referred to as the end behavior of the function. We can use words or symbols to describe end

behavior.

The table below shows the end behavior of power functions in the form  where  is a non-
negative integer depending on the power and the constant.

Even power Odd power

Positive constant

k > 0

Negative constant

k < 0
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1. Determine whether the power is even or odd.
2. Determine whether the constant is positive or negative.
3. Use Figure 4 to identify the end behavior.

EXAMPLE 2: IDENTIFYING THE END BEHAVIOR OF A POWER FUNCTION

Describe the end behavior of the graph of .
Answer
The coefficient is 1 (positive) and the exponent of the power function is 8 (an even number). As
x approaches infinity, the output (value of  ) increases without bound. We write as 
. As x approaches negative infinity, the output increases without bound. In symbolic form, as 

. We can graphically represent the function as shown in Figure 5.

Figure 4

EXAMPLE 3: IDENTIFYING THE END BEHAVIOR OF A POWER FUNCTION.

Describe the end behavior of the graph of .
Answer
The exponent of the power function is 9 (an odd number). Because the coefficient is –1 (negative), the
graph is the reflection about the x-axis of the graph of . The graph shows that as x approaches
infinity, the output decreases without bound. As x approaches negative infinity, the output increases
without bound. In symbolic form, we would write
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Figure 5. 

Analysis of the Solution

We can check our work by using the table feature on a graphing utility.

x f(x)

–10 1,000,000,000

–5 1,953,125

0 0

5 –1,953,125

10 –1,000,000,000

We can see from the table above that, when we substitute very small values for x, the output is very large,
and when we substitute very large values for x, the output is very small (meaning that it is a very large
negative value).

Try It

Describe in words and symbols the end behavior of .
Answer
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A GENERAL NOTE: POLYNOMIAL FUNCTIONS

Let n be a non-negative integer. A polynomial function is a function that can be written in the form

This is called the general form of a polynomial function. Each  is a coefficient and can be any real
number. Each product  is a term of a polynomial function.

EXAMPLE 4: IDENTIFYING POLYNOMIAL FUNCTIONS

Which of the following are polynomial functions?

Answer
The first two functions are examples of polynomial functions because they can be written in the form 

, where the powers are non-negative integers and the coefficients
are real numbers.

can be written as .

can be written as .

cannot be written in this form and is therefore not a polynomial function.

As x approaches positive or negative infinity,  decreases without bound: as 

because of the negative coefficient.

 Identify polynomial functions

An oil pipeline bursts in the Gulf of Mexico, causing an oil slick in a roughly circular shape. The slick is
currently 24 miles in radius, but that radius is increasing by 8 miles each week. We want to write a formula
for the area covered by the oil slick by combining two functions. The radius r of the spill depends on the
number of weeks w that have passed. This relationship is linear.

We can combine this with the formula for the area A of a circle.

Composing these functions gives a formula for the area in terms of weeks.

Multiplying gives the formula.

This formula is an example of a polynomial function. A polynomial function consists of either zero or the
sum of a finite number of non-zero terms, each of which is a product of a number, called the coefficient of
the term, and a variable raised to a non-negative integer power.
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A GENERAL NOTE: TERMINOLOGY OF POLYNOMIAL FUNCTIONS

Figure 6

We often rearrange polynomials so that the powers are descending.
When a polynomial is written in this way, we say that it is in general form.

HOW TO: GIVEN A POLYNOMIAL FUNCTION, IDENTIFY THE DEGREE AND
LEADING COEFFICIENT.

1. Find the highest power of x to determine the degree function.
2. Identify the term containing the highest power of x to find the leading term.
3. Identify the coefficient of the leading term.

EXAMPLE 5: IDENTIFYING THE DEGREE AND LEADING COEFFICIENT OF A
POLYNOMIAL FUNCTION

Identify the degree, leading term, and leading coefficient of the following polynomial functions.

Answer
For the function , the highest power of x is 3, so the degree is 3. The leading term is the term
containing that degree, . The leading coefficient is the coefficient of that term, –4.

 Identify the degree and leading coe�cient of polynomial
functions

Because of the form of a polynomial function, we can see an infinite variety in the number of terms and the
power of the variable. Although the order of the terms in the polynomial function is not important for
performing operations, we typically arrange the terms in descending order of power, or in general form. The
degree of the polynomial is the highest power of the variable that occurs in the polynomial; it is the power of
the first variable if the function is in general form. The leading term is the term containing the highest power
of the variable, or the term with the highest degree. The leading coefficient is the coefficient of the leading
term.
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For the function , the highest power of t is 5, so the degree is 5. The leading term is the term
containing that degree, . The leading coefficient is the coefficient of that term, 5.
For the function , the highest power of p is 3, so the degree is 3. The leading term is the term
containing that degree, ; the leading coefficient is the coefficient of that term, –1.

An interactive or media element has been excluded from this version of the text. You can view it online
here: https://courses.lumenlearning.com/precalculus/?p=13838

TRY IT

Try It

Identify the degree, leading term, and leading coefficient of the polynomial .
Answer

The degree is 6. The leading term is . The leading coefficient is –1.

Identifying End Behavior of Polynomial Functions

Knowing the degree of a polynomial function is useful in helping us predict its end behavior. To determine its
end behavior, look at the leading term of the polynomial function. Because the power of the leading term is
the highest, that term will grow significantly faster than the other terms as x gets very large or very small, so
its behavior will dominate the graph. For any polynomial, the end behavior of the polynomial will match the
end behavior of the term of highest degree.
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Polynomial Function Leading Term Graph of Polynomial Function
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EXAMPLE 6: IDENTIFYING END BEHAVIOR AND DEGREE OF A
POLYNOMIAL FUNCTION

Describe the end behavior and determine a possible degree of the polynomial function in Figure 7.

Polynomial Function Leading Term Graph of Polynomial Function
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Figure 7

Answer
As the input values x get very large, the output values  increase without bound. As the input values
x get very small, the output values  decrease without bound. We can describe the end behavior
symbolically by writing

In words, we could say that as x values approach infinity, the function values approach infinity, and as
x values approach negative infinity, the function values approach negative infinity.
We can tell this graph has the shape of an odd degree power function that has not been reflected, so the
degree of the polynomial creating this graph must be odd and the leading coefficient must be positive.

Try It

Describe the end behavior, and determine a possible degree of the polynomial function in Figure 9.
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EXAMPLE 7: IDENTIFYING END BEHAVIOR AND DEGREE OF A
POLYNOMIAL FUNCTION

Given the function , express the function as a polynomial in general form,
and determine the leading term, degree, and end behavior of the function.
Answer
Obtain the general form by expanding the given expression for .

Figure 9

Answer

As . It has the shape of an even degree power function
with a negative coefficient.
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The general form is . The leading term is ; therefore, the degree of the
polynomial is 4. The degree is even (4) and the leading coefficient is negative (–3), so the end behavior is

Try It

Given the function , express the function as a polynomial in general
form and determine the leading term, degree, and end behavior of the function.
Answer

The general form is 

The leading term is , so it is a degree 3 polynomial. As x approaches positive infinity,  increases
without bound; as x approaches negative infinity,  decreases without bound.

Identifying Local Behavior of Polynomial Functions

In addition to the end behavior of polynomial functions, we are also interested in what happens in the
“middle” of the function. In particular, we are interested in locations where graph behavior changes. A
turning point is a point at which the function values change from increasing to decreasing or decreasing to
increasing.
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A GENERAL NOTE: INTERCEPTS AND TURNING POINTS OF POLYNOMIAL
FUNCTIONS

A turning point of a graph is a point at which the graph changes direction from increasing to decreasing
or decreasing to increasing. The y-intercept is the point at which the function has an input value of zero.
The x-intercepts are the points at which the output value is zero.

HOW TO: GIVEN A POLYNOMIAL FUNCTION, DETERMINE THE
INTERCEPTS.

1. Determine the y-intercept by setting  and finding the corresponding output value.

Figure 10

We are also interested in the intercepts. As with all functions, the y-intercept is the point at which the graph
intersects the vertical axis. The point corresponds to the coordinate pair in which the input value is zero.
Because a polynomial is a function, only one output value corresponds to each input value so there can be
only one y-intercept, . The x-intercepts occur at the input values that correspond to an output value of
zero. It is possible to have more than one x-intercept. 
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2. Determine the x-intercepts by solving for the input values that yield an output value of zero.

EXAMPLE 8: DETERMINING THE INTERCEPTS OF A POLYNOMIAL
FUNCTION

Given the polynomial function , written in factored form for your
convenience, determine the y– and x-intercepts.
Answer
The y-intercept occurs when the input is zero so substitute 0 for x.

The y-intercept is (0, 8).
The x-intercepts occur when the output is zero.

The x-intercepts are , and .
We can see these intercepts on the graph of the function shown in Figure 11.
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Figure 11
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EXAMPLE 9: DETERMINING THE INTERCEPTS OF A POLYNOMIAL
FUNCTION WITH FACTORING

Given the polynomial function , determine the y– and x-intercepts.
Answer
The y-intercept occurs when the input is zero.

The y-intercept is .
The x-intercepts occur when the output is zero. To determine when the output is zero, we will need to
factor the polynomial.

 can’t be 0, so we only consider the first two factors.

The x-intercepts are  and .
We can see these intercepts on the graph of the function shown in Figure 12. We can see that the function
is even because .
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Figure 12

An interactive or media element has been excluded from this version of the text. You can view it online
here: https://courses.lumenlearning.com/precalculus/?p=13838

TRY IT

Try It

Given the polynomial function , determine the y– and x-intercepts.
Answer

y-intercept ; x-intercepts , and 

Comparing Smooth and Continuous Graphs

The degree of a polynomial function helps us to determine the number of x-intercepts and the number of
turning points. A polynomial function of nth degree is the product of n factors, so it will have at most n roots
or zeros, or x-intercepts. The graph of the polynomial function of degree n must have at most n – 1 turning
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A GENERAL NOTE: INTERCEPTS AND TURNING POINTS OF
POLYNOMIALS

A polynomial of degree n will have, at most, n x-intercepts and n – 1 turning points.

EXAMPLE 10: DETERMINING THE NUMBER OF INTERCEPTS AND
TURNING POINTS OF A POLYNOMIAL

Without graphing the function, determine the local behavior of the function by finding the maximum
number of x-intercepts and turning points for .
Answer
The polynomial has a degree of 10, so there are at most n x-intercepts and at most n – 1 turning points.
 

EXAMPLE 11: DRAWING CONCLUSIONS ABOUT A POLYNOMIAL
FUNCTION FROM THE GRAPH

What can we conclude about the polynomial represented by the graph shown in the graph in Figure
13 based on its intercepts and turning points?

points. This means the graph has at most one fewer turning point than the degree of the polynomial or one
fewer than the number of factors.

A continuous function has no breaks in its graph: the graph can be drawn without lifting the pen from the
paper. A smooth curve is a graph that has no sharp corners. The turning points of a smooth graph must
always occur at rounded curves. The graphs of polynomial functions are both continuous and smooth.

Try It

Without graphing the function, determine the maximum number of x-intercepts and turning points for 

Answer

There are at most 12 x-intercepts and at most 11 turning points.
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Figure 13

Answer
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Figure 14

The end behavior of the graph tells us this is the graph of an even-degree polynomial. 
The graph has 2 x-intercepts, suggesting a degree of 2 or greater, and 3 turning points, suggesting a
degree of 4 or greater. Based on this, it would be reasonable to conclude that the degree is even and at
least 4.

Try It

What can we conclude about the polynomial represented by Figure 15 based on its intercepts and turning
points?
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EXAMPLE 12: DRAWING CONCLUSIONS ABOUT A POLYNOMIAL
FUNCTION FROM THE FACTORS

Given the function , determine the local behavior.
Answer
The y-intercept is found by evaluating .

The y-intercept is .
The x-intercepts are found by determining the zeros of the function.

Figure 15

Answer

The end behavior indicates an odd-degree polynomial function; there are 3 x-intercepts and 2 turning
points, so the degree is odd and at least 3. Because of the end behavior, we know that the lead coefficient
must be negative.
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The x-intercepts are , and .
The degree is 3 so the graph has at most 2 turning points.

coefficient

continuous function

degree

end behavior

leading coefficient

leading term

An interactive or media element has been excluded from this version of the text. You can view it online
here: https://courses.lumenlearning.com/precalculus/?p=13838

TRY IT

Try It

Given the function , determine the local behavior.
Answer

The x-intercepts are , and , the y-intercept is , and the graph has at most 2
turning points.

Key Equations

general form of a polynomial function

Key Concepts

A power function is a variable base raised to a number power.
The behavior of a graph as the input decreases beyond bound and increases beyond bound is called
the end behavior.
The end behavior depends on whether the power is even or odd.
A polynomial function is the sum of terms, each of which consists of a transformed power function with
positive whole number power.
The degree of a polynomial function is the highest power of the variable that occurs in a polynomial. The
term containing the highest power of the variable is called the leading term. The coefficient of the
leading term is called the leading coefficient.
The end behavior of a polynomial function is the same as the end behavior of the power function
represented by the leading term of the function.
A polynomial of degree n will have at most n x-intercepts and at most n – 1 turning points.

Glossary

a nonzero real number multiplied by a variable raised to an exponent

a function whose graph can be drawn without lifting the pen from the paper because
there are no breaks in the graph

the highest power of the variable that occurs in a polynomial

the behavior of the graph of a function as the input decreases without bound and increases
without bound

the coefficient of the leading term

the term containing the highest power of the variable
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polynomial function

power function

term of a polynomial function

turning point

a function that consists of either zero or the sum of a finite number of non-zero terms,
each of which is a product of a number, called the coefficient of the term, and a variable raised to a non-
negative integer power.

a function that can be represented in the form  where k is a constant, the base
is a variable, and the exponent, p, is a constant smooth curve a graph with no sharp corners

any  of a polynomial function in the form 

the location at which the graph of a function changes direction
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GRAPHS OF POLYNOMIAL FUNCTIONS

Learning Outcomes

Recognize characteristics of graphs of polynomial functions.
Identify zeros of polynomials and their multiplicities.
Determine end behavior.
Understand the relationship between degree and turning points.
Graph polynomial functions.
Solve polynomial inequalities.
Use the Intermediate Value Theorem.
Write the formula for a polynomial function.

The revenue in millions of dollars for a fictional cable company from 2006 through 2013 is shown in the table
below.

Year 2006 2007 2008 2009 2010 2011 2012 2013

Revenues 52.4 52.8 51.2 49.5 48.6 48.6 48.7 47.1

The revenue can be modeled by the polynomial function

where R represents the revenue in millions of dollars and t represents the year, with t = 6 corresponding to
2006. Over which intervals is the revenue for the company increasing? Over which intervals is the revenue
for the company decreasing? These questions, along with many others, can be answered by examining the
graph of the polynomial function. We have already explored the local behavior of quadratics, a special case
of polynomials. In this section we will explore the local behavior of polynomials in general.

Recognize characteristics of graphs of polynomial functions

Polynomial functions of degree 2 or more have graphs that do not have sharp corners; recall that these
types of graphs are called smooth curves. Polynomial functions also display graphs that have no breaks.
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EXAMPLE 1: RECOGNIZING POLYNOMIAL FUNCTIONS

Which of the graphs in Figure 2 represents a polynomial function?

Curves with no breaks are called continuous. Figure 1 shows a graph that represents a polynomial
function and a graph that represents a function that is not a polynomial.

Figure 1
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Figure 2

Answer
The graphs of f and h are graphs of polynomial functions. They are smooth and continuous.
The graphs of g and k are graphs of functions that are not polynomials. The graph of function g has a
sharp corner. The graph of function k is not continuous.

Q & A

Do all polynomial functions have as their domain all real numbers?
Yes. Any real number is a valid input for a polynomial function.

 Use factoring to find zeros of polynomial functions
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HOW TO: GIVEN A POLYNOMIAL FUNCTION F, FIND THE X-INTERCEPTS
BY FACTORING.

1. Set .
2. If the polynomial function is not given in factored form:

1. Factor out any common monomial factors.
2. Factor any factorable binomials or trinomials.

3. Set each factor equal to zero and solve to find the  intercepts.

EXAMPLE 2: FINDING THE X-INTERCEPTS OF A POLYNOMIAL FUNCTION
BY FACTORING

Find the x-intercepts of .
Answer
We can attempt to factor this polynomial to find solutions for .

Now set each factor equal to zero and solve.

Find zeros of polynomial functions

Recall that if f is a polynomial function, the values of x for which  are called zeros of f. If the
equation of the polynomial function can be factored, we can set each factor equal to zero and solve for the
zeros.

We can use this method to find x-intercepts because at the x-intercepts we find the input values when the
output value is zero. For general polynomials, this can be a challenging prospect. While quadratics can be
solved using the relatively simple quadratic formula, the corresponding formulas for cubic and fourth-degree
polynomials are not simple enough to remember, and formulas do not exist for general higher-degree
polynomials. Consequently, we will limit ourselves to three cases in this section:

1. The polynomial can be factored using known methods: greatest common factor and trinomial factoring.
2. The polynomial is given in factored form.
3. Technology is used to determine the intercepts.
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Figure 3

This gives us five x-intercepts: , and . We can see that this is an
even function.

EXAMPLE 3: FINDING THE X-INTERCEPTS OF A POLYNOMIAL FUNCTION
BY FACTORING

Find the x-intercepts of .
Answer
Find solutions for  by factoring.

Now we set each factor equal to 0.
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Figure 4

There are three x-intercepts: , and .

EXAMPLE 4: FINDING THE Y– AND X-INTERCEPTS OF A POLYNOMIAL IN
FACTORED FORM

Find the y– and x-intercepts of .
Answer
The y-intercept can be found by evaluating .

So the y-intercept is .
The x-intercepts can be found by solving .

So the x-intercepts are  and .
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Analysis of the Solution

We can always check that our answers are reasonable by using a graphing calculator to graph the
polynomial as shown in Figure 5.
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Figure 5

312



EXAMPLE 5: FINDING THE X-INTERCEPTS OF A POLYNOMIAL FUNCTION
USING A GRAPH

Find the x-intercepts of .
Answer
This polynomial is not in factored form, has no common factors, and does not appear to be factorable
using techniques previously discussed. Fortunately, we can use technology to find the intercepts. Keep in
mind that some values make graphing difficult by hand. In these cases, we can take advantage of
graphing utilities.
Looking at the graph of this function, as shown in Figure 6, it appears that there are x-intercepts at 

, and 1.

Figure 6

We can check whether these are correct by substituting these values for x and verifying that the function is
equal to 0.
Since , we have:
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Each x-intercept corresponds to a zero of the polynomial function and each zero yields a factor, so we can
now write the polynomial in factored form.

An interactive or media element has been excluded from this version of the text. You can view it online
here: https://courses.lumenlearning.com/precalculus/?p=13852

TRY IT 2

Try It

Find the y– and x-intercepts of the function .
Answer

y-intercept ; x-intercepts , and 

Identify zeros and their multiplicities

Graphs behave differently at various x-intercepts. Sometimes, the graph will cross over the horizontal axis at
an intercept. Other times, the graph will touch the horizontal axis and bounce off.

Suppose, for example, we graph the function
.

Notice in Figure 7 that the behavior of the function at each of the x-intercepts is different.
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Figure 7. Identifying the behavior of the graph at an x-intercept by examining the multiplicity of the zero.

The x-intercept  is the solution of equation . The graph passes directly through the x-
intercept at . The factor is linear (has a degree of 1), so the behavior near the intercept is like that of
a line—it passes directly through the intercept. We call this a single zero because the zero corresponds to a
single factor of the function.

The x-intercept  is the repeated solution of the equation . The graph touches the axis at
the intercept and changes direction. The factor is quadratic (degree 2), so the behavior near the intercept is
like that of a quadratic—it bounces off of the horizontal axis at the intercept.

The factor is repeated, that is, the factor  appears twice. The number of times a given factor appears
in the factored form of the equation of a polynomial is called the multiplicity. The zero associated with this
factor, , has multiplicity 2 because the factor  occurs twice.

The x-intercept  is the repeated solution of factor . The graph passes through the axis
at the intercept, but flattens out a bit first. This factor is cubic (degree 3), so the behavior near the intercept is
like that of a cubic—with the same S-shape near the intercept as the toolkit function . We call this
a triple zero, or a zero with multiplicity 3.

For zeros with even multiplicities, the graphs touch or are tangent to the x-axis. For zeros with odd
multiplicities, the graphs cross or intersect the x-axis. See Figure 8 for examples of graphs of polynomial
functions with multiplicity 1, 2, and 3.
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A GENERAL NOTE: GRAPHICAL BEHAVIOR OF POLYNOMIALS AT X-
INTERCEPTS

If a polynomial contains a factor of the form , the behavior near the x-intercept h is determined by
the power p. We say that  is a zero of multiplicity p.
The graph of a polynomial function will touch the x-axis at zeros with even multiplicities. The graph will
cross the x-axis at zeros with odd multiplicities.
The sum of the multiplicities is the degree of the polynomial function.

HOW TO: GIVEN A GRAPH OF A POLYNOMIAL FUNCTION OF DEGREE N,
IDENTIFY THE ZEROS AND THEIR MULTIPLICITIES.

1. If the graph crosses the x-axis and appears almost linear at the intercept, it is a single zero.
2. If the graph touches the x-axis and bounces off of the axis, it is a zero with even multiplicity.
3. If the graph crosses the x-axis at a zero, it is a zero with odd multiplicity.
4. The sum of the multiplicities is n. This includes non-real zeros.

EXAMPLE 6: IDENTIFYING ZEROS AND THEIR MULTIPLICITIES

Use the graph of the function of degree 6 to identify the zeros of the function and their possible
multiplicities.

Figure 8

For higher even powers, such as 4, 6, and 8, the graph will still touch and bounce off of the horizontal axis
but, for each increasing even power, the graph will appear flatter as it approaches and leaves the x-axis.

For higher odd powers, such as 5, 7, and 9, the graph will still cross through the horizontal axis, but for each
increasing odd power, the graph will appear flatter as it approaches and leaves the x-axis.
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Figure 9

Answer
The polynomial function is of degree n. The sum of the multiplicities must be n.
Starting from the left, the first zero occurs at . The graph touches the x-axis, so the multiplicity of
the zero must be even. The zero of –3 has multiplicity 2.
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The next zero occurs at . The graph looks almost linear at this point. This is a single zero of
multiplicity 1.
The last zero occurs at . The graph crosses the x-axis, so the multiplicity of the zero must be odd.
We know that the multiplicity is likely 3 and that the sum of the multiplicities is likely 6.

Try It

Use the graph of the function of degree 5 to identify the zeros of the function and their multiplicities.

Figure 10

Answer

The graph has a zero of –5 with multiplicity 1, a zero of –1 with multiplicity 2, and a zero of 3 with even
multiplicity.

 Determine end behavior

As we have already learned, the behavior of a graph of a polynomial function of the form

will either ultimately rise or fall as x increases without bound and will either rise or fall as x decreases without
bound. This is because for very large inputs, say 100 or 1,000, the leading term dominates the size of the
output. The same is true for very small inputs, say –100 or –1,000.

Recall that we call this behavior the end behavior of a function. As we pointed out when discussing quadratic
equations, when the leading term of a polynomial function, , is an even power function, as x increases
or decreases without bound,  increases without bound. When the leading term is an odd power
function, as x decreases without bound,  also decreases without bound; as x increases without bound, 

 also increases without bound. If the leading term is negative, it will change the direction of the end
behavior. The table below summarizes all four cases.
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Even Degree Odd Degree

Understand the relationship between degree and turning points

In addition to the end behavior, recall that we can analyze a polynomial function’s local behavior. It may have
a turning point where the graph changes from increasing to decreasing (rising to falling) or decreasing to
increasing (falling to rising). Look at the graph of the polynomial function  in
Figure 11. The graph has three turning points.
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A GENERAL NOTE: INTERPRETING TURNING POINTS

A turning point is a point of the graph where the graph changes from increasing to decreasing (rising to
falling) or decreasing to increasing (falling to rising).
A polynomial of degree n will have at most n – 1 turning points.

EXAMPLE 7: FINDING THE MAXIMUM NUMBER OF TURNING POINTS
USING THE DEGREE OF A POLYNOMIAL FUNCTION

Find the maximum number of turning points of each polynomial function.

1. 
2. 

Answer

1. 
First, rewrite the polynomial function in descending order: 
Identify the degree of the polynomial function. This polynomial function is of degree 5.
The maximum number of turning points is 5 – 1 = 4.

2. 

Figure 11

This function f is a 4th degree polynomial function and has 3 turning points. The maximum number of turning
points of a polynomial function is always one less than the degree of the function.
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First, identify the leading term of the polynomial function if the function were expanded.
Then, identify the degree of the polynomial function. This polynomial function is of degree 4.
The maximum number of turning points is 4 – 1 = 3.

HOW TO: GIVEN A POLYNOMIAL FUNCTION, SKETCH THE GRAPH.

1. Find the intercepts.
2. Check for symmetry. If the function is an even function, its graph is symmetrical about the y-axis, that

is, f(–x) = f(x).
If a function is an odd function, its graph is symmetrical about the origin, that is, f(–x) = –f(x).

3. Use the multiplicities of the zeros to determine the behavior of the polynomial at the x-intercepts.
4. Determine the end behavior by examining the leading term.
5. Use the end behavior and the behavior at the intercepts to sketch a graph.
6. Ensure that the number of turning points does not exceed one less than the degree of the polynomial.
7. Optionally, use technology to check the graph.

EXAMPLE 8: SKETCHING THE GRAPH OF A POLYNOMIAL FUNCTION

Sketch a graph of .
Answer
This graph has two x-intercepts. At x = –3, the factor is squared, indicating a multiplicity of 2. The graph
will bounce at this x-intercept. At x = 5, the function has a multiplicity of one, indicating the graph will cross
through the axis at this intercept.
The y-intercept is found by evaluating f(0).

The y-intercept is (0, 90).

 Graph polynomial functions

We can use what we have learned about multiplicities, end behavior, and turning points to sketch graphs of
polynomial functions. Let us put this all together and look at the steps required to graph polynomial
functions.
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Figure 13

Additionally, we can see the leading term, if this polynomial were multiplied out, would be ,
so the end behavior is that of a vertically reflected cubic, with the outputs decreasing as the inputs
approach infinity, and the outputs increasing as the inputs approach negative infinity.
To sketch this, we consider that:

As  the function , so we know the graph starts in the second quadrant and is
decreasing toward the x-axis.
Since 
is not equal to f(x), the graph does not display symmetry.
At (-3,0), the graph bounces off of the x-axis, so the function must start increasing.
At (0, 90), the graph crosses the y-axis at the y-intercept.
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Figure 14
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Figure 15

Somewhere after this point, the graph must turn back down or start decreasing toward the horizontal axis
because the graph passes through the next intercept at (5, 0). 
As  the function , so we know the graph continues to decrease, and we can stop
drawing the graph in the fourth quadrant.
Using technology, we can create the graph for the polynomial function, shown in Figure 16, and verify that
the resulting graph looks like our sketch in Figure 15.
The complete graph of the polynomial function 
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Figure 16

Try It

Sketch a graph of .
Answer

 Solving Polynomial Inequalities
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EXAMPLE 9: SOLVING POLYNOMIAL INEQUALITIES IN FACTORED FROM

Solve 
Answer
As with all inequalities, we start by solving the equality , which has solutions
at x = -3, -1, and 4. We know the function can only change from positive to negative at these values, so
these divide the inputs into 4 intervals.
We could choose a test value in each interval and evaluate the function 
at each test value to determine if the function is positive or negative in that interval

Interval Test x in interval f(test value) > 0 or < 0

x < -3 -4 72 > 0

-3 < x < -1 -2 -6 < 0

-1 <  x < 4 0 -12 < 0

x > 4 5 288  > 0

On a number line this would look like:

From our test values, we can determine this function is positive when x < -3 or x > 4, or in interval
notation, . We could have also determined on which intervals the function was positive
by sketching a graph of the function. We illustrate that technique in the next example.

EXAMPLE 10: SOLVING POLYNOMIAL INEQUALITIES IN FACTORED FROM

Find the domain of the function 
Answer
A square root is only defined when the quantity we are taking the square root of, the quantity inside the
square root, is zero or greater. Thus, the domain of this function will be when . Again we
start by solving the equality . While we could use the quadratic formula, this equation
factors nicely to , giving horizontal intercepts
t = 1 and t = -6.
Sketching a graph of this quadratic will allow us to determine when it is positive.

One application of our ability to find intercepts and sketch a graph of polynomials is the ability to solve
polynomial inequalities. It is a very common question to ask when a function will be positive and negative.
We can solve polynomial inequalities by either utilizing the graph, or by using test values.

326



From the graph we can see this function is positive for inputs between the intercepts. So 
is positive for , and this will be the domain of the v(t) function.

EXAMPLE 11: SOLVING A POLYNOMIAL INEQUALITY NOT IN FACTORED
FORM

Solve the inequality 
Answer
In our other examples, we were given polynomials that were already in factored form, here we have an
additional step to finding the intervals on which solutions to the given inequality lie. Again, we will start by
solving the equality 
 
Notice that there is a common factor of  in each term of this polynomial. We can use factoring to simplify
in the following way:

Now we can set each factor equal to zero to find the solution to the equality.

.
Note that x = 0 has multiplicity of two, but since our inequality is strictly greater than, we don’t need to
include it in our solutions.
We can choose a test value in each interval and evaluate the function

at each test value to determine if the function is positive or negative in that interval

Interval Test x in interval > 0,  < 0

x < -1 -2 x > 0

-1 < x < 0 -1/2  x <  0

0 < x < 3 1 x < 0

x > 3 5 x > 0

We want to have the set of x values that will give us the intervals where the polynomial is greater than
zero. Our answer will be .
 
The graph of the function gives us additional confirmation of our solution.
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An interactive or media element has been excluded from this version of the text. You can view it online
here: https://courses.lumenlearning.com/precalculus/?p=13852

TRY IT 5

A YouTube element has been excluded from this version of the text. You can view it online here:
https://courses.lumenlearning.com/precalculus/?p=13852

Further Examples

Solving a polynomial inequality not in factored form – use factoring by
grouping.

Solving a polynomial inequality not in factored form – use greatest
common factor.
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A YouTube element has been excluded from this version of the text. You can view it online here:
https://courses.lumenlearning.com/precalculus/?p=13852

A YouTube element has been excluded from this version of the text. You can view it online here:
https://courses.lumenlearning.com/precalculus/?p=13852

Solving a polynomial inequality not in factored form – factor a trinomial

Use the Intermediate Value Theorem

In some situations, we may know two points on a graph but not the zeros. If those two points are on
opposite sides of the x-axis, we can confirm that there is a zero between them. Consider a polynomial
function f whose graph is smooth and continuous. The Intermediate Value Theorem states that for two
numbers a and b in the domain of f, if a < b and , then the function f takes on every value
between  and .

We can apply this theorem to a special case that is useful in graphing polynomial functions. If a point on the
graph of a continuous function f at  lies above the x-axis and another point at  lies below the x-
axis, there must exist a third point between  and  where the graph crosses the x-axis. Call this
point . This means that we are assured there is a solution c where .

In other words, the Intermediate Value Theorem tells us that when a polynomial function changes from a
negative value to a positive value, the function must cross the x-axis. Figure 17 shows that there is a zero
between a and b.
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A GENERAL NOTE: INTERMEDIATE VALUE THEOREM

Let f be a polynomial function. The Intermediate Value Theorem states that if  and  have
opposite signs, then there exists at least one value c between a and b for which .

EXAMPLE 12: USING THE INTERMEDIATE VALUE THEOREM

Show that the function  has at least two real zeros between  and .
Answer
As a start, evaluate  at the integer values .

x 1 2 3 4

f (x) 5 0 –3 2

We see that one zero occurs at . Also, since  is negative and  is positive, by the
Intermediate Value Theorem, there must be at least one real zero between 3 and 4.
We have shown that there are at least two real zeros between  and .

Analysis of the Solution

Figure 17. Using the Intermediate Value Theorem to show there exists a zero.
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We can also see in Figure 18 that there are two real zeros between  and .

Figure 18

Try It

Show that the function  has at least one real zero between  and .
Answer
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A GENERAL NOTE: FACTORED FORM OF POLYNOMIALS

If a polynomial of lowest degree p has horizontal intercepts at , then the polynomial can
be written in the factored form:  where the powers  on
each factor can be determined by the behavior of the graph at the corresponding intercept, and the stretch
factor a can be determined given a value of the function other than the x-intercept.

HOW TO: GIVEN A GRAPH OF A POLYNOMIAL FUNCTION, WRITE A
FORMULA FOR THE FUNCTION.

1. Identify the x-intercepts of the graph to find the factors of the polynomial.
2. Examine the behavior of the graph at the x-intercepts to determine the multiplicity of each factor.
3. Find the polynomial of least degree containing all the factors found in the previous step.
4. Use any other point on the graph (the y-intercept may be easiest) to determine the stretch factor.

EXAMPLE 13: WRITING A FORMULA FOR A POLYNOMIAL FUNCTION
FROM THE GRAPH

Write a formula for the polynomial function shown in Figure 19.

Because f is a polynomial function and since  is negative and  is positive, there is at least one
real zero between  and .

Writing Formulas for Polynomial Functions

Now that we know how to find zeros of polynomial functions, we can use them to write formulas based on
graphs. Because a polynomial function written in factored form will have an x-intercept where each factor
is equal to zero, we can form a function that will pass through a set of x-intercepts by introducing a
corresponding set of factors.
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Figure 19

Answer
his graph has three x-intercepts: x = –3, 2, and 5. The y-intercept is located at (0, 2). At x = –3 and x =
5, the graph passes through the axis linearly, suggesting the corresponding factors of the polynomial will
be linear. At x = 2, the graph bounces at the intercept, suggesting the corresponding factor of the
polynomial will be second degree (quadratic). Together, this gives us

To determine the stretch factor, we utilize another point on the graph. We will use the y-intercept (0, –2), to
solve for a.

The graphed polynomial appears to represent the function .

Try It

Given the graph in Figure 20, write a formula for the function shown.
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An interactive or media element has been excluded from this version of the text. You can view it online
here: https://courses.lumenlearning.com/precalculus/?p=13852

TRY IT

Figure 20

Answer

Using Local and Global Extrema

With quadratics, we were able to algebraically find the maximum or minimum value of the function by finding
the vertex. For general polynomials, finding these turning points is not possible without more advanced
techniques from calculus. Even then, finding where extrema occur can still be algebraically challenging. For
now, we will estimate the locations of turning points using technology to generate a graph.

Each turning point represents a local minimum or maximum. Sometimes, a turning point is the highest or
lowest point on the entire graph. In these cases, we say that the turning point is a global maximum or a
global minimum. These are also referred to as the absolute maximum and absolute minimum values of the
function.

Local and Global Extrema

A local maximum or local minimum at x = a (sometimes called the relative maximum or minimum,
respectively) is the output at the highest or lowest point on the graph in an open interval around x = a. If a
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Q & A

Do all polynomial functions have a global minimum or maximum?
No. Only polynomial functions of even degree have a global minimum or maximum. For example, 

 has neither a global maximum nor a global minimum.

function has a local maximum at a, then  for all x in an open interval around x = a. If a function
has a local minimum at a, then  for all x in an open interval around x = a.

A global maximum or global minimum is the output at the highest or lowest point of the function. If a
function has a global maximum at a, then  for all x. If a function has a global minimum at a,
then  for all x.

We can see the difference between local and global extrema in Figure 21.

Figure 21
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EXAMPLE 14: USING LOCAL EXTREMA TO SOLVE APPLICATIONS

An open-top box is to be constructed by cutting out squares from each corner of a 14 cm by 20 cm sheet
of plastic then folding up the sides. Find the size of squares that should be cut out to maximize the volume
enclosed by the box.
Answer
We will start this problem by drawing a picture like Figure 22, labeling the width of the cut-out squares with
a variable, w.

Figure 22

Notice that after a square is cut out from each end, it leaves a  cm by  cm rectangle
for the base of the box, and the box will be w cm tall. This gives the volume
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Figure 23

Notice, since the factors are w,  and , the three zeros are 10, 7, and 0, respectively.
Because a height of 0 cm is not reasonable, we consider the only the zeros 10 and 7. The shortest side is
14 and we are cutting off two squares, so values w may take on are greater than zero or less than 7. This
means we will restrict the domain of this function to . Using technology to sketch the graph of 

 on this reasonable domain, we get a graph like Figure 24. We can use this graph to estimate the
maximum value for the volume, restricted to values for w that are reasonable for this problem—values
from 0 to 7.
From this graph, we turn our focus to only the portion on the reasonable domain, . We can estimate
the maximum value to be around 340 cubic cm, which occurs when the squares are about 2.75 cm on
each side. To improve this estimate, we could use advanced features of our technology, if available, or
simply change our window to zoom in on our graph to produce the graph in Figure 24.
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Figure 24

From this zoomed-in view, we can refine our estimate for the maximum volume to about 339 cubic cm,
when the squares measure approximately 2.7 cm on each side.

Try It

Use technology to find the maximum and minimum values on the interval  of the function 
.

Answer

The minimum occurs at approximately the point , and the maximum occurs at approximately the
point .

Key Concepts

Polynomial functions of degree 2 or more are smooth, continuous functions.
To find the zeros of a polynomial function, if it can be factored, factor the function and set each factor
equal to zero.
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global maximum

global minimum

Intermediate Value Theorem

multiplicity

Another way to find the x-intercepts of a polynomial function is to graph the function and identify the
points at which the graph crosses the x-axis.
The multiplicity of a zero determines how the graph behaves at the x-intercepts.
The graph of a polynomial will cross the horizontal axis at a zero with odd multiplicity.
The graph of a polynomial will touch the horizontal axis at a zero with even multiplicity.
The end behavior of a polynomial function depends on the leading term.
The graph of a polynomial function changes direction at its turning points.
A polynomial function of degree n has at most n – 1 turning points.
To graph polynomial functions, find the zeros and their multiplicities, determine the end behavior, and
ensure that the final graph has at most n – 1 turning points.
Graphing a polynomial function helps to estimate local and global extremas.
The Intermediate Value Theorem tells us that if  have opposite signs, then there exists at
least one value c between a and b for which .

Glossary

highest turning point on a graph;  where  for all x.

lowest turning point on a graph;  where 
for all x.

for two numbers a and b in the domain of f, if  and , then
the function f takes on every value between  and ; specifically, when a polynomial function
changes from a negative value to a positive value, the function must cross the x-axis

the number of times a given factor appears in the factored form of the equation of a polynomial;
if a polynomial contains a factor of the form ,  is a zero of multiplicity p.
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DIVIDING POLYNOMIALS

Learning Outcomes

Use long division to divide polynomials.
Use synthetic division to divide polynomials.

The exterior of the Lincoln Memorial in Washington, D.C., is a large rectangular solid with length 61.5 meters
(m), width 40 m, and height 30 m. (Note: National Park Service. "Lincoln Memorial Building Statistics."
http://www.nps.gov/linc/historyculture/lincoln-memorial-building-statistics.htm. Accessed 4/3/2014) We can
easily find the volume using elementary geometry.

So the volume is 73,800 cubic meters . Suppose we knew the volume, length, and width. We could
divide to find the height.
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Figure 1. Lincoln Memorial, Washington, D.C. (credit: Ron Cogswell, Flickr)

As we can confirm from the dimensions above,
the height is 30 m. We can use similar methods to
find any of the missing dimensions. We can also
use the same method if any or all of the
measurements contain variable expressions. For
example, suppose the volume of a rectangular
solid is given by the polynomial 

. The length of the solid
is given by 3x; the width is given by . To find
the height of the solid, we can use polynomial division, which is the focus of this section.

Use long division to divide polynomials

We are familiar with the long division algorithm for ordinary arithmetic. We begin by dividing into the digits
of the dividend that have the greatest place value. We divide, multiply, subtract, include the digit in the next
place value position, and repeat. For example, let’s divide 178 by 3 using long division.

Another way to look at the solution is as a sum of parts. This should look familiar, since it is the same
method used to check division in elementary arithmetic.

We call this the Division Algorithm and will discuss it more formally after looking at an example.

Division of polynomials that contain more than one term has similarities to long division of whole numbers.
We can write a polynomial dividend as the product of the divisor and the quotient added to the remainder.
The terms of the polynomial division correspond to the digits (and place values) of the whole number
division. This method allows us to divide two polynomials. For example, if we were to divide 

 by  using the long division algorithm, it would look like this:
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A GENERAL NOTE: THE DIVISION ALGORITHM

The Division Algorithm states that, given a polynomial dividend  and a non-zero polynomial divisor 
 where the degree of  is less than or equal to the degree of , there exist unique polynomials
 and  such that

 is the quotient and  is the remainder. The remainder is either equal to zero or has degree strictly
less than .
If , then  divides evenly into . This means that, in this case, both  and  are
factors of .

HOW TO: GIVEN A POLYNOMIAL AND A BINOMIAL, USE LONG DIVISION
TO DIVIDE THE POLYNOMIAL BY THE BINOMIAL.

1. Set up the division problem.
2. Determine the first term of the quotient by dividing the leading term of the dividend by the leading term

of the divisor.

We have found

or

We can identify the dividend, the divisor, the quotient, and the remainder.

Writing the result in this manner illustrates the Division Algorithm.
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3. Multiply the answer by the divisor and write it below the like terms of the dividend.
4. Subtract the bottom binomial from the top binomial.
5. Bring down the next term of the dividend.
6. Repeat steps 2–5 until reaching the last term of the dividend.
7. If the remainder is non-zero, express as a fraction using the divisor as the denominator.

EXAMPLE 1: USING LONG DIVISION TO DIVIDE A SECOND-DEGREE
POLYNOMIAL

Divide  by .
Answer

The quotient is . The remainder is 0. We write the result as

or

Analysis of the Solution

This division problem had a remainder of 0. This tells us that the dividend is divided evenly by the divisor,
and that the divisor is a factor of the dividend.

EXAMPLE 2: USING LONG DIVISION TO DIVIDE A THIRD-DEGREE
POLYNOMIAL

Divide  by .
Answer
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There is a remainder of 1. We can express the result as:

Analysis of the Solution

We can check our work by using the Division Algorithm to rewrite the solution. Then multiply.

Notice, as we write our result,
the dividend is 

the divisor is 
the quotient is 
the remainder is 1

An interactive or media element has been excluded from this version of the text. You can view it online
here: https://courses.lumenlearning.com/precalculus/?p=13864

TRY IT

Try It

Divide  by .
Answer

Use synthetic division to divide polynomials

As we’ve seen, long division of polynomials can involve many steps and be quite cumbersome. Synthetic
division is a shorthand method of dividing polynomials for the special case of dividing by a linear factor
whose leading coefficient is 1.

To illustrate the process, recall the example at the beginning of the section.

Divide  by  using the long division algorithm.
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A GENERAL NOTE: SYNTHETIC DIVISION

Synthetic division is a shortcut that can be used when the divisor is a binomial in the form x – k. In
synthetic division, only the coefficients are used in the division process.

HOW TO: GIVEN TWO POLYNOMIALS, USE SYNTHETIC DIVISION TO
DIVIDE.

1. Write k for the divisor.
2. Write the coefficients of the dividend.
3. Bring the lead coefficient down.
4. Multiply the lead coefficient by k. Write the product in the next column.
5. Add the terms of the second column.
6. Multiply the result by k. Write the product in the next column.
7. Repeat steps 5 and 6 for the remaining columns.
8. Use the bottom numbers to write the quotient. The number in the last column is the remainder and

has degree 0, the next number from the right has degree 1, the next number from the right has

The final form of the process looked like this:

There is a lot of repetition in the table. If we don’t write the variables but, instead, line up their coefficients in
columns under the division sign and also eliminate the partial products, we already have a simpler version of
the entire problem.

Synthetic division carries this simplification even a few more steps. Collapse the table by moving each of the
rows up to fill any vacant spots. Also, instead of dividing by 2, as we would in division of whole numbers,
then multiplying and subtracting the middle product, we change the sign of the “divisor” to –2, multiply and
add. The process starts by bringing down the leading coefficient.

We then multiply it by the “divisor” and add, repeating this process column by column, until there are no
entries left. The bottom row represents the coefficients of the quotient; the last entry of the bottom row is the
remainder. In this case, the quotient is  and the remainder is –31. The process will be made
more clear in Example 3.
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degree 2, and so on.

EXAMPLE 3: USING SYNTHETIC DIVISION TO DIVIDE A SECOND-DEGREE
POLYNOMIAL

Use synthetic division to divide  by .
Answer
Begin by setting up the synthetic division. Write k and the coefficients.

Bring down the lead coefficient. Multiply the lead coefficient by k.

Continue by adding the numbers in the second column. Multiply the resulting number by k. Write the result
in the next column. Then add the numbers in the third column.

The result is . The remainder is 0. So  is a factor of the original polynomial.

Analysis of the Solution

Just as with long division, we can check our work by multiplying the quotient by the divisor and adding the
remainder.

EXAMPLE 4: USING SYNTHETIC DIVISION TO DIVIDE A THIRD-DEGREE
POLYNOMIAL

Use synthetic division to divide  by .
Answer
The binomial divisor is  so . Add each column, multiply the result by –2, and repeat until the
last column is reached.

The result is . The remainder is 0. Thus,  is a factor of .

Analysis of the Solution

The graph of the polynomial function  in Figure 2 shows a zero at 
. This confirms that  is a factor of .
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Figure 2

EXAMPLE 5: USING SYNTHETIC DIVISION TO DIVIDE A FOURTH-DEGREE
POLYNOMIAL

Use synthetic division to divide  by .
Answer
Notice there is no x-term. We will use a zero as the coefficient for that term.

The result is .

An interactive or media element has been excluded from this version of the text. You can view it online
here: https://courses.lumenlearning.com/precalculus/?p=13864

TRY IT

EXAMPLE 6: USING POLYNOMIAL DIVISION IN AN APPLICATION
PROBLEM

The volume of a rectangular solid is given by the polynomial . The length of the
solid is given by 3x and the width is given by x – 2. Find the height of the solid.
Answer
There are a few ways to approach this problem. We need to divide the expression for the volume of the
solid by the expressions for the length and width. Let us create a sketch.

Try It

Use synthetic division to divide  by .
Answer

Use polynomial division to solve application problems

Polynomial division can be used to solve a variety of application problems involving expressions for area
and volume. We looked at an application at the beginning of this section. Now we will solve that problem in
the following example.
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Figure 3

We can now write an equation by substituting the known values into the formula for the volume of a
rectangular solid.

To solve for h, first divide both sides by 3x.

Now solve for h using synthetic division.

The quotient is  and the remainder is 0. The height of the solid is .

Try It

The area of a rectangle is given by . The width of the rectangle is given by x +
6. Find an expression for the length of the rectangle.
Answer

Key Equations
Division Algorithm  where 

Key Concepts
Polynomial long division can be used to divide a polynomial by any polynomial with equal or lower
degree.
The Division Algorithm tells us that a polynomial dividend can be written as the product of the divisor
and the quotient added to the remainder.
Synthetic division is a shortcut that can be used to divide a polynomial by a binomial in the form x – k.
Polynomial division can be used to solve application problems, including area and volume.
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Division Algorithm

synthetic division

Glossary

given a polynomial dividend  and a non-zero polynomial divisor  where the
degree of  is less than or equal to the degree of , there exist unique polynomials  and 

 such that  where  is the quotient and  is the remainder. The
remainder is either equal to zero or has degree strictly less than .

a shortcut method that can be used to divide a polynomial by a binomial of the form x – k
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ZEROS OF POLYNOMIAL FUNCTIONS

Learning Outcomes

Evaluate a polynomial using the Remainder Theorem.
Use the Factor Theorem to solve a polynomial equation.
Use the Rational Zero Theorem to find rational zeros.
Find zeros of a polynomial function.
Use the Linear Factorization Theorem to find polynomials with given zeros.
Use Descartes’ Rule of Signs.
Solve real-world applications of polynomial equations

A new bakery offers decorated sheet cakes for children’s birthday parties and other special occasions. The
bakery wants the volume of a small cake to be 351 cubic inches. The cake is in the shape of a rectangular
solid. They want the length of the cake to be four inches longer than the width of the cake and the height of
the cake to be one-third of the width. What should the dimensions of the cake pan be?

This problem can be solved by writing a cubic function and solving a cubic equation for the volume of the
cake. In this section, we will discuss a variety of tools for writing polynomial functions and solving polynomial
equations.

Evaluate a polynomial using the Remainder Theorem

In the last section, we learned how to divide polynomials. We can now use polynomial division to evaluate
polynomials using the Remainder Theorem. If the polynomial is divided by x – k, the remainder may be
found quickly by evaluating the polynomial function at k, that is, f(k) Let’s walk through the proof of the
theorem.

Recall that the Division Algorithm states that, given a polynomial dividend f(x) and a non-zero polynomial
divisor d(x) where the degree of d(x) is less than or equal to the degree of f(x), there exist unique
polynomials q(x) and r(x) such that

If the divisor, d(x), is x – k, this takes the form
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A GENERAL NOTE: THE REMAINDER THEOREM

If a polynomial  is divided by x – k, then the remainder is the value .

HOW TO: GIVEN A POLYNOMIAL FUNCTION , EVALUATE  AT 
USING THE REMAINDER THEOREM.

1. Use synthetic division to divide the polynomial by .
2. The remainder is the value .

EXAMPLE 1: USING THE REMAINDER THEOREM TO EVALUATE A
POLYNOMIAL

Use the Remainder Theorem to evaluate  at .
Answer
To find the remainder using the Remainder Theorem, use synthetic division to divide the polynomial by 

.

The remainder is 25. Therefore, .

Analysis of the Solution

We can check our answer by evaluating .

Since the divisor x – k is linear, the remainder will be a constant, r. And, if we evaluate this for x = k, we have

In other words, f(k) is the remainder obtained by dividing f(x) by x – k.

Try It

Use the Remainder Theorem to evaluate 
at .
Answer

 Use the Factor Theorem to solve a polynomial equation
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A GENERAL NOTE: THE FACTOR THEOREM

According to the Factor Theorem, k is a zero of  if and only if  is a factor of .

HOW TO: GIVEN A FACTOR AND A THIRD-DEGREE POLYNOMIAL, USE
THE FACTOR THEOREM TO FACTOR THE POLYNOMIAL.

1. Use synthetic division to divide the polynomial by .
2. Confirm that the remainder is 0.
3. Write the polynomial as the product of  and the quadratic quotient.
4. If possible, factor the quadratic.
5. Write the polynomial as the product of factors.

EXAMPLE 2: USING THE FACTOR THEOREM TO SOLVE A POLYNOMIAL
EQUATION

Show that  is a factor of . Find the remaining factors. Use the factors to
determine the zeros of the polynomial.
Answer
We can use synthetic division to show that  is a factor of the polynomial.

The remainder is zero, so  is a factor of the polynomial. We can use the Division Algorithm to write
the polynomial as the product of the divisor and the quotient:

We can factor the quadratic factor to write the polynomial as

The Factor Theorem is another theorem that helps us analyze polynomial equations. It tells us how the
zeros of a polynomial are related to the factors. Recall that the Division Algorithm tells us

.

If k is a zero, then the remainder r is  and  or .

Notice, written in this form, x – k is a factor of . We can conclude if k is a zero of , then  is a
factor of .

Similarly, if  is a factor of , then the remainder of the Division Algorithm 
 is 0. This tells us that k is a zero.

This pair of implications is the Factor Theorem. As we will soon see, a polynomial of degree n in the
complex number system will have n zeros. We can use the Factor Theorem to completely factor a
polynomial into the product of n factors. Once the polynomial has been completely factored, we can easily
determine the zeros of the polynomial.
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By the Factor Theorem, the zeros of  are –2, 3, and 5.

An interactive or media element has been excluded from this version of the text. You can view it online
here: https://courses.lumenlearning.com/precalculus/?p=13872

TRY IT

A GENERAL NOTE: THE RATIONAL ZERO THEOREM

The Rational Zero Theorem states that, if the polynomial 
has integer coefficients, then every rational zero of  has the form  where p is a factor of the
constant term  and q is a factor of the leading coefficient .
When the leading coefficient is 1, the possible rational zeros are the factors of the constant term.

Try It

Use the Factor Theorem to find the zeros of  given that  is a factor of
the polynomial.
Answer

The zeros are 2, –2, and –4.

Use the Rational Zero Theorem to �nd rational zeros

Another use for the Remainder Theorem is to test whether a rational number is a zero for a given
polynomial. But first we need a pool of rational numbers to test. The Rational Zero Theorem helps us to
narrow down the number of possible rational zeros using the ratio of the factors of the constant term and
factors of the leading coefficient of the polynomial

Consider a quadratic function with two zeros,  and .

By the Factor Theorem, these zeros have factors associated with them. Let us set each factor equal to 0,
and then construct the original quadratic function absent its stretching factor.

Notice that two of the factors of the constant term, 6, are the two numerators from the original rational roots:
2 and 3. Similarly, two of the factors from the leading coefficient, 20, are the two denominators from the
original rational roots: 5 and 4.

We can infer that the numerators of the rational roots will always be factors of the constant term and the
denominators will be factors of the leading coefficient. This is the essence of the Rational Zero Theorem; it is
a means to give us a pool of possible rational zeros.

352



HOW TO: GIVEN A POLYNOMIAL FUNCTION , USE THE RATIONAL
ZERO THEOREM TO FIND RATIONAL ZEROS.

1. Determine all factors of the constant term and all factors of the leading coefficient.
2. Determine all possible values of , where p is a factor of the constant term and q is a factor of the

leading coefficient. Be sure to include both positive and negative candidates.
3. Determine which possible zeros are actual zeros by evaluating each case of .

EXAMPLE 3: LISTING ALL POSSIBLE RATIONAL ZEROS

List all possible rational zeros of .
Answer
The only possible rational zeros of  are the quotients of the factors of the last term, –4, and the
factors of the leading coefficient, 2.
The constant term is –4; the factors of –4 are .
The leading coefficient is 2; the factors of 2 are .
If any of the four real zeros are rational zeros, then they will be of one of the following factors of –4 divided
by one of the factors of 2.

Note that  and , which have already been listed. So we can shorten our list.

EXAMPLE 4: USING THE RATIONAL ZERO THEOREM TO FIND RATIONAL
ZEROS

Use the Rational Zero Theorem to find the rational zeros of .
Answer
The Rational Zero Theorem tells us that if  is a zero of , then p is a factor of 1 and q is a factor of 2.

The factors of 1 are  and the factors of 2 are  and . The possible values for  are  and .
These are the possible rational zeros for the function. We can determine which of the possible zeros are
actual zeros by substituting these values for x in .

Of those,  are not zeros of . 1 is the only rational zero of .
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An interactive or media element has been excluded from this version of the text. You can view it online
here: https://courses.lumenlearning.com/precalculus/?p=13872

TRY IT

HOW TO: GIVEN A POLYNOMIAL FUNCTION , USE SYNTHETIC DIVISION
TO FIND ITS ZEROS.

1. Use the Rational Zero Theorem to list all possible rational zeros of the function.
2. Use synthetic division to evaluate a given possible zero by synthetically dividing the candidate into the

polynomial. If the remainder is 0, the candidate is a zero. If the remainder is not zero, discard the
candidate.

3. Repeat step two using the quotient found with synthetic division. If possible, continue until the quotient
is a quadratic.

4. Find the zeros of the quadratic function. Two possible methods for solving quadratics are factoring
and using the quadratic formula.

EXAMPLE 5: FINDING THE ZEROS OF A POLYNOMIAL FUNCTION WITH
REPEATED REAL ZEROS

Find the zeros of .
Answer
The Rational Zero Theorem tells us that if  is a zero of , then p is a factor of –1 and q is a factor of
4.

The factors of –1 are  and the factors of 4 are , and . The possible values for  are ,
and .
These are the possible rational zeros for the function. We will use synthetic division to evaluate each
possible zero until we find one that gives a remainder of 0. Let’s begin with 1.

Try It

Use the Rational Zero Theorem to find the rational zeros of .
Answer

There are no rational zeros.

Find zeros of a polynomial function

The Rational Zero Theorem helps us to narrow down the list of possible rational zeros for a polynomial
function. Once we have done this, we can use synthetic division repeatedly to determine all of the zeros of a
polynomial function.
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Dividing by  gives a remainder of 0, so 1 is a zero of the function. The polynomial can be written as
.

The quadratic is a perfect square.  can be written as
.

We already know that 1 is a zero. The other zero will have a multiplicity of 2 because the factor is squared.
To find the other zero, we can set the factor equal to 0.

The zeros of the function are 1 and  with multiplicity 2.

Analysis of the Solution

Look at the graph of the function f in Figure 1. Notice, at , the graph bounces off the x-axis,
indicating the even multiplicity (2,4,6…) for the zero –0.5. At , the graph crosses the x-axis,
indicating the odd multiplicity (1,3,5…) for the zero .

Figure 1

Use the Fundamental Theorem of Algebra

Now that we can find rational zeros for a polynomial function, we will look at a theorem that discusses the
number of complex zeros of a polynomial function. The Fundamental Theorem of Algebra tells us that
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A GENERAL NOTE: THE FUNDAMENTAL THEOREM OF ALGEBRA STATES
THAT, IF F(X) IS A POLYNOMIAL OF DEGREE N > 0, THEN F(X) HAS AT

LEAST ONE COMPLEX ZERO.

We can use this theorem to argue that, if  is a polynomial of degree , and a is a non-zero real
number, then  has exactly n linear factors

where  are complex numbers. Therefore,  has n roots if we allow for multiplicities.

Q & A

Does every polynomial have at least one imaginary zero?
No. A complex number is not necessarily imaginary. Real numbers are also complex numbers.

EXAMPLE 6: FINDING THE ZEROS OF A POLYNOMIAL FUNCTION WITH
COMPLEX ZEROS

Find the zeros of .
Answer
The Rational Zero Theorem tells us that if  is a zero of , then p is a factor of 3 and q is a factor of 3.

The factors of 3 are  and . The possible values for , and therefore the possible rational zeros for
the function, are . We will use synthetic division to evaluate each possible zero until we
find one that gives a remainder of 0. Let’s begin with –3.

Dividing by  gives a remainder of 0, so –3 is a zero of the function. The polynomial can be written
as

We can then set the quadratic equal to 0 and solve to find the other zeros of the function.

every polynomial function has at least one complex zero. This theorem forms the foundation for solving
polynomial equations.

Suppose f is a polynomial function of degree four, and . The Fundamental Theorem of Algebra
states that there is at least one complex solution, call it . By the Factor Theorem, we can write  as a
product of  and a polynomial quotient. Since  is linear, the polynomial quotient will be of degree
three. Now we apply the Fundamental Theorem of Algebra to the third-degree polynomial quotient. It will
have at least one complex zero, call it . So we can write the polynomial quotient as a product of 
and a new polynomial quotient of degree two. Continue to apply the Fundamental Theorem of Algebra until
all of the zeros are found. There will be four of them and each one will yield a factor of .
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The zeros of  are –3 and .

Analysis of the Solution

Look at the graph of the function f. Notice that, at , the graph crosses the x-axis, indicating an odd
multiplicity (1) for the zero . Also note the presence of the two turning points. This means that,
since there is a 3rd degree polynomial, we are looking at the maximum number of turning points. So, the
end behavior of increasing without bound to the right and decreasing without bound to the left will
continue. Thus, all the x-intercepts for the function are shown. So either the multiplicity of  is 1 and
there are two complex solutions, which is what we found, or the multiplicity at  is three. Either way,
our result is correct.

Figure 2

TRY IT

Try It

Find the zeros of .
Answer

The zeros are 
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An interactive or media element has been excluded from this version of the text. You can view it online
here: https://courses.lumenlearning.com/precalculus/?p=13872

A GENERAL NOTE: COMPLEX CONJUGATE THEOREM

According to the Linear Factorization Theorem, a polynomial function will have the same number of
factors as its degree, and each factor will be in the form , where c is a complex number.
If the polynomial function f has real coefficients and a complex zero in the form , then the complex
conjugate of the zero, , is also a zero.

HOW TO: GIVEN THE ZEROS OF A POLYNOMIAL FUNCTION  AND A
POINT  ON THE GRAPH OF , USE THE LINEAR FACTORIZATION

THEOREM TO FIND THE POLYNOMIAL FUNCTION.

1. Use the zeros to construct the linear factors of the polynomial.
2. Multiply the linear factors to expand the polynomial.
3. Substitute  into the function to determine the leading coefficient.
4. Simplify.

EXAMPLE 7: USING THE LINEAR FACTORIZATION THEOREM TO FIND A
POLYNOMIAL WITH GIVEN ZEROS

Find a fourth degree polynomial with real coefficients that has zeros of –3, 2, i, such that .
Answer
Because  is a zero, by the Complex Conjugate Theorem  is also a zero. The polynomial must
have factors of , and . Since we are looking for a degree 4 polynomial,
and now have four zeros, we have all four factors. Let’s begin by multiplying these factors.

Use the Linear Factorization Theorem to �nd polynomials with
given zeros

A vital implication of the Fundamental Theorem of Algebra, as we stated above, is that a polynomial
function of degree n will have n zeros in the set of complex numbers, if we allow for multiplicities. This
means that we can factor the polynomial function into n factors. The Linear Factorization Theorem tells us
that a polynomial function will have the same number of factors as its degree, and that each factor will be in
the form (x – c), where c is a complex number.

Let f be a polynomial function with real coefficients, and suppose , is a zero of . Then, by
the Factor Theorem,  is a factor of . For f to have real coefficients,  must also
be a factor of . This is true because any factor other than , when multiplied by 

, will leave imaginary components in the product. Only multiplication with conjugate pairs will
eliminate the imaginary parts and result in real coefficients. In other words, if a polynomial function f with real
coefficients has a complex zero , then the complex conjugate  must also be a zero of . This
is called the Complex Conjugate Theorem.
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We need to find a to ensure . Substitute  and 
into .

So the polynomial function is

or

Analysis of the Solution

We found that both i and –i were zeros, but only one of these zeros needed to be given. If i is a zero of a
polynomial with real coefficients, then –i must also be a zero of the polynomial because –i is the complex
conjugate of i.

Q & A

If 2 + 3i were given as a zero of a polynomial with real coefficients, would 2 – 3i also need to be a
zero?
Yes. When any complex number with an imaginary component is given as a zero of a polynomial with real
coefficients, the conjugate must also be a zero of the polynomial.

An interactive or media element has been excluded from this version of the text. You can view it online
here: https://courses.lumenlearning.com/precalculus/?p=13872

TRY IT

Try It

Find a third degree polynomial with real coefficients that has zeros of 5 and –2i such that .
Answer

Use Descartes’ Rule of Signs

There is a straightforward way to determine the possible numbers of positive and negative real zeros for any
polynomial function. If the polynomial is written in descending order, Descartes’ Rule of Signs tells us of a
relationship between the number of sign changes in  and the number of positive real zeros. For
example, the polynomial function below has one sign change.

This tells us that the function must have 1 positive real zero.

There is a similar relationship between the number of sign changes in  and the number of negative
real zeros.
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A GENERAL NOTE: DESCARTES’ RULE OF SIGNS

According to Descartes’ Rule of Signs, if we let  be a
polynomial function with real coefficients:

The number of positive real zeros is either equal to the number of sign changes of  or is less
than the number of sign changes by an even integer.
The number of negative real zeros is either equal to the number of sign changes of  or is less
than the number of sign changes by an even integer.

EXAMPLE 7: USING DESCARTES’ RULE OF SIGNS

Use Descartes’ Rule of Signs to determine the possible numbers of positive and negative real zeros for 
.

Answer
Begin by determining the number of sign changes.

There are two sign changes, so there are either 2 or 0 positive real roots. Next, we examine  to
determine the number of negative real roots.

Again, there are two sign changes, so there are either 2 or 0 negative real roots.
There are four possibilities, as we can see below.

Positive Real
Zeros

Negative Real
Zeros

Complex
Zeros

Total
Zeros

2 2 0 4

2 0 2 4

0 2 2 4

0 0 4 4

Analysis of the Solution

We can confirm the numbers of positive and negative real roots by examining a graph of the function. We
can see from the graph in Figure 3 that the function has 0 positive real roots and 2 negative real roots.

In this case,  has 3 sign changes. This tells us that  could have 3 or 1 negative real zeros.
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Figure 3

EXAMPLE 8: SOLVING POLYNOMIAL EQUATIONS

A new bakery offers decorated sheet cakes for children’s birthday parties and other special occasions.
The bakery wants the volume of a small cake to be 351 cubic inches. The cake is in the shape of a

Try It

Use Descartes’ Rule of Signs to determine the maximum possible numbers of positive and negative real
zeros for . Use a graph to verify the numbers of positive and
negative real zeros for the function.
Answer

There must be 4, 2, or 0 positive real roots and 0 negative real roots. The graph shows that there are 2
positive real zeros and 0 negative real zeros.

 Solve real-world applications of polynomial equations

We have now introduced a variety of tools for solving polynomial equations. Let’s use these tools to solve
the bakery problem from the beginning of the section.

361



rectangular solid. They want the length of the cake to be four inches longer than the width of the cake and
the height of the cake to be one-third of the width. What should the dimensions of the cake pan be?
Answer
Begin by writing an equation for the volume of the cake. The volume of a rectangular solid is given by 

. We were given that the length must be four inches longer than the width, so we can express the
length of the cake as . We were given that the height of the cake is one-third of the width, so we
can express the height of the cake as . Let’s write the volume of the cake in terms of width of the
cake.

Substitute the given volume into this equation.

Descartes’ rule of signs tells us there is one positive solution. The Rational Zero Theorem tells us that the
possible rational zeros are , and . We can use synthetic
division to test these possible zeros. Only positive numbers make sense as dimensions for a cake, so we
need not test any negative values. Let’s begin by testing values that make the most sense as dimensions
for a small sheet cake. Use synthetic division to check .

Since 1 is not a solution, we will check .

Since 3 is not a solution either, we will test .

Synthetic division gives a remainder of 0, so 9 is a solution to the equation. We can use the relationships
between the width and the other dimensions to determine the length and height of the sheet cake pan.

The sheet cake pan should have dimensions 13 inches by 9 inches by 3 inches.

Try It

A shipping container in the shape of a rectangular solid must have a volume of 84 cubic meters. The client
tells the manufacturer that, because of the contents, the length of the container must be one meter longer
than the width, and the height must be one meter greater than twice the width. What should the
dimensions of the container be?
Answer

3 meters by 4 meters by 7 meters
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Descartes’ Rule of Signs

Factor Theorem

Fundamental Theorem of Algebra

Linear Factorization Theorem

Rational Zero Theorem

Remainder Theorem

Key Concepts

To find , determine the remainder of the polynomial  when it is divided by .
k is a zero of  if and only if  is a factor of .
Each rational zero of a polynomial function with integer coefficients will be equal to a factor of the
constant term divided by a factor of the leading coefficient.
When the leading coefficient is 1, the possible rational zeros are the factors of the constant term.
Synthetic division can be used to find the zeros of a polynomial function.
According to the Fundamental Theorem, every polynomial function has at least one complex zero.
Every polynomial function with degree greater than 0 has at least one complex zero.
Allowing for multiplicities, a polynomial function will have the same number of factors as its degree.
Each factor will be in the form , where c is a complex number.
The number of positive real zeros of a polynomial function is either the number of sign changes of the
function or less than the number of sign changes by an even integer.
The number of negative real zeros of a polynomial function is either the number of sign changes of 

 or less than the number of sign changes by an even integer.
Polynomial equations model many real-world scenarios. Solving the equations is easiest done by
synthetic division.

Glossary

a rule that determines the maximum possible numbers of positive and negative
real zeros based on the number of sign changes of  and 

k is a zero of polynomial function  if and only if  is a factor of 

a polynomial function with degree greater than 0 has at least one
complex zero

allowing for multiplicities, a polynomial function will have the same number
of factors as its degree, and each factor will be in the form , where c is a complex number

the possible rational zeros of a polynomial function have the form  where p is a
factor of the constant term and q is a factor of the leading coefficient.

if a polynomial  is divided by , then the remainder is equal to the value 
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RATIONAL FUNCTIONS

Learning Outcomes

Solve applied problems involving rational functions.
Find the domains of rational functions.
Identify vertical and horizontal asymptotes.
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Identify slant asymptotes.
Use arrow notation.
Graph rational functions.

Suppose we know that the cost of making a product is dependent on the number of items, x, produced. This
is given by the equation . If we want to know the average cost for
producing x items, we would divide the cost function by the number of items, x.

The average cost function, which yields the average cost per item for x items produced, is

Many other application problems require finding an average value in a similar way, giving us variables in the
denominator. Written without a variable in the denominator, this function will contain a negative integer
power.

In the last few sections, we have worked with polynomial functions, which are functions with non-negative
integers for exponents. In this section, we explore rational functions, which have variables in the
denominator.

Use arrow notation

We have seen the graphs of the basic reciprocal function and the squared reciprocal function from our
study of toolkit functions. Examine these graphs and notice some of their features.

Figure 1

Several things are apparent if we examine the graph of .

1. On the left branch of the graph, the curve approaches the x-axis .
2. As the graph approaches  from the left, the curve drops, but as we approach zero from the right,

the curve rises.
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3. Finally, on the right branch of the graph, the curves approaches the x-axis .

To summarize, we use arrow notation to show that x or  is approaching a particular value.

 

Arrow Notation

Symbol Meaning

x approaches a from the left (x <
a but close to a)

x approaches a from the right (x >
a but close to a)

x approaches infinity (x increases
without bound)

x approaches negative infinity
(x decreases without bound)

the output approaches infinity (the
output increases without bound)

the output approaches negative
infinity (the output decreases without
bound)

the output approaches a

Local Behavior of 

Let’s begin by looking at the reciprocal function, . We cannot divide by zero, which means the
function is undefined at ; so zero is not in the domain. As the input values approach zero from the left
side (becoming very small, negative values), the function values decrease without bound (in other words,
they approach negative infinity). We can see this behavior in the table below.

x –0.1 –0.01 –0.001 –0.0001

–10 –100 –1000 –10,000

We write in arrow notation

As the input values approach zero from the right side (becoming very small, positive values), the function
values increase without bound (approaching infinity). We can see this behavior in the table below.

x 0.1 0.01 0.001 0.0001

10 100 1000 10,000

We write in arrow notation

.
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Figure 2

This behavior creates a vertical asymptote, which is a vertical line that the graph approaches but never
crosses. In this case, the graph is approaching the vertical line x = 0 as the input becomes close to zero.
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A GENERAL NOTE: VERTICAL ASYMPTOTE

A vertical asymptote of a graph is a vertical line  where the graph tends toward positive or negative
infinity as the inputs approach a. We write

.

Figure 3

End Behavior of 

As the values of x approach infinity, the function values approach 0. As the values of x approach negative
infinity, the function values approach 0. Symbolically, using arrow notation

.
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Figure 4

Based on this overall behavior and the graph, we can see that the function approaches 0 but never actually
reaches 0; it seems to level off as the inputs become large. This behavior creates a horizontal asymptote,
a horizontal line that the graph approaches as the input increases or decreases without bound. In this case,
the graph is approaching the horizontal line .
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A GENERAL NOTE: HORIZONTAL ASYMPTOTE

A horizontal asymptote of a graph is a horizontal line  where the graph approaches the line as the
inputs increase or decrease without bound. We write

.

EXAMPLE 1: USING ARROW NOTATION

Use arrow notation to describe the end behavior and local behavior of the function graphed in Figure 6.

Figure 5
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Figure 6

Answer
Notice that the graph is showing a vertical asymptote at , which tells us that the function is undefined
at .

.
And as the inputs decrease without bound, the graph appears to be leveling off at output values of 4,
indicating a horizontal asymptote at . As the inputs increase without bound, the graph levels off at 4.

.

Try It

Use arrow notation to describe the end behavior and local behavior for the reciprocal squared function, 
.

Answer

End behavior: as ; Local behavior: as  (there are no x– or y-
intercepts)
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EXAMPLE 2: USING TRANSFORMATIONS TO GRAPH A RATIONAL
FUNCTION

Sketch a graph of the reciprocal function shifted two units to the left and up three units. Identify the
horizontal and vertical asymptotes of the graph, if any.
Answer
Shifting the graph left 2 and up 3 would result in the function

or equivalently, by giving the terms a common denominator,

The graph of the shifted function is displayed in Figure 7.

Figure 7

Notice that this function is undefined at , and the graph also is showing a vertical asymptote at 
.

.
As the inputs increase and decrease without bound, the graph appears to be leveling off at output values
of 3, indicating a horizontal asymptote at .

.

Analysis of the Solution

Notice that horizontal and vertical asymptotes are shifted left 2 and up 3 along with the function.

Try It
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A GENERAL NOTE: RATIONAL FUNCTION

A rational function is a function that can be written as the quotient of two polynomial functions 
.

EXAMPLE 3: SOLVING AN APPLIED PROBLEM INVOLVING A RATIONAL
FUNCTION

A large mixing tank currently contains 100 gallons of water into which 5 pounds of sugar have been mixed.
A tap will open pouring 10 gallons per minute of water into the tank at the same time sugar is poured into
the tank at a rate of 1 pound per minute. Find the concentration (pounds per gallon) of sugar in the tank
after 12 minutes. Is that a greater concentration than at the beginning?
Answer
Let t be the number of minutes since the tap opened. Since the water increases at 10 gallons per minute,
and the sugar increases at 1 pound per minute, these are constant rates of change. This tells us the
amount of water in the tank is changing linearly, as is the amount of sugar in the tank. We can write an
equation independently for each:

Sketch the graph, and find the horizontal and vertical asymptotes of the reciprocal squared function that
has been shifted right 3 units and down 4 units.
Answer

The function and the asymptotes are shifted 3 units right and 4 units down. As , and as 
.

The function is .

 Solve applied problems involving rational functions

In Example 2, we shifted a toolkit function in a way that resulted in the function . This is an
example of a rational function. A rational function is a function that can be written as the quotient of two
polynomial functions. Many real-world problems require us to find the ratio of two polynomial functions.
Problems involving rates and concentrations often involve rational functions.
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The concentration, C, will be the ratio of pounds of sugar to gallons of water

The concentration after 12 minutes is given by evaluating  at .

This means the concentration is 17 pounds of sugar to 220 gallons of water.
At the beginning, the concentration is

Since , the concentration is greater after 12 minutes than at the beginning.

Analysis of the Solution

To find the horizontal asymptote, divide the leading coefficient in the numerator by the leading coefficient
in the denominator:

Notice the horizontal asymptote is . This means the concentration, C, the ratio of pounds of sugar
to gallons of water, will approach 0.1 in the long term.

A GENERAL NOTE: DOMAIN OF A RATIONAL FUNCTION

The domain of a rational function includes all real numbers except those that cause the denominator to
equal zero.

HOW TO: GIVEN A RATIONAL FUNCTION, FIND THE DOMAIN.

1. Set the denominator equal to zero.

Try It

There are 1,200 freshmen and 1,500 sophomores at a prep rally at noon. After 12 p.m., 20 freshmen
arrive at the rally every five minutes while 15 sophomores leave the rally. Find the ratio of freshmen to
sophomores at 1 p.m.
Answer

 Find the domains of rational functions

A vertical asymptote represents a value at which a rational function is undefined, so that value is not in the
domain of the function. A rational function cannot have values in its domain that cause the denominator to
equal zero. In general, to find the domain of a rational function, we need to determine which inputs would
cause division by zero.
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2. Solve to find the x-values that cause the denominator to equal zero.
3. The domain is all real numbers except those found in Step 2.

EXAMPLE 4: FINDING THE DOMAIN OF A RATIONAL FUNCTION

Find the domain of .
Answer
Begin by setting the denominator equal to zero and solving.

The denominator is equal to zero when . The domain of the function is all real numbers except 
.

Analysis of the Solution

A graph of this function confirms that the function is not defined when .

Figure 8

There is a vertical asymptote at  and a hole in the graph at . We will discuss these types of
holes in greater detail later in this section.
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HOW TO: GIVEN A RATIONAL FUNCTION, IDENTIFY ANY VERTICAL
ASYMPTOTES OF ITS GRAPH.

1. Factor the numerator and denominator.
2. Note any restrictions in the domain of the function.
3. Reduce the expression by canceling common factors in the numerator and the denominator.
4. Note any values that cause the denominator to be zero in this simplified version. These are where the

vertical asymptotes occur.
5. Note any restrictions in the domain where asymptotes do not occur. These are removable

discontinuities.

EXAMPLE 5: IDENTIFYING VERTICAL ASYMPTOTES

Find the vertical asymptotes of the graph of .
Answer
First, factor the numerator and denominator.

To find the vertical asymptotes, we determine where this function will be undefined by setting the
denominator equal to zero:

Neither  nor  are zeros of the numerator, so the two values indicate two vertical asymptotes.
Figure 9 confirms the location of the two vertical asymptotes.

Try It

Find the domain of .
Answer

The domain is all real numbers except  and .

 Identify vertical asymptotes

By looking at the graph of a rational function, we can investigate its local behavior and easily see whether
there are asymptotes. We may even be able to approximate their location. Even without the graph, however,
we can still determine whether a given rational function has any asymptotes, and calculate their location.

Vertical Asymptotes

The vertical asymptotes of a rational function may be found by examining the factors of the denominator that
are not common to the factors in the numerator. Vertical asymptotes occur at the zeros of such factors.
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Figure 9

Removable Discontinuities

Occasionally, a graph will contain a hole: a single point where the graph is not defined, indicated by an open
circle. We call such a hole a removable discontinuity.

For example, the function  may be re-written by factoring the numerator and the
denominator.

Notice that  is a common factor to the numerator and the denominator. The zero of this factor, ,
is the location of the removable discontinuity. Notice also that  is not a factor in both the numerator and
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A GENERAL NOTE: REMOVABLE DISCONTINUITIES OF RATIONAL
FUNCTIONS

A removable discontinuity occurs in the graph of a rational function at  if a is a zero for a factor in
the denominator that is common with a factor in the numerator. We factor the numerator and denominator
and check for common factors. If we find any, we set the common factor equal to 0 and solve. This is the
location of the removable discontinuity. This is true if the multiplicity of this factor is greater than or equal
to that in the denominator. If the multiplicity of this factor is greater in the denominator, then there is still an
asymptote at that value.

EXAMPLE 6: IDENTIFYING VERTICAL ASYMPTOTES AND REMOVABLE
DISCONTINUITIES FOR A GRAPH

Find the vertical asymptotes and removable discontinuities of the graph of .
Answer
Factor the numerator and the denominator.

Notice that there is a common factor in the numerator and the denominator, . The zero for this factor
is . This is the location of the removable discontinuity.

denominator. The zero of this factor, , is the vertical asymptote.

Figure 10
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Notice that there is a factor in the denominator that is not in the numerator, . The zero for this factor
is . The vertical asymptote is .

Figure 11

The graph of this function will have the vertical asymptote at , but at  the graph will have a
hole.

An interactive or media element has been excluded from this version of the text. You can view it online
here: https://courses.lumenlearning.com/precalculus/?p=13883

TRY IT

Try It

Find the vertical asymptotes and removable discontinuities of the graph of .
Answer

Removable discontinuity at . Vertical asymptotes: .

Identify horizontal asymptotes

While vertical asymptotes describe the behavior of a graph as the output gets very large or very small,
horizontal asymptotes help describe the behavior of a graph as the input gets very large or very small.
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Recall that a polynomial’s end behavior will mirror that of the leading term. Likewise, a rational function’s end
behavior will mirror that of the ratio of the leading terms of the numerator and denominator functions.

There are three distinct outcomes when checking for horizontal asymptotes:

Case 1: If the degree of the denominator > degree of the numerator, there is a horizontal asymptote at y =
0.

In this case, the end behavior is . This tells us that, as the inputs increase or decrease
without bound, this function will behave similarly to the function , and the outputs will approach
zero, resulting in a horizontal asymptote at y = 0. Note that this graph crosses the horizontal asymptote.

 

Figure 12. Horizontal Asymptote y = 0 when .

Case 2: If the degree of the denominator < degree of the numerator by one, we get a slant asymptote.

In this case, the end behavior is . This tells us that as the inputs increase or decrease
without bound, this function will behave similarly to the function . As the inputs grow large, the
outputs will grow and not level off, so this graph has no horizontal asymptote. However, the graph of 

 looks like a diagonal line, and since f will behave similarly to g, it will approach a line close to 
. This line is a slant asymptote.

To find the equation of the slant asymptote, divide . The quotient is , and the remainder is 2.
The slant asymptote is the graph of the line .
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Figure 13. Slant Asymptote when  where degree of .

Case 3: If the degree of the denominator = degree of the numerator, there is a horizontal asymptote at 
, where  and  are the leading coefficients of  and  for .

In this case, the end behavior is . This tells us that as the inputs grow large, this function will
behave like the function , which is a horizontal line. As , resulting in a
horizontal asymptote at y = 3. Note that this graph crosses the horizontal asymptote.

Figure 14. Horizontal Asymptote when .

Notice that, while the graph of a rational function will never cross a vertical asymptote, the graph may or
may not cross a horizontal or slant asymptote. Also, although the graph of a rational function may have
many vertical asymptotes, the graph will have at most one horizontal (or slant) asymptote.

It should be noted that, if the degree of the numerator is larger than the degree of the denominator by more
than one, the end behavior of the graph will mimic the behavior of the reduced end behavior fraction. For
instance, if we had the function
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A GENERAL NOTE: HORIZONTAL ASYMPTOTES OF RATIONAL
FUNCTIONS

The horizontal asymptote of a rational function can be determined by looking at the degrees of the
numerator and denominator.

Degree of numerator is less than degree of denominator: horizontal asymptote at y = 0.
Degree of numerator is greater than degree of denominator by one: no horizontal asymptote; slant
asymptote.
Degree of numerator is equal to degree of denominator: horizontal asymptote at ratio of leading
coefficients.

EXAMPLE 7: IDENTIFYING HORIZONTAL AND SLANT ASYMPTOTES

For the functions below, identify the horizontal or slant asymptote.

1. 
2. 
3. 

Answer
For these solutions, we will use .

1. : The degree of , so we can find the horizontal asymptote by taking
the ratio of the leading terms. There is a horizontal asymptote at  or .

2. : The degree of  and degree of . Since  by 1, there is a slant
asymptote found at .

The quotient is  and the remainder is 13. There is a slant asymptote at .
3. : The degree of  degree of , so there is a horizontal asymptote y = 0.

EXAMPLE 8: IDENTIFYING HORIZONTAL ASYMPTOTES

In the sugar concentration problem earlier, we created the equation .
Find the horizontal asymptote and interpret it in context of the problem.
Answer

with end behavior
,

the end behavior of the graph would look similar to that of an even polynomial with a positive leading
coefficient.
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Both the numerator and denominator are linear (degree 1). Because the degrees are equal, there will be a
horizontal asymptote at the ratio of the leading coefficients. In the numerator, the leading term is t, with
coefficient 1. In the denominator, the leading term is 10t, with coefficient 10. The horizontal asymptote will
be at the ratio of these values:

This function will have a horizontal asymptote at .
This tells us that as the values of t increase, the values of C will approach . In context, this means that,
as more time goes by, the concentration of sugar in the tank will approach one-tenth of a pound of sugar
per gallon of water or  pounds per gallon.

EXAMPLE 9: IDENTIFYING HORIZONTAL AND VERTICAL ASYMPTOTES

Find the horizontal and vertical asymptotes of the function

Answer
First, note that this function has no common factors, so there are no potential removable discontinuities.
The function will have vertical asymptotes when the denominator is zero, causing the function to be
undefined. The denominator will be zero at , indicating vertical asymptotes at these
values.
The numerator has degree 2, while the denominator has degree 3. Since the degree of the denominator is
greater than the degree of the numerator, the denominator will grow faster than the numerator, causing the
outputs to tend towards zero as the inputs get large, and so as . This function will
have a horizontal asymptote at .

Figure 15
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A GENERAL NOTE: INTERCEPTS OF RATIONAL FUNCTIONS

A rational function will have a y-intercept when the input is zero, if the function is defined at zero. A
rational function will not have a y-intercept if the function is not defined at zero.
Likewise, a rational function will have x-intercepts at the inputs that cause the output to be zero. Since a
fraction is only equal to zero when the numerator is zero, x-intercepts can only occur when the numerator
of the rational function is equal to zero.

EXAMPLE 10: FINDING THE INTERCEPTS OF A RATIONAL FUNCTION

Find the intercepts of .

Answer
We can find the y-intercept by evaluating the function at zero

The x-intercepts will occur when the function is equal to zero:

The y-intercept is , the x-intercepts are  and .

Try It

Find the vertical and horizontal asymptotes of the function:

Answer

Vertical asymptotes at  and ; horizontal asymptote at .
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Figure 16

An interactive or media element has been excluded from this version of the text. You can view it online
here: https://courses.lumenlearning.com/precalculus/?p=13883

TRY IT

Try It

Given the reciprocal squared function that is shifted right 3 units and down 4 units, write this as a rational
function. Then, find the x– and y-intercepts and the horizontal and vertical asymptotes.
Answer

For the transformed reciprocal squared function, we find the rational form. 

Because the numerator is the same degree as the denominator we know that as 
 is the horizontal asymptote. Next, we set the denominator equal to

zero, and find that the vertical asymptote is , because as . We then set the
numerator equal to 0 and find the x-intercepts are at  and . Finally, we evaluate the function
at 0 and find the y-intercept to be at .
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Graph rational functions

In Example 9, we see that the numerator of a rational function reveals the x-intercepts of the graph, whereas
the denominator reveals the vertical asymptotes of the graph. As with polynomials, factors of the numerator
may have integer powers greater than one. Fortunately, the effect on the shape of the graph at those
intercepts is the same as we saw with polynomials.

The vertical asymptotes associated with the factors of the denominator will mirror one of the two toolkit
reciprocal functions. When the degree of the factor in the denominator is odd, the distinguishing
characteristic is that on one side of the vertical asymptote the graph heads towards positive infinity, and on
the other side the graph heads towards negative infinity.

Figure 17

When the degree of the factor in the denominator is even, the distinguishing characteristic is that the graph
either heads toward positive infinity on both sides of the vertical asymptote or heads toward negative infinity
on both sides.
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Figure 18

For example, the graph of  is shown in Figure 19.
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HOW TO: GIVEN A RATIONAL FUNCTION, SKETCH A GRAPH.

1. Evaluate the function at 0 to find the y-intercept.
2. Factor the numerator and denominator.
3. For factors in the numerator not common to the denominator, determine where each factor of the

numerator is zero to find the x-intercepts.
4. Find the multiplicities of the x-intercepts to determine the behavior of the graph at those points.

Figure 19

At the x-intercept  corresponding to the  factor of the numerator, the graph bounces,
consistent with the quadratic nature of the factor.
At the x-intercept  corresponding to the  factor of the numerator, the graph passes through
the axis as we would expect from a linear factor.
At the vertical asymptote  corresponding to the  factor of the denominator, the graph
heads towards positive infinity on both sides of the asymptote, consistent with the behavior of the
function .
At the vertical asymptote , corresponding to the  factor of the denominator, the graph
heads towards positive infinity on the left side of the asymptote and towards negative infinity on the right
side, consistent with the behavior of the function .
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5. For factors in the denominator, note the multiplicities of the zeros to determine the local behavior. For
those factors not common to the numerator, find the vertical asymptotes by setting those factors equal
to zero and then solve.

6. For factors in the denominator common to factors in the numerator, find the removable discontinuities
by setting those factors equal to 0 and then solve.

7. Compare the degrees of the numerator and the denominator to determine the horizontal or slant
asymptotes.

8. Sketch the graph.

EXAMPLE 11: GRAPHING A RATIONAL FUNCTION

Sketch a graph of .

Answer
We can start by noting that the function is already factored, saving us a step.
Next, we will find the intercepts. Evaluating the function at zero gives the y-intercept:

To find the x-intercepts, we determine when the numerator of the function is zero. Setting each factor
equal to zero, we find x-intercepts at  and . At each, the behavior will be linear (multiplicity
1), with the graph passing through the intercept.
We have a y-intercept at  and x-intercepts at  and .
To find the vertical asymptotes, we determine when the denominator is equal to zero. This occurs when 

 and when , giving us vertical asymptotes at  and .
There are no common factors in the numerator and denominator. This means there are no removable
discontinuities.
Finally, the degree of denominator is larger than the degree of the numerator, telling us this graph has a
horizontal asymptote at .
To sketch the graph, we might start by plotting the three intercepts. Since the graph has no x-intercepts
between the vertical asymptotes, and the y-intercept is positive, we know the function must remain
positive between the asymptotes, letting us fill in the middle portion of the graph as shown in Figure 20.
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Figure 20

The factor associated with the vertical asymptote at  was squared, so we know the behavior will be
the same on both sides of the asymptote. The graph heads toward positive infinity as the inputs approach
the asymptote on the right, so the graph will head toward positive infinity on the left as well.
For the vertical asymptote at , the factor was not squared, so the graph will have opposite behavior
on either side of the asymptote. After passing through the x-intercepts, the graph will then level off toward
an output of zero, as indicated by the horizontal asymptote.
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Figure 21

Try It

Given the function , use the characteristics of polynomials and rational functions to
describe its behavior and sketch the function.
Answer

Horizontal asymptote at . Vertical asymptotes at . y-intercept at 
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An interactive or media element has been excluded from this version of the text. You can view it online
here: https://courses.lumenlearning.com/precalculus/?p=13883

TRY IT

A GENERAL NOTE: WRITING RATIONAL FUNCTIONS FROM INTERCEPTS
AND ASYMPTOTES

If a rational function has x-intercepts at , vertical asymptotes at ,
and no , then the function can be written in the form:

Figure 22

x-intercepts at .  is a zero with multiplicity 2, and the graph bounces off the x-
axis at this point.  is a single zero and the graph crosses the axis at this point.

Writing Rational Functions

Now that we have analyzed the equations for rational functions and how they relate to a graph of the
function, we can use information given by a graph to write the function. A rational function written in factored
form will have an x-intercept where each factor of the numerator is equal to zero. (An exception occurs in the
case of a removable discontinuity.) As a result, we can form a numerator of a function whose graph will pass
through a set of x-intercepts by introducing a corresponding set of factors. Likewise, because the function
will have a vertical asymptote where each factor of the denominator is equal to zero, we can form a
denominator that will produce the vertical asymptotes by introducing a corresponding set of factors.
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where the powers  or  on each factor can be determined by the behavior of the graph at the
corresponding intercept or asymptote, and the stretch factor a can be determined given a value of the
function other than the x-intercept or by the horizontal asymptote if it is nonzero.

HOW TO: GIVEN A GRAPH OF A RATIONAL FUNCTION, WRITE THE
FUNCTION.

1. Determine the factors of the numerator. Examine the behavior of the graph at the x-intercepts to
determine the zeroes and their multiplicities. (This is easy to do when finding the “simplest” function
with small multiplicities—such as 1 or 3—but may be difficult for larger multiplicities—such as 5 or 7,
for example.)

2. Determine the factors of the denominator. Examine the behavior on both sides of each vertical
asymptote to determine the factors and their powers.

3. Use any clear point on the graph to find the stretch factor.

EXAMPLE 12: WRITING A RATIONAL FUNCTION FROM INTERCEPTS AND
ASYMPTOTES

Write an equation for the rational function shown in Figure 23.
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Figure 23

Answer
The graph appears to have x-intercepts at  and . At both, the graph passes through the
intercept, suggesting linear factors. The graph has two vertical asymptotes. The one at  seems to
exhibit the basic behavior similar to , with the graph heading toward positive infinity on one side and
heading toward negative infinity on the other. The asymptote at  is exhibiting a behavior similar to 

, with the graph heading toward negative infinity on both sides of the asymptote.
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Figure 24

We can use this information to write a function of the form
.

To find the stretch factor, we can use another clear point on the graph, such as the y-intercept .

This gives us a final function of .

Key Equations

Rational Function

Key Concepts
We can use arrow notation to describe local behavior and end behavior of the toolkit functions 
and .
A function that levels off at a horizontal value has a horizontal asymptote. A function can have more
than one vertical asymptote.
Application problems involving rates and concentrations often involve rational functions.
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arrow notation

horizontal asymptote

rational function

removable discontinuity

vertical asymptote

The domain of a rational function includes all real numbers except those that cause the denominator to
equal zero.
The vertical asymptotes of a rational function will occur where the denominator of the function is equal
to zero and the numerator is not zero.
A removable discontinuity might occur in the graph of a rational function if an input causes both
numerator and denominator to be zero.
A rational function’s end behavior will mirror that of the ratio of the leading terms of the numerator and
denominator functions.
Graph rational functions by finding the intercepts, behavior at the intercepts and asymptotes, and end
behavior.
If a rational function has x-intercepts at , vertical asymptotes at ,
and no , then the function can be written in the form 

Glossary

a way to symbolically represent the local and end behavior of a function by using arrows to
indicate that an input or output approaches a value

a horizontal line y = b where the graph approaches the line as the inputs increase or
decrease without bound.

a function that can be written as the ratio of two polynomials

a single point at which a function is undefined that, if filled in, would make the
function continuous; it appears as a hole on the graph of a function

a vertical line x = a where the graph tends toward positive or negative infinity as the
inputs approach a
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INVERSE FUNCTIONS

Learning Outcomes

Find the inverse of a polynomial function.
Restrict the domain to find the inverse of a polynomial function.
Find or evaluate the inverse of a function.
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Figure 1

A mound of gravel is in the shape of a cone with the height equal to twice the radius.

The volume is found using a formula from elementary geometry.

We have written the volume V in terms of the radius r. However, in some cases, we may start out with the
volume and want to find the radius. For example: A customer purchases 100 cubic feet of gravel to construct
a cone shape mound with a height twice the radius. What are the radius and height of the new cone? To
answer this question, we use the formula

This function is the inverse of the formula for V in terms of r.

In this section, we will explore the inverses of polynomial and rational functions and in particular the radical
functions we encounter in the process.
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Find the inverse of a polynomial function

Two functions f and g are inverse functions if for every coordinate pair in f, (a, b), there exists a
corresponding coordinate pair in the inverse function, g, (b, a). In other words, the coordinate pairs of the
inverse functions have the input and output interchanged.

For a function to have an inverse function the function to create a new function that is one-to-one and
would have an inverse function.

For example, suppose a water runoff collector is built in the shape of a parabolic trough as shown below. We
can use the information in the figure to find the surface area of the water in the trough as a function of the
depth of the water.

Figure 2

Because it will be helpful to have an equation for the parabolic cross-sectional shape, we will impose a
coordinate system at the cross section, with x measured horizontally and y measured vertically, with the
origin at the vertex of the parabola.
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Figure 3

From this we find an equation for the parabolic shape. We placed the origin at the vertex of the parabola, so
we know the equation will have form . Our equation will need to pass through the point (6, 18),
from which we can solve for the stretch factor a.

Our parabolic cross section has the equation

We are interested in the surface area of the water, so we must determine the width at the top of the water
as a function of the water depth. For any depth y the width will be given by 2x, so we need to solve the
equation above for x and find the inverse function. However, notice that the original function is not one-to-
one, and indeed, given any output there are two inputs that produce the same output, one positive and one
negative.
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A GENERAL NOTE: VERIFYING TWO FUNCTIONS ARE INVERSES OF ONE
ANOTHER

Two functions, f and g, are inverses of one another if for all x in the domain of f and g.

HOW TO: GIVEN A POLYNOMIAL FUNCTION, FIND THE INVERSE OF THE
FUNCTION BY RESTRICTING THE DOMAIN IN SUCH A WAY THAT THE

NEW FUNCTION IS ONE-TO-ONE.

To find an inverse, we can restrict our original function to a limited domain on which it is one-to-one. In this
case, it makes sense to restrict ourselves to positive x values. On this domain, we can find an inverse by
solving for the input variable:

This is not a function as written. We are limiting ourselves to positive x values, so we eliminate the negative
solution, giving us the inverse function we’re looking for.

Because x is the distance from the center of the parabola to either side, the entire width of the water at the
top will be 2x. The trough is 3 feet (36 inches) long, so the surface area will then be:

This example illustrates two important points:

1. When finding the inverse of a quadratic, we have to limit ourselves to a domain on which the function is
one-to-one.

2. The inverse of a quadratic function is a square root function. Both are toolkit functions and different
types of power functions.

Functions involving roots are often called radical functions. While it is not possible to find an inverse of
most polynomial functions, some basic polynomials do have inverses. Such functions are called invertible
functions, and we use the notation .

Warning:  is not the same as the reciprocal of the function . This use of –1 is reserved to denote
inverse functions. To denote the reciprocal of a function , we would need to write .

An important relationship between inverse functions is that they “undo” each other. If  is the inverse of a
function f, then f is the inverse of the function . In other words, whatever the function f does to x, 
undoes it—and vice-versa. More formally, we write

and
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1. Replace  with y.
2. Interchange x and y.
3. Solve for y, and rename the function .

EXAMPLE 1: VERIFYING INVERSE FUNCTIONS

Show that  and  are inverses, for  .
Answer
We must show that  and .

Therefore,  and  are inverses.

EXAMPLE 2: FINDING THE INVERSE OF A CUBIC FUNCTION

Find the inverse of the function .
Answer
This is a transformation of the basic cubic toolkit function, and based on our knowledge of that function,
we know it is one-to-one. Solving for the inverse by solving for x.

Try It

Show that  and  are inverses.
Answer

 and 
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Analysis of the Solution

Look at the graph of f and . Notice that the two graphs are symmetrical about the line . This is
always the case when graphing a function and its inverse function.
Also, since the method involved interchanging x and y, notice corresponding points. If  is on the
graph of f, then  is on the graph of . Since  is on the graph of f, then  is on the graph of

. Similarly, since  is on the graph of f, then  is on the graph of .

Figure 4
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An interactive or media element has been excluded from this version of the text. You can view it online
here: https://courses.lumenlearning.com/precalculus/?p=13893

TRY IT

A GENERAL NOTE: RESTRICTING THE DOMAIN

If a function is not one-to-one, it cannot have an inverse. If we restrict the domain of the function so that it
becomes one-to-one, thus creating a new function, this new function will have an inverse.

HOW TO: GIVEN A POLYNOMIAL FUNCTION, RESTRICT THE DOMAIN OF
A FUNCTION THAT IS NOT ONE-TO-ONE AND THEN FIND THE INVERSE.

1. Restrict the domain by determining a domain on which the original function is one-to-one.
2. Replace f(x) with y.
3. Interchange x and y.
4. Solve for y, and rename the function or pair of function .
5. Revise the formula for  by ensuring that the outputs of the inverse function correspond to the

restricted domain of the original function.

EXAMPLE 3: RESTRICTING THE DOMAIN TO FIND THE INVERSE OF A
POLYNOMIAL FUNCTION

Find the inverse function of f:

1. 
2. 

Answer
The original function  is not one-to-one, but the function is restricted to a domain of 
or  on which it is one-to-one.

Try It

Find the inverse function of .
Answer

Restrict the domain to �nd the inverse of a polynomial function

So far, we have been able to find the inverse functions of cubic functions without having to restrict their
domains. However, as we know, not all cubic polynomials are one-to-one. Some functions that are not one-
to-one may have their domain restricted so that they are one-to-one, but only over that domain. The function
over the restricted domain would then have an inverse function. Since quadratic functions are not one-to-
one, we must restrict their domain in order to find their inverses.
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To find the inverse, start by replacing  with the simple variable y.

This is not a function as written. We need to examine the restrictions on the domain of the original function
to determine the inverse. Since we reversed the roles of x and y for the original f(x), we looked at the
domain: the values x could assume. When we reversed the roles of x and y, this gave us the values
y could assume. For this function, , so for the inverse, we should have , which is what our
inverse function gives.

1. The domain of the original function was restricted to , so the outputs of the inverse need to be
the same, , and we must use the + case:

2. The domain of the original function was restricted to , so the outputs of the inverse need to be
the same, , and we must use the – case:

Analysis of the Solution

On the graphs below, we see the original function graphed on the same set of axes as its inverse function.
Notice that together the graphs show symmetry about the line . The coordinate pair  is on the
graph of f and the coordinate pair  is on the graph of . For any coordinate pair, if (a, b) is on the
graph of f, then (b, a) is on the graph of . Finally, observe that the graph of f intersects the graph of 
on the line y = x. Points of intersection for the graphs of f and  will always lie on the line y = x.
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Figure 6

EXAMPLE 4: FINDING THE INVERSE OF A QUADRATIC FUNCTION WHEN
THE RESTRICTION IS NOT SPECIFIED

Restrict the domain and then find the inverse of
.

Answer
We can see this is a parabola with vertex at  that opens upward. Because the graph will be
decreasing on one side of the vertex and increasing on the other side, we can restrict this function to a
domain on which it will be one-to-one by limiting the domain to .
To find the inverse, we will use the vertex form of the quadratic. We start by replacing f(x) with a simple
variable, y, then solve for x.

Now we need to determine which case to use. Because we restricted our original function to a domain of 
, the outputs of the inverse should be the same, telling us to utilize the + case

If the quadratic had not been given in vertex form, rewriting it into vertex form would be the first step. This
way we may easily observe the coordinates of the vertex to help us restrict the domain.

Analysis of the Solution

Notice that we arbitrarily decided to restrict the domain on . We could just have easily opted to
restrict the domain on , in which case . Observe the original function graphed
on the same set of axes as its inverse function in the graph below. Notice that both graphs show symmetry
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about the line y = x. The coordinate pair  is on the graph of f and the coordinate pair  is
on the graph of . Observe from the graph of both functions on the same set of axes that

and

Finally, observe that the graph of f intersects the graph of  along the line y = x.

Figure 7

 

Try It

Find the inverse of the function , on the domain .
Answer
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HOW TO: GIVEN A RADICAL FUNCTION, FIND THE INVERSE.

1. Determine the range of the original function.
2. Replace f(x) with y, then solve for x.
3. If necessary, restrict the domain of the inverse function to the range of the original function.

EXAMPLE 5: FINDING THE INVERSE OF A RADICAL FUNCTION

Restrict the domain and then find the inverse of the function .
Answer
Note that the original function has range . Replace  with y, then solve for x.

Recall that the domain of this function must be limited to the range of the original function.

Analysis of the Solution

Notice in the graph below that the inverse is a reflection of the original function over the line y = x.
Because the original function has only positive outputs, the inverse function has only positive inputs.

Solving Applications of Radical Functions

Notice that the functions from previous examples were all polynomials, and their inverses were radical
functions. If we want to find the inverse of a radical function, we will need to restrict the domain of the
answer because the range of the original function is limited.
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Figure 8

An interactive or media element has been excluded from this version of the text. You can view it online
here: https://courses.lumenlearning.com/precalculus/?p=13893

TRY IT

Try It

Restrict the domain and then find the inverse of the function .
Answer

Solving Applications of Radical Functions
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EXAMPLE 6: SOLVING AN APPLICATION WITH A CUBIC FUNCTION

A mound of gravel is in the shape of a cone with the height equal to twice the radius. The volume of the
cone in terms of the radius is given by

Find the inverse of the function  that determines the volume V of a cone and is a function of the
radius r. Then use the inverse function to calculate the radius of such a mound of gravel measuring 100
cubic feet. Use .
Answer
Start with the given function for V. Notice that the meaningful domain for the function is  since
negative radii would not make sense in this context. Also note the range of the function (hence, the
domain of the inverse function) is . Solve for r in terms of V, using the method outlined previously.

This is the result stated in the section opener. Now evaluate this for V = 100 and .

Therefore, the radius is about 3.63 ft.

EXAMPLE 7: FINDING THE DOMAIN OF A RADICAL FUNCTION
COMPOSED WITH A RATIONAL FUNCTION

Find the domain of the function .

Answer
Because a square root is only defined when the quantity under the radical is non-negative, we need to
determine where . The output of a rational function can change signs (change from positive
to negative or vice versa) at x-intercepts and at vertical asymptotes. For this equation, the graph could
change signs at x = –2, 1, and 3.
To determine the intervals on which the rational expression is positive, we could test some values in the
expression or sketch a graph. While both approaches work equally well, for this example we will use a
graph.

Radical functions are common in physical models, as we saw in the section opener. We now have enough
tools to be able to solve the problem posed at the start of the section.

Determining the Domain of a Radical Function Composed with
Other Functions

When radical functions are composed with other functions, determining domain can become more
complicated.
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EXAMPLE 8: FINDING THE INVERSE OF A RATIONAL FUNCTION

The function  represents the concentration C of an acid solution after n mL of 40% solution
has been added to 100 mL of a 20% solution. First, find the inverse of the function; that is, find an
expression for n in terms of C. Then use your result to determine how much of the 40% solution should be
added so that the final mixture is a 35% solution.
Answer
We first want the inverse of the function. We will solve for n in terms of C.

Figure 9

This function has two x-intercepts, both of which exhibit linear behavior near the x-intercepts. There is one
vertical asymptote, corresponding to a linear factor; this behavior is similar to the basic reciprocal toolkit
function, and there is no horizontal asymptote because the degree of the numerator is larger than the
degree of the denominator. There is a y-intercept at (0, 6).
From the y-intercept and x-intercept at x = –2, we can sketch the left side of the graph. From the behavior
at the asymptote, we can sketch the right side of the graph.
From the graph, we can now tell on which intervals the outputs will be non-negative, so that we can be
sure that the original function f(x) will be defined. f(x) has domain , or in interval
notation, .

Finding Inverses of Rational Functions

As with finding inverses of quadratic functions, it is sometimes desirable to find the inverse of a rational
function, particularly of rational functions that are the ratio of linear functions, such as in concentration
applications.
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Now evaluate this function for C=0.35 (35%).

We can conclude that 300 mL of the 40% solution should be added.

invertible function

An interactive or media element has been excluded from this version of the text. You can view it online
here: https://courses.lumenlearning.com/precalculus/?p=13893

TRY IT

Try It

Find the inverse of the function .
Answer

Key Concepts

The inverse of a quadratic function is a square root function.
If  is the inverse of a function f, then f is the inverse of the function .
While it is not possible to find an inverse of most polynomial functions, some basic polynomials are
invertible.
To find the inverse of certain functions, we must restrict the function to a domain on which it will be one-
to-one.
When finding the inverse of a radical function, we need a restriction on the domain of the answer.
Inverse and radical and functions can be used to solve application problems.

Glossary

any function that has an inverse function
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MODELING USING VARIATION

Learning Outcomes

Solve direct variation problems.
Solve inverse variation problems.
Solve problems involving joint variation.

A used-car company has just offered their best candidate, Nicole, a position in sales. The position offers
16% commission on her sales. Her earnings depend on the amount of her sales. For instance, if she sells a
vehicle for $4,600, she will earn $736. She wants to evaluate the offer, but she is not sure how. In this
section, we will look at relationships, such as this one, between earnings, sales, and commission rate.

Solve direct variation problems

In the example above, Nicole’s earnings can be found by multiplying her sales by her commission. The
formula e = 0.16s tells us her earnings, e, come from the product of 0.16, her commission, and the sale price
of the vehicle. If we create a table, we observe that as the sales price increases, the earnings increase as
well, which should be intuitive.

s, sales prices e = 0.16s Interpretation

$4,600 e = 0.16(4,600) = 736 A sale of a $4,600 vehicle results in $736 earnings.

$9,200 e = 0.16(9,200) = 1,472 A sale of a $9,200 vehicle results in $1472 earnings.

$18,400 e = 0.16(18,400) = 2,944 A sale of a $18,400 vehicle results in $2944 earnings.

Notice that earnings are a multiple of sales. As sales increase, earnings increase in a predictable way.
Double the sales of the vehicle from $4,600 to $9,200, and we double the earnings from $736 to $1,472. As
the input increases, the output increases as a multiple of the input. A relationship in which one quantity is a
constant multiplied by another quantity is called direct variation. Each variable in this type of relationship
varies directly with the other.

The graph below represents the data for Nicole’s potential earnings. We say that earnings vary directly with
the sales price of the car. The formula  is used for direct variation. The value k is a nonzero constant
greater than zero and is called the constant of variation. In this case, k = 0.16 and n = 1.
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A GENERAL NOTE: DIRECT VARIATION

If x and y are related by an equation of the form

then we say that the relationship is direct variation and y varies directly with the nth power of x. In direct
variation relationships, there is a nonzero constant ratio , where k is called the constant of
variation, which help defines the relationship between the variables.

HOW TO: GIVEN A DESCRIPTION OF A DIRECT VARIATION PROBLEM,
SOLVE FOR AN UNKNOWN.

1. Identify the input, x, and the output, y.

Figure 1
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2. Determine the constant of variation. You may need to divide y by the specified power of x to
determine the constant of variation.

3. Use the constant of variation to write an equation for the relationship.
4. Substitute known values into the equation to find the unknown.

EXAMPLE 1: SOLVING A DIRECT VARIATION PROBLEM

The quantity y varies directly with the cube of x. If y = 25 when x = 2, find y when x is 6.
Answer
The general formula for direct variation with a cube is . The constant can be found by dividing y by
the cube of x.

Now use the constant to write an equation that represents this relationship.

Substitute x = 6 and solve for y.

Analysis of the Solution

The graph of this equation is a simple cubic, as shown below.
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Figure 2

Q & A

Do the graphs of all direct variation equations look like Example 1?
No. Direct variation equations are power functions—they may be linear, quadratic, cubic, quartic, radical,
etc. But all of the graphs pass through (0, 0).

An interactive or media element has been excluded from this version of the text. You can view it online
here: https://courses.lumenlearning.com/precalculus/?p=13901

TRY IT

Try It

The quantity y varies directly with the square of x. If y = 24 when x = 3, find y when x is 4.
Answer
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A GENERAL NOTE: INVERSE VARIATION

Solve inverse variation problems

Water temperature in an ocean varies inversely to the water’s depth. Between the depths of 250 feet and
500 feet, the formula  gives us the temperature in degrees Fahrenheit at a depth in feet below
Earth’s surface. Consider the Atlantic Ocean, which covers 22% of Earth’s surface. At a certain location, at
the depth of 500 feet, the temperature may be 28°F.

If we create a table we observe that, as the depth increases, the water temperature decreases.

d, depth Interpretation

500 ft At a depth of 500 ft, the water temperature is 28° F.

350 ft At a depth of 350 ft, the water temperature is 40° F.

250 ft At a depth of 250 ft, the water temperature is 56° F.

We notice in the relationship between these variables that, as one quantity increases, the other decreases.
The two quantities are said to be inversely proportional and each term varies inversely with the other.
Inversely proportional relationships are also called inverse variations.

For our example, the graph depicts the inverse variation. We say the water temperature varies inversely
with the depth of the water because, as the depth increases, the temperature decreases. The formula 
for inverse variation in this case uses k = 14,000.

Figure 3
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If x and y are related by an equation of the form

where k is a nonzero constant, then we say that y varies inversely with the nth power of x. In inversely
proportional relationships, or inverse variations, there is a constant multiple .

EXAMPLE 2: WRITING A FORMULA FOR AN INVERSELY PROPORTIONAL
RELATIONSHIP

A tourist plans to drive 100 miles. Find a formula for the time the trip will take as a function of the speed
the tourist drives.
Answer
Recall that multiplying speed by time gives distance. If we let t represent the drive time in hours, and
v represent the velocity (speed or rate) at which the tourist drives, then vt = distance. Because the
distance is fixed at 100 miles, vt = 100. Solving this relationship for the time gives us our function.

We can see that the constant of variation is 100 and, although we can write the relationship using the
negative exponent, it is more common to see it written as a fraction.

HOW TO: GIVEN A DESCRIPTION OF AN INDIRECT VARIATION PROBLEM,
SOLVE FOR AN UNKNOWN.

1. Identify the input, x, and the output, y.
2. Determine the constant of variation. You may need to multiply y by the specified power of x to

determine the constant of variation.
3. Use the constant of variation to write an equation for the relationship.
4. Substitute known values into the equation to find the unknown.

EXAMPLE 3: SOLVING AN INVERSE VARIATION PROBLEM

A quantity y varies inversely with the cube of x. If y = 25 when x = 2, find y when x is 6.
Answer
The general formula for inverse variation with a cube is . The constant can be found by multiplying
y by the cube of x.

Now we use the constant to write an equation that represents this relationship.

Substitute x = 6 and solve for y.
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ANALYSIS OF THE SOLUTION

The graph of this equation is a rational function.

Figure 4

An interactive or media element has been excluded from this version of the text. You can view it online
here: https://courses.lumenlearning.com/precalculus/?p=13901

TRY IT

Try It

A quantity y varies inversely with the square of x. If y = 8 when x = 3, find y when x is 4.
Answer

Solve problems involving joint variation

Many situations are more complicated than a basic direct variation or inverse variation model. One variable
often depends on multiple other variables. When a variable is dependent on the product or quotient of two or
more variables, this is called joint variation. For example, the cost of busing students for each school trip
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A GENERAL NOTE: JOINT VARIATION

Joint variation occurs when a variable varies directly or inversely with multiple variables.
For instance, if x varies directly with both y and z, we have x = kyz. If x varies directly with y and inversely
with z, we have . Notice that we only use one constant in a joint variation equation.

EXAMPLE 4: SOLVING PROBLEMS INVOLVING JOINT VARIATION

A quantity x varies directly with the square of y and inversely with the cube root of z. If x = 6 when y = 2
and z = 8, find x when y = 1 and z = 27.
Answer
Begin by writing an equation to show the relationship between the variables.

Substitute x = 6, y = 2, and z = 8 to find the value of the constant k.

Now we can substitute the value of the constant into the equation for the relationship.

To find x when y = 1 and z = 27, we will substitute values for y and z into our equation.

An interactive or media element has been excluded from this version of the text. You can view it online
here: https://courses.lumenlearning.com/precalculus/?p=13901

KEY TAKEAWAYS

varies with the number of students attending and the distance from the school. The variable c, cost, varies
jointly with the number of students, n, and the distance, d.

Try It

x varies directly with the square of y and inversely with z. If x = 40 when y = 4 and z = 2, find x when y =
10 and z = 25.
Answer

x = 20

Key Equations
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constant of variation

direct variation

inverse variation

inversely proportional

joint variation

varies directly

varies inversely

Direct variation .

Inverse variation .

Key Concepts
A relationship where one quantity is a constant multiplied by another quantity is called direct variation.
Two variables that are directly proportional to one another will have a constant ratio.
A relationship where one quantity is a constant divided by another quantity is called inverse variation.
Two variables that are inversely proportional to one another will have a constant multiple.
In many problems, a variable varies directly or inversely with multiple variables. We call this type of
relationship joint variation.

Glossary

the non-zero value k that helps define the relationship between variables in direct or
inverse variation

the relationship between two variables that are a constant multiple of each other; as one
quantity increases, so does the other

the relationship between two variables in which the product of the variables is a constant

a relationship where one quantity is a constant divided by the other quantity; as one
quantity increases, the other decreases

a relationship where a variable varies directly or inversely with multiple variables

a relationship where one quantity is a constant multiplied by the other quantity

a relationship where one quantity is a constant divided by the other quantity
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MODULE 4: EXPONENTIAL AND
LOGARITHMIC FUNCTIONS

EXPONENTIAL FUNCTIONS

Figure 1. Electron micrograph of E.Coli bacteria (credit: “Mattosaurus,” Wikimedia Commons)

Focus in on a square centimeter of your skin. Look closer. Closer still. If you could look closely enough, you
would see hundreds of thousands of microscopic organisms. They are bacteria, and they are not only on
your skin, but in your mouth, nose, and even your intestines. In fact, the bacterial cells in your body at any
given moment outnumber your own cells. But that is no reason to feel bad about yourself. While some
bacteria can cause illness, many are healthy and even essential to the body.
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Bacteria commonly reproduce through a process called binary fission, during which one bacterial cell splits
into two. When conditions are right, bacteria can reproduce very quickly. Unlike humans and other complex
organisms, the time required to form a new generation of bacteria is often a matter of minutes or hours, as
opposed to days or years. (Note: Todar, PhD, Kenneth. Todar's Online Textbook of Bacteriology.
http://textbookofbacteriology.net/growth_3.html.)

For simplicity’s sake, suppose we begin with a culture of one bacterial cell that can divide every hour. The
table below shows the number of bacterial cells at the end of each subsequent hour. We see that the single
bacterial cell leads to over one thousand bacterial cells in just ten hours! And if we were to extrapolate the
table to twenty-four hours, we would have over 16 million!

Hour 0 1 2 3 4 5 6 7 8 9 10

Bacteria 1 2 4 8 16 32 64 128 256 512 1024

Exponential Functions

In this chapter, we will explore exponential functions, which can be used for, among other things, modeling
growth patterns such as those found in bacteria. We will also investigate logarithmic functions, which are
closely related to exponential functions. Both types of functions have numerous real-world applications when
it comes to modeling and interpreting data.

Learning Outcomes

Evaluate exponential functions.
Find the equation of an exponential function.
Use compound interest formulas.
Evaluate exponential functions with base e.

India is the second most populous country in the world with a population of about 1.25 billion people in 2013.
The population is growing at a rate of about 1.2% each year. (Note: http://www.worldometers.info/world-
population/. Accessed February 24, 2014.) If this rate continues, the population of India will exceed China’s
population by the year 2031. When populations grow rapidly, we often say that the growth is “exponential,”
meaning that something is growing very rapidly. To a mathematician, however, the term exponential growth
has a very specific meaning. In this section, we will take a look at exponential functions, which model this
kind of rapid growth.

Evaluate Exponential Functions

Recall that the base of an exponential function must be a positive real number other than 1. Why do we limit
the base b to positive values? To ensure that the outputs will be real numbers. Observe what happens if the
base is not positive:

Let b = –9 and . Then , which is not a real number.

Why do we limit the base to positive values other than 1? Because base 1 results in the constant function.
Observe what happens if the base is 1:

Let b = 1. Then  for any value of x.

To evaluate an exponential function with the form , we simply substitute x with the given value,
and calculate the resulting power. For example:

Let . What is ?
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EXAMPLE 1: EVALUATING EXPONENTIAL FUNCTIONS

Let . Evaluate  without using a calculator.
Answer
Follow the order of operations. Be sure to pay attention to the parentheses.

A GENERAL NOTE: EXPONENTIAL GROWTH

A function that models exponential growth grows by a rate proportional to the amount present. For any
real number x and any positive real numbers a and b such that , an exponential growth function has
the form

where
a is the initial or starting value of the function.
b is the growth factor or growth multiplier per unit x.

To evaluate an exponential function with a form other than the basic form, it is important to follow the order
of operations. For example:

Let . What is ?

Note that if the order of operations were not followed, the result would be incorrect:

Try It

Let . Evaluate  using a calculator. Round to four decimal places.
Answer

5.5556

Because the output of exponential functions increases very rapidly, the term “exponential growth” is often
used in everyday language to describe anything that grows or increases rapidly. However, exponential
growth can be defined more precisely in a mathematical sense. If the growth rate is proportional to the
amount present, the function models exponential growth.
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In more general terms, we have an exponential function, in which a constant base is raised to a variable
exponent. To differentiate between linear and exponential functions, let’s consider two companies, A and B.
Company A has 100 stores and expands by opening 50 new stores a year, so its growth can be represented
by the function . Company B has 100 stores and expands by increasing the number of
stores by 50% each year, so its growth can be represented by the function .

A few years of growth for these companies are illustrated below.

Year, x Stores, Company A Stores, Company B

0 100 + 50(0) = 100 100(1 + 0.5)0 = 100

1 100 + 50(1) = 150 100(1 + 0.5)1 = 150

2 100 + 50(2) = 200 100(1 + 0.5)2 = 225

3 100 + 50(3) = 250 100(1 + 0.5)3 = 337.5

x A(x) = 100 + 50x B(x) = 100(1 + 0.5)x

The graphs comparing the number of stores for each company over a five-year period are shown in below.
We can see that, with exponential growth, the number of stores increases much more rapidly than with linear
growth.

Figure 2. The graph shows the numbers of stores Companies A and B opened over a five-year period.
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HOW TO: GIVEN TWO DATA POINTS, WRITE AN EXPONENTIAL MODEL.

1. If one of the data points has the form , then a is the initial value. Using a, substitute the second
point into the equation , and solve for b.

2. If neither of the data points have the form , substitute both points into two equations with the
form . Solve the resulting system of two equations in two unknowns to find a and b.

3. Using the a and b found in the steps above, write the exponential function in the form .

EXAMPLE 3: WRITING AN EXPONENTIAL MODEL WHEN THE INITIAL
VALUE IS KNOWN

EXAMPLE 2: EVALUATING A REAL-WORLD EXPONENTIAL MODEL

At the beginning of this section, we learned that the population of India was about 1.25 billion in the year
2013, with an annual growth rate of about 1.2%. This situation is represented by the growth function 

, where t is the number of years since 2013. To the nearest thousandth, what will the
population of India be in 2031?
Answer
To estimate the population in 2031, we evaluate the models for t = 18, because 2031 is 18 years after
2013. Rounding to the nearest thousandth,

There will be about 1.549 billion people in India in the year 2031.

Notice that the domain for both functions is , and the range for both functions is . After year
1, Company B always has more stores than Company A.

Now we will turn our attention to the function representing the number of stores for Company B, 
. In this exponential function, 100 represents the initial number of stores, 0.50

represents the growth rate, and  represents the growth factor. Generalizing further, we can
write this function as , where 100 is the initial value, 1.5 is called the base, and x is called
the exponent.

Try It

The population of China was about 1.39 billion in the year 2013, with an annual growth rate of about
0.6%. This situation is represented by the growth function , where t is the number of
years since 2013. To the nearest thousandth, what will the population of China be for the year 2031? How
does this compare to the population prediction we made for India in Example 2?
Answer

About 1.548 billion people; by the year 2031, India’s population will exceed China’s by about 0.001 billion,
or 1 million people.

 Find the Equation of an Exponential Function

In the previous examples, we were given an exponential function, which we then evaluated for a given input.
Sometimes we are given information about an exponential function without knowing the function explicitly.
We must use the information to first write the form of the function, then determine the constants a and b, and
evaluate the function.
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In 2006, 80 deer were introduced into a wildlife refuge. By 2012, the population had grown to 180 deer.
The population was growing exponentially. Write an algebraic function N(t) representing the population
N of deer over time t.
Answer
We let our independent variable t be the number of years after 2006. Thus, the information given in the
problem can be written as input-output pairs: (0, 80) and (6, 180). Notice that by choosing our input
variable to be measured as years after 2006, we have given ourselves the initial value for the function, a =
80. We can now substitute the second point into the equation  to find b:

NOTE: Unless otherwise stated, do not round any intermediate calculations. Then round the final answer
to four places for the remainder of this section.
The exponential model for the population of deer is . (Note that this exponential
function models short-term growth. As the inputs gets large, the output will get increasingly larger, so
much so that the model may not be useful in the long term.)
We can graph our model to observe the population growth of deer in the refuge over time. Notice that the
graph below passes through the initial points given in the problem,  and . We can also see
that the domain for the function is , and the range for the function is .

Figure 3. Graph showing the population of deer over time, , t years after 2006
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EXAMPLE 4: WRITING AN EXPONENTIAL MODEL WHEN THE INITIAL
VALUE IS NOT KNOWN

Find an exponential function that passes through the points  and .
Answer
Because we don’t have the initial value, we substitute both points into an equation of the form ,
and then solve the system for a and b.

Substituting  gives 
Substituting  gives 

Use the first equation to solve for a in terms of b:

Substitute a in the second equation, and solve for b:

Use the value of b in the first equation to solve for the value of a:

Thus, the equation is .
We can graph our model to check our work. Notice that the graph below passes through the initial points
given in the problem,  and . The graph is an example of an exponential decay function.

Try It

A wolf population is growing exponentially. In 2011, 129 wolves were counted. By 2013 the population had
reached 236 wolves. What two points can be used to derive an exponential equation modeling this
situation? Write the equation representing the population N of wolves over time t.
Answer

 and 
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Figure 4. The graph of  models exponential decay.

An interactive or media element has been excluded from this version of the text. You can view it online
here: https://courses.lumenlearning.com/precalculus/?p=13697

TRY IT

Q & A

Do two points always determine a unique exponential function?
Yes, provided the two points are either both above the x-axis or both below the x-axis and have different x-
coordinates. But keep in mind that we also need to know that the graph is, in fact, an exponential function.
Not every graph that looks exponential really is exponential. We need to know the graph is based on a
model that shows the same percent growth with each unit increase in x, which in many real world cases
involves time.

HOW TO: GIVEN THE GRAPH OF AN EXPONENTIAL FUNCTION, WRITE ITS
EQUATION.

1. First, identify two points on the graph. Choose the y-intercept as one of the two points whenever
possible. Try to choose points that are as far apart as possible to reduce round-off error.

2. If one of the data points is the y-intercept  , then a is the initial value. Using a, substitute the
second point into the equation , and solve for b.

Try It

Given the two points  and , find the equation of the exponential function that passes through
these two points.
Answer
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3. If neither of the data points have the form , substitute both points into two equations with the
form . Solve the resulting system of two equations in two unknowns to find a and b.

4. Write the exponential function, .

EXAMPLE 5: WRITING AN EXPONENTIAL FUNCTION GIVEN ITS GRAPH

Find an equation for the exponential function graphed in Figure 5.

Figure 5

Answer
We can choose the y-intercept of the graph, , as our first point. This gives us the initial value, .
Next, choose a point on the curve some distance away from  that has integer coordinates. One such
point is .

Because we restrict ourselves to positive values of b, we will use b = 2. Substitute a and b into the
standard form to yield the equation .

Try It

Find an equation for the exponential function graphed in Figure 6.
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An interactive or media element has been excluded from this version of the text. You can view it online
here: https://courses.lumenlearning.com/precalculus/?p=13697

TRY IT

HOW TO: GIVEN TWO POINTS ON THE CURVE OF AN EXPONENTIAL
FUNCTION, USE A GRAPHING CALCULATOR TO FIND THE EQUATION.

1. Press [STAT].
2. Clear any existing entries in columns L1 or L2.
3. In L1, enter the x-coordinates given.
4. In L2, enter the corresponding y-coordinates.
5. Press [STAT] again. Cursor right to CALC, scroll down to ExpReg (Exponential Regression), and

press [ENTER].
6. The screen displays the values of a and b in the exponential equation .

EXAMPLE 6: USING A GRAPHING CALCULATOR TO FIND AN
EXPONENTIAL FUNCTION

Figure 6

Answer

. Answers may vary due to round-off error. The answer should be very close to 
.
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Use a graphing calculator to find the exponential equation that includes the points  and .
Answer
Follow the guidelines above. First press [STAT], [EDIT], [1: Edit…], and clear the lists L1 and L2. Next, in
the L1 column, enter the x-coordinates, 2 and 5. Do the same in the L2 column for the y-coordinates, 24.8
and 198.4.
Now press [STAT], [CALC], [0: ExpReg] and press [ENTER]. The values a = 6.2 and b = 2 will be
displayed. The exponential equation is .

A GENERAL NOTE: THE COMPOUND INTEREST FORMULA

Compound interest can be calculated using the formula

where
A(t) is the account value,
t is measured in years,
P is the starting amount of the account, often called the principal, or more generally present value,
r is the annual percentage rate (APR) expressed as a decimal, and

Try It

Use a graphing calculator to find the exponential function that includes the points (3, 75.98) and (6,
481.07).
Answer

 Use Compound Interest Formulas

Savings instruments in which earnings are continually reinvested, such as mutual funds and retirement
accounts, use compound interest. The term compounding refers to interest earned not only on the original
value, but on the accumulated value of the account.

The annual percentage rate (APR) of an account, also called the nominal rate, is the yearly interest rate
earned by an investment account. The term nominal is used when the compounding occurs a number of
times other than once per year. In fact, when interest is compounded more than once a year, the effective
interest rate ends up being greater than the nominal rate! This is a powerful tool for investing.

We can calculate the compound interest using the compound interest formula, which is an exponential
function of the variables time t, principal P, APR r, and number of compounding periods in a year n:

For example, observe the table below, which shows the result of investing $1,000 at 10% for one year.
Notice how the value of the account increases as the compounding frequency increases.

Frequency Value after 1 year

Annually $1100

Semiannually $1102.50

Quarterly $1103.81

Monthly $1104.71

Daily $1105.16

430



n is the number of compounding periods in one year.

EXAMPLE 7: CALCULATING COMPOUND INTEREST

If we invest $3,000 in an investment account paying 3% interest compounded quarterly, how much will the
account be worth in 10 years?
Answer
Because we are starting with $3,000, P = 3000. Our interest rate is 3%, so r = 0.03. Because we are
compounding quarterly, we are compounding 4 times per year, so n = 4. We want to know the value of the
account in 10 years, so we are looking for A(10), the value when t = 10.

The account will be worth about $4,045.05 in 10 years.

EXAMPLE 8: USING THE COMPOUND INTEREST FORMULA TO SOLVE
FOR THE PRINCIPAL

A 529 Plan is a college-savings plan that allows relatives to invest money to pay for a child’s future college
tuition; the account grows tax-free. Lily wants to set up a 529 account for her new granddaughter and
wants the account to grow to $40,000 over 18 years. She believes the account will earn 6% compounded
semi-annually (twice a year). To the nearest dollar, how much will Lily need to invest in the account now?
Answer
The nominal interest rate is 6%, so r = 0.06. Interest is compounded twice a year, so k = 2.
We want to find the initial investment, P, needed so that the value of the account will be worth $40,000 in
18 years. Substitute the given values into the compound interest formula, and solve for P.

Lily will need to invest $13,801 to have $40,000 in 18 years.

Try It

An initial investment of $100,000 at 12% interest is compounded weekly (use 52 weeks in a year). What
will the investment be worth in 30 years?
Answer

about $3,644,675.88

Try It

431



A GENERAL NOTE: THE NUMBER E

The letter e represents the irrational number

The letter e is used as a base for many real-world exponential models. To work with base e, we use the
approximation, . The constant was named by the Swiss mathematician Leonhard Euler
(1707–1783) who first investigated and discovered many of its properties.

An interactive or media element has been excluded from this version of the text. You can view it online
here: https://courses.lumenlearning.com/precalculus/?p=13697

TRY IT

Refer to Example 8. To the nearest dollar, how much would Lily need to invest if the account is
compounded quarterly?
Answer

$13,693

Evaluate exponential functions with base e

As we saw earlier, the amount earned on an account increases as the compounding frequency increases.
The table below shows that the increase from annual to semi-annual compounding is larger than the
increase from monthly to daily compounding. This might lead us to ask whether this pattern will continue.

Examine the value of $1 invested at 100% interest for 1 year, compounded at various frequencies.

Frequency Value

Annually $2

Semiannually $2.25

Quarterly $2.441406

Monthly $2.613035

Daily $2.714567

Hourly $2.718127

Once per minute $2.718279

Once per second $2.718282

These values appear to be approaching a limit as n increases without bound. In fact, as n gets larger and
larger, the expression  approaches a number used so frequently in mathematics that it has its own
name: the letter . This value is an irrational number, which means that its decimal expansion goes on
forever without repeating. Its approximation to six decimal places is shown below.
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EXAMPLE 9: USING A CALCULATOR TO FIND POWERS OF E

Calculate . Round to five decimal places.
Answer
On a calculator, press the button labeled . The window shows [e^(]. Type 3.14 and then close
parenthesis, (]). Press [ENTER]. Rounding to 5 decimal places, . Caution: Many scientific
calculators have an “Exp” button, which is used to enter numbers in scientific notation. It is not used to find
powers of e.

A GENERAL NOTE: THE CONTINUOUS GROWTH/DECAY FORMULA

For all real numbers t, and all positive numbers a and r, continuous growth or decay is represented by the
formula

where
a is the initial value,
r is the continuous growth rate per unit time,
and t is the elapsed time.

If r > 0, then the formula represents continuous growth. If r < 0, then the formula represents continuous
decay.
For business applications, the continuous growth formula is called the continuous compounding formula
and takes the form

where
P is the principal or the initial invested,
r is the growth or interest rate per unit time,
and t is the period or term of the investment.

HOW TO: GIVEN THE INITIAL VALUE, RATE OF GROWTH OR DECAY, AND
TIME T, SOLVE A CONTINUOUS GROWTH OR DECAY FUNCTION.

1. Use the information in the problem to determine a, the initial value of the function.
2. Use the information in the problem to determine the growth rate r.

1. If the problem refers to continuous growth, then r > 0.

Try It

Use a calculator to find . Round to five decimal places.
Answer

Investigating Continuous Growth

So far we have worked with rational bases for exponential functions. For most real-world phenomena,
however, e is used as the base for exponential functions. Exponential models that use e as the base are
called continuous growth or decay models. We see these models in finance, computer science, and most of
the sciences, such as physics, toxicology, and fluid dynamics.
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2. If the problem refers to continuous decay, then r < 0.
3. Use the information in the problem to determine the time t.
4. Substitute the given information into the continuous growth formula and solve for A(t).

EXAMPLE 10: CALCULATING CONTINUOUS GROWTH

A person invested $1,000 in an account earning a nominal 10% per year compounded continuously. How
much was in the account at the end of one year?
Answer
Since the account is growing in value, this is a continuous compounding problem with growth rate r = 0.10.
The initial investment was $1,000, so P = 1000. We use the continuous compounding formula to find the
value after t = 1 year:

The account is worth $1,105.17 after one year.

EXAMPLE 11: CALCULATING CONTINUOUS DECAY

Radon-222 decays at a continuous rate of 17.3% per day. How much will 100 mg of Radon-222 decay to
in 3 days?
Answer
Since the substance is decaying, the rate, 17.3%, is negative. So, r = –0.173. The initial amount of radon-
222 was 100 mg, so a = 100. We use the continuous decay formula to find the value after t = 3 days:

So 59.5115 mg of radon-222 will remain.

TRY IT

Try It

A person invests $100,000 at a nominal 12% interest per year compounded continuously. What will be the
value of the investment in 30 years?
Answer

$3,659,823.44

Try It

Using the data in Example 9, how much radon-222 will remain after one year?
Answer

3.77E-26 (This is calculator notation for the number written as  in scientific notation. While
the output of an exponential function is never zero, this number is so close to zero that for all practical
purposes we can accept zero as the answer.)
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An interactive or media element has been excluded from this version of the text. You can view it online
here: https://courses.lumenlearning.com/precalculus/?p=13697

annual percentage rate (APR)

compound interest

exponential growth

nominal rate

Key Equations
definition of the exponential
function

definition of exponential
growth

compound interest formula

continuous growth formula

t is the number of unit time periods of growth

a is the starting amount (in the continuous compounding formula a is
replaced with P, the principal)

e is the mathematical constant, 

Key Concepts
An exponential function is defined as a function with a positive constant other than 1 raised to a variable
exponent.
A function is evaluated by solving at a specific value.
An exponential model can be found when the growth rate and initial value are known.
An exponential model can be found when the two data points from the model are known.
An exponential model can be found using two data points from the graph of the model.
An exponential model can be found using two data points from the graph and a calculator.
The value of an account at any time t can be calculated using the compound interest formula when the
principal, annual interest rate, and compounding periods are known.
The initial investment of an account can be found using the compound interest formula when the value
of the account, annual interest rate, compounding periods, and life span of the account are known.
The number e is a mathematical constant often used as the base of real world exponential growth and
decay models. Its decimal approximation is .
Scientific and graphing calculators have the key  or  for calculating powers of e.
Continuous growth or decay models are exponential models that use e as the base. Continuous growth
and decay models can be found when the initial value and growth or decay rate are known.

Glossary

the yearly interest rate earned by an investment account, also called
nominal rate

interest earned on the total balance, not just the principal

a model that grows by a rate proportional to the amount present

the yearly interest rate earned by an investment account, also called annual percentage rate
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GRAPHS OF EXPONENTIAL FUNCTIONS

Learning Outcomes

Graph exponential functions.
Graph exponential functions using transformations.

As we discussed in the previous section, exponential functions are used for many real-world applications
such as finance, forensics, computer science, and most of the life sciences. Working with an equation that
describes a real-world situation gives us a method for making predictions. Most of the time, however, the
equation itself is not enough. We learn a lot about things by seeing their pictorial representations, and that is
exactly why graphing exponential equations is a powerful tool. It gives us another layer of insight for
predicting future events.

Graph exponential functions

Before we begin graphing, it is helpful to review the behavior of exponential growth. Recall the table of
values for a function of the form  whose base is greater than one. We’ll use the function 
. Observe how the output values in the table below change as the input increases by 1.

x –3 –2 –1 0 1 2 3

1 2 4 8

Each output value is the product of the previous output and the base, 2. We call the base 2 the constant
ratio. In fact, for any exponential function with the form , b is the constant ratio of the function.
This means that as the input increases by 1, the output value will be the product of the base and the
previous output, regardless of the value of a.

Notice from the table that
the output values are positive for all values of x;
as x increases, the output values increase without bound; and
as x decreases, the output values grow smaller, approaching zero.

Figure 1 shows the exponential growth function .
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Figure 1. Notice that the graph gets close to the x-axis, but never touches it.

The domain of  is all real numbers, the range is , and the horizontal asymptote is .

To get a sense of the behavior of exponential decay, we can create a table of values for a function of the
form  whose base is between zero and one. We’ll use the function . Observe how
the output values in the table below change as the input increases by 1.

x –3 –2 –1 0 1 2 3

8 4 2 1

Again, because the input is increasing by 1, each output value is the product of the previous output and the
base, or constant ratio .
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A GENERAL NOTE: CHARACTERISTICS OF THE GRAPH OF THE PARENT
FUNCTION F(X) = BX

An exponential function with the form , , , has these characteristics:
one-to-one function
horizontal asymptote: 
domain: 
range: 
x-intercept: none
y-intercept: 
increasing if 
decreasing if 

Compare the graphs of exponential growth and decay functions.

Notice from the table that
the output values are positive for all values of x;
as x increases, the output values grow smaller, approaching zero; and
as x decreases, the output values grow without bound.

The graph shows the exponential decay function, .

Figure 2. The domain of  is all real numbers, the range is , and the horizontal asymptote
is .
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HOW TO: GIVEN AN EXPONENTIAL FUNCTION OF THE FORM ,
GRAPH THE FUNCTION.

1. Create a table of points.
2. Plot at least 3 point from the table, including the y-intercept .
3. Draw a smooth curve through the points.
4. State the domain, , the range, , and the horizontal asymptote, .

EXAMPLE 1: SKETCHING THE GRAPH OF AN EXPONENTIAL FUNCTION
OF THE FORM F(X) = BX

Sketch a graph of . State the domain, range, and asymptote.
Answer
Before graphing, identify the behavior and create a table of points for the graph.

Since b = 0.25 is between zero and one, we know the function is decreasing. The left tail of the graph
will increase without bound, and the right tail will approach the asymptote y = 0.
Create a table of points.

x –3 –2 –1 0 1 2 3

64 16 4 1 0.25 0.0625 0.015625
Plot the y-intercept, , along with two other points. We can use  and .

Draw a smooth curve connecting the points.
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Figure 4. The domain is ; the range is ; the horizontal asymptote is .

Try It

Sketch the graph of . State the domain, range, and asymptote.
Answer

The domain is ; the range is ; the horizontal asymptote is .

Graph exponential functions using transformations

Transformations of exponential graphs behave similarly to those of other functions. Just as with other parent
functions, we can apply the four types of transformations—shifts, reflections, stretches, and compressions—
to the parent function  without loss of shape. For instance, just as the quadratic function maintains
its parabolic shape when shifted, reflected, stretched, or compressed, the exponential function also
maintains its general shape regardless of the transformations applied.

Graphing a Vertical Shift

The first transformation occurs when we add a constant d to the parent function , giving us a
vertical shift d units in the same direction as the sign. For example, if we begin by graphing a parent
function, , we can then graph two vertical shifts alongside it, using : the upward shift, 

 and the downward shift, . Both vertical shifts are shown in Figure 5.
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Figure 5

Observe the results of shifting  vertically:
The domain,  remains unchanged.
When the function is shifted up 3 units to :
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A GENERAL NOTE: SHIFTS OF THE PARENT FUNCTION 

The y-intercept shifts up 3 units to .
The asymptote shifts up 3 units to .
The range becomes .

When the function is shifted down 3 units to :
The y-intercept shifts down 3 units to .
The asymptote also shifts down 3 units to .
The range becomes .

Graphing a Horizontal Shift

The next transformation occurs when we add a constant c to the input of the parent function ,
giving us a horizontal shift c units in the opposite direction of the sign. For example, if we begin by
graphing the parent function , we can then graph two horizontal shifts alongside it, using :
the shift left, , and the shift right, . Both horizontal shifts are shown in Figure 6.

Figure 6

Observe the results of shifting  horizontally:
The domain, , remains unchanged.
The asymptote, , remains unchanged.
The y-intercept shifts such that:

When the function is shifted left 3 units to , the y-intercept becomes . This is
because , so the initial value of the function is 8.
When the function is shifted right 3 units to , the y-intercept becomes . Again,
see that , so the initial value of the function is .
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For any constants c and d, the function  shifts the parent function 
vertically d units, in the same direction of the sign of d.
horizontally c units, in the opposite direction of the sign of c.
The y-intercept becomes .
The horizontal asymptote becomes y = d.
The range becomes .
The domain, , remains unchanged.

HOW TO: GIVEN AN EXPONENTIAL FUNCTION WITH THE FORM 
, GRAPH THE TRANSLATION.

1. Draw the horizontal asymptote y = d.
2. Identify the shift as . Shift the graph of  left c units if c is positive, and right  units if

c is negative.
3. Shift the graph of  up d units if d is positive, and down d units if d is negative.
4. State the domain, , the range, , and the horizontal asymptote .

EXAMPLE 2: GRAPHING A SHIFT OF AN EXPONENTIAL FUNCTION

Graph . State the domain, range, and asymptote.
Answer
We have an exponential equation of the form , with , , and .
Draw the horizontal asymptote , so draw .
Identify the shift as , so the shift is .
Shift the graph of  left 1 units and down 3 units.

Figure 7. The domain is ; the range is ; the horizontal asymptote is .
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An interactive or media element has been excluded from this version of the text. You can view it online
here: https://courses.lumenlearning.com/precalculus/?p=13700

TRY IT

HOW TO: GIVEN AN EQUATION OF THE FORM  FOR ,
USE A GRAPHING CALCULATOR TO APPROXIMATE THE SOLUTION.

Press [Y=]. Enter the given exponential equation in the line headed “Y1=.”
Enter the given value for  in the line headed “Y2=.”
Press [WINDOW]. Adjust the y-axis so that it includes the value entered for “Y2=.”
Press [GRAPH] to observe the graph of the exponential function along with the line for the specified
value of .
To find the value of x, we compute the point of intersection. Press [2ND] then [CALC]. Select
“intersect” and press [ENTER] three times. The point of intersection gives the value of x for the
indicated value of the function.

EXAMPLE 3: APPROXIMATING THE SOLUTION OF AN EXPONENTIAL
EQUATION

Solve  graphically. Round to the nearest thousandth.

Try It

Graph . State domain, range, and asymptote.
Answer

The domain is ; the range is ; the horizontal asymptote is y = 3.
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Answer
Press [Y=] and enter  next to Y1=. Then enter 42 next to Y2=. For a window, use the values
–3 to 3 for x and –5 to 55 for y. Press [GRAPH]. The graphs should intersect somewhere near x = 2.
For a better approximation, press [2ND] then [CALC]. Select [5: intersect] and press [ENTER] three
times. The x-coordinate of the point of intersection is displayed as 2.1661943. (Your answer may be
different if you use a different window or use a different value for Guess?) To the nearest thousandth, 

.

A GENERAL NOTE: STRETCHES AND COMPRESSIONS OF THE PARENT
FUNCTION F(X) = BX

For any factor a > 0, the function 
is stretched vertically by a factor of a if .
is compressed vertically by a factor of a if .
has a y-intercept of .

Try It

Solve  graphically. Round to the nearest thousandth.
Answer

Graphing a Stretch or Compression

While horizontal and vertical shifts involve adding constants to the input or to the function itself, a stretch or
compression occurs when we multiply the parent function  by a constant . For example, if
we begin by graphing the parent function , we can then graph the stretch, using , to get 

 as shown on the left in Figure 8, and the compression, using , to get  as
shown on the right in Figure 8.

Figure 8. (a)  stretches the graph of  vertically by a factor of 3. (b) 
compresses the graph of  vertically by a factor of .

445



has a horizontal asymptote at , a range of , and a domain of , which are
unchanged from the parent function.

EXAMPLE 4: GRAPHING THE STRETCH OF AN EXPONENTIAL FUNCTION

Sketch a graph of . State the domain, range, and asymptote.
Answer
Before graphing, identify the behavior and key points on the graph.

Since  is between zero and one, the left tail of the graph will increase without bound as
x decreases, and the right tail will approach the x-axis as x increases.
Since a = 4, the graph of  will be stretched by a factor of 4.
Create a table of points.

x –3 –2 –1 0 1 2 3

32 16 8 4 2 1 0.5
Plot the y-intercept, , along with two other points. We can use  and .

Draw a smooth curve connecting the points.

Figure 9. The domain is ; the range is ; the horizontal asymptote is y = 0.

Try It

Sketch the graph of . State the domain, range, and asymptote.
Answer
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An interactive or media element has been excluded from this version of the text. You can view it online
here: https://courses.lumenlearning.com/precalculus/?p=13700

TRY IT

The domain is ; the range is ; the horizontal asymptote is . 

Graphing Reflections

In addition to shifting, compressing, and stretching a graph, we can also reflect it about the x-axis or the y-
axis. When we multiply the parent function  by –1, we get a reflection about the x-axis. When we
multiply the input by –1, we get a reflection about the y-axis. For example, if we begin by graphing the
parent function , we can then graph the two reflections alongside it. The reflection about the x-
axis, , is shown on the left side, and the reflection about the y-axis , is shown on the
right side.
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Figure 10.
(a)  reflects the graph of  about the x-axis.
(b)  reflects the graph of  about the y-axis.

A GENERAL NOTE: REFLECTIONS OF THE PARENT FUNCTION F(X) = BX

The function 
reflects the parent function  about the x-axis.
has a y-intercept of .
has a range of 
has a horizontal asymptote at  and domain of , which are unchanged from the parent
function.

The function 
reflects the parent function  about the y-axis.
has a y-intercept of , a horizontal asymptote at , a range of , and a domain of 

, which are unchanged from the parent function.

EXAMPLE 5: WRITING AND GRAPHING THE REFLECTION OF AN
EXPONENTIAL FUNCTION

Find and graph the equation for a function, , that reflects  about the x-axis. State its
domain, range, and asymptote.
Answer
Since we want to reflect the parent function  about the x-axis, we multiply  by –1 to get, 

. Next we create a table of points.

–3 –2 –1 0 1 2 3

–64 –16 –4 –1 –0.25 –0.0625 –0.0156

Plot the y-intercept, , along with two other points. We can use  and .
Draw a smooth curve connecting the points:
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Figure 11. The domain is ; the range is ; the horizontal asymptote is .

An interactive or media element has been excluded from this version of the text. You can view it online
here: https://courses.lumenlearning.com/precalculus/?p=13700

TRY IT

Try It

Find and graph the equation for a function, , that reflects  about the y-axis. State its
domain, range, and asymptote.
Answer

The domain is ; the range is ; the horizontal asymptote is .

Summarizing Translations of the Exponential Function

Now that we have worked with each type of translation for the exponential function, we can summarize
them to arrive at the general equation for translating exponential functions.
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EXAMPLE 6: WRITING A FUNCTION FROM A DESCRIPTION

Write the equation for the function described below. Give the horizontal asymptote, the domain, and the
range.

 is vertically stretched by a factor of 2, reflected across the y-axis, and then shifted up 4 units.
Answer
We want to find an equation of the general form . We use the description provided to
find a, b, c, and d.

We are given the parent function , so b = e.
The function is stretched by a factor of 2, so a = 2.
The function is reflected about the y-axis. We replace x with –x to get: .
The graph is shifted vertically 4 units, so d = 4.

Substituting in the general form we get,

The domain is ; the range is ; the horizontal asymptote is .

A GENERAL NOTE: TRANSLATIONS OF EXPONENTIAL FUNCTIONS

A translation of an exponential function has the form

Where the parent function, , , is
shifted horizontally c units to the left.
stretched vertically by a factor of |a| if |a| > 0.
compressed vertically by a factor of |a| if 0 < |a| < 1.
shifted vertically d units.
reflected about the x-axis when a < 0.

Note the order of the shifts, transformations, and reflections follow the order of operations.

Translations of the Parent Function 

Translation Form

Shift

Horizontally c units to the left
Vertically d units up

Stretch and Compress

Stretch if |a|>1
Compression if 0<|a|<1

Reflect about the x-axis

Reflect about the y-axis

General equation for all translations
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Try It

Write the equation for function described below. Give the horizontal asymptote, the domain, and the
range.

 is compressed vertically by a factor of , reflected across the x-axis and then shifted down 2 units.
Answer

; the domain is ; the range is ; the horizontal asymptote is .

Key Equations

General Form for the Translation of the Parent Function 

Key Concepts

The graph of the function  has a y-intercept at , domain , range , and
horizontal asymptote .
If , the function is increasing. The left tail of the graph will approach the asymptote , and the
right tail will increase without bound.
If 0 < b < 1, the function is decreasing. The left tail of the graph will increase without bound, and the
right tail will approach the asymptote .
The equation  represents a vertical shift of the parent function .
The equation  represents a horizontal shift of the parent function .
Approximate solutions of the equation  can be found using a graphing calculator.
The equation , where , represents a vertical stretch if  or compression if 

 of the parent function .
When the parent function  is multiplied by –1, the result, , is a reflection about the
x-axis. When the input is multiplied by –1, the result, , is a reflection about the y-axis.
All translations of the exponential function can be summarized by the general equation 

.
Using the general equation , we can write the equation of a function given its
description.
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Figure 1. Devastation of March 11, 2011 earthquake in Honshu, Japan. (credit: Daniel Pierce)

In 2010, a major earthquake struck Haiti, destroying or damaging over 285,000 homes. (Note:
http://earthquake.usgs.gov/earthquakes/eqinthenews/2010/us2010rja6/#summary. Accessed 3/4/2013.) One
year later, another, stronger earthquake devastated Honshu, Japan, destroying or damaging over 332,000
buildings, (Note: http://earthquake.usgs.gov/earthquakes/eqinthenews/2011/usc0001xgp/#summary.
Accessed 3/4/2013.) like those shown in the picture above. Even though both caused substantial damage,
the earthquake in 2011 was 100 times stronger than the earthquake in Haiti. How do we know? The
magnitudes of earthquakes are measured on a scale known as the Richter Scale. The Haitian earthquake
registered a 7.0 on the Richter Scale (Note:
http://earthquake.usgs.gov/earthquakes/eqinthenews/2010/us2010rja6/. Accessed 3/4/2013.) whereas the
Japanese earthquake registered a 9.0. (Note:
http://earthquake.usgs.gov/earthquakes/eqinthenews/2011/usc0001xgp/#details. Accessed 3/4/2013.)

The Richter Scale is a base-ten logarithmic scale. In other words, an earthquake of magnitude 8 is not twice
as great as an earthquake of magnitude 4. It is  times as great! In this lesson, we will
investigate the nature of the Richter Scale and the base-ten function upon which it depends.

Convert from logarithmic to exponential form

In order to analyze the magnitude of earthquakes or compare the magnitudes of two different earthquakes,
we need to be able to convert between logarithmic and exponential form. For example, suppose the amount
of energy released from one earthquake were 500 times greater than the amount of energy released from
another. We want to calculate the difference in magnitude. The equation that represents this problem is 

, where x represents the difference in magnitudes on the Richter Scale. How would we solve
for x?

We have not yet learned a method for solving exponential equations. None of the algebraic tools discussed
so far is sufficient to solve . We know that  and , so it is clear that x must be
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some value between 2 and 3, since  is increasing. We can examine a graph to better estimate the
solution.

Figure 2

Estimating from a graph, however, is imprecise. To find an algebraic solution, we must introduce a new
function. Observe that the graph above passes the horizontal line test. The exponential function  is
one-to-one, so its inverse,  is also a function. As is the case with all inverse functions, we simply
interchange x and y and solve for y to find the inverse function. To represent y as a function of x, we use a
logarithmic function of the form . The base b logarithm of a number is the exponent by which
we must raise b to get that number.

We read a logarithmic expression as, “The logarithm with base b of x is equal to y,” or, simplified, “log base
b of x is y.” We can also say, “b raised to the power of y is x,” because logs are exponents. For example, the
base 2 logarithm of 32 is 5, because 5 is the exponent we must apply to 2 to get 32. Since , we can
write . We read this as “log base 2 of 32 is 5.”
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A GENERAL NOTE: DEFINITION OF THE LOGARITHMIC FUNCTION

A logarithm base b of a positive number x satisfies the following definition.
For ,

where,
we read  as, “the logarithm with base b of x” or the “log base b of x.”
the logarithm y is the exponent to which b must be raised to get x.

Also, since the logarithmic and exponential functions switch the x and y values, the domain and range of
the exponential function are interchanged for the logarithmic function. Therefore,

the domain of the logarithm function with base .
the range of the logarithm function with base .

Q & A

Can we take the logarithm of a negative number?
No. Because the base of an exponential function is always positive, no power of that base can ever be
negative. We can never take the logarithm of a negative number. Also, we cannot take the logarithm of
zero. Calculators may output a log of a negative number when in complex mode, but the log of a negative
number is not a real number.

HOW TO: GIVEN AN EQUATION IN LOGARITHMIC FORM ,
CONVERT IT TO EXPONENTIAL FORM.

1. Examine the equation  and identify b, y, and x.

We can express the relationship between logarithmic form and its corresponding exponential form as
follows:

Note that the base b is always positive.

Because logarithm is a function, it is most correctly written as , using parentheses to denote function
evaluation, just as we would with . However, when the input is a single variable or number, it is common
to see the parentheses dropped and the expression written without parentheses, as . Note that many
calculators require parentheses around the x.

We can illustrate the notation of logarithms as follows:

Notice that, comparing the logarithm function and the exponential function, the input and the output are
switched. This means  and  are inverse functions.
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2. Rewrite  as .

EXAMPLE 1: CONVERTING FROM LOGARITHMIC FORM TO EXPONENTIAL
FORM

Write the following logarithmic equations in exponential form.

1. 
2. 

Answer
First, identify the values of b, y, and x. Then, write the equation in the form .

1. 

Here, . Therefore, the equation  is equivalent to .
2. 

Here, b = 3, y = 2, and x = 9. Therefore, the equation  is equivalent to .

An interactive or media element has been excluded from this version of the text. You can view it online
here: https://courses.lumenlearning.com/precalculus/?p=13703

TRY IT

EXAMPLE 2: CONVERTING FROM EXPONENTIAL FORM TO LOGARITHMIC
FORM

Write the following exponential equations in logarithmic form.

1. 
2. 
3. 

Try It

Write the following logarithmic equations in exponential form.

a. 

b. 
Answer

a.   is equivalent to 
b.  is equivalent to 

 Convert from exponential to logarithmic form

To convert from exponents to logarithms, we follow the same steps in reverse. We identify the base b,
exponent x, and output y. Then we write .
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Answer
First, identify the values of b, y, and x. Then, write the equation in the form .

1. 
Here, b = 2, x = 3, and y = 8. Therefore, the equation  is equivalent to .

2. 
Here, b = 5, x = 2, and y = 25. Therefore, the equation  is equivalent to .

3. 

Here, b = 10, x = –4, and . Therefore, the equation  is equivalent to 

.

An interactive or media element has been excluded from this version of the text. You can view it online
here: https://courses.lumenlearning.com/precalculus/?p=13703

TRY IT

Try It

Write the following exponential equations in logarithmic form.

a. 

b. 

c. 
Answer

a.   is equivalent to 
b.  is equivalent to 
c.  is equivalent to 

 Evaluate logarithms

Knowing the squares, cubes, and roots of numbers allows us to evaluate many logarithms mentally. For
example, consider . We ask, “To what exponent must 2 be raised in order to get 8?” Because we
already know , it follows that .

Now consider solving  and  mentally.

We ask, “To what exponent must 7 be raised in order to get 49?” We know . Therefore, 

We ask, “To what exponent must 3 be raised in order to get 27?” We know . Therefore, 

Even some seemingly more complicated logarithms can be evaluated without a calculator. For example, let’s
evaluate  mentally.

We ask, “To what exponent must  be raised in order to get ? ” We know  and , so 
. Therefore, .
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HOW TO: GIVEN A LOGARITHM OF THE FORM , EVALUATE IT
MENTALLY.

1. Rewrite the argument x as a power of b: .
2. Use previous knowledge of powers of b identify y by asking, “To what exponent should b be raised in

order to get x?”

EXAMPLE 3: SOLVING LOGARITHMS MENTALLY

Solve  without using a calculator.
Answer
First we rewrite the logarithm in exponential form: . Next, we ask, “To what exponent must 4 be
raised in order to get 64?”
We know

Therefore,

EXAMPLE 4: EVALUATING THE LOGARITHM OF A RECIPROCAL

Evaluate  without using a calculator.
Answer
First we rewrite the logarithm in exponential form: . Next, we ask, “To what exponent must 3 be
raised in order to get “?
We know , but what must we do to get the reciprocal, ? Recall from working with exponents that

. We use this information to write

Therefore, .

Try It

Solve  without using a calculator.
Answer

 (recalling that )

Try It

Evaluate  without using a calculator.
Answer
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An interactive or media element has been excluded from this version of the text. You can view it online
here: https://courses.lumenlearning.com/precalculus/?p=13703

TRY IT

A GENERAL NOTE: DEFINITION OF THE NATURAL LOGARITHM

A natural logarithm is a logarithm with base e. We write  simply as . The natural logarithm
of a positive number x satisfies the following definition.
For ,

We read  as, “the logarithm with base e of x” or “the natural logarithm of x.”
The logarithm y is the exponent to which e must be raised to get x.
Since the functions  and  are inverse functions,  for all x and  for x >
0.

HOW TO: GIVEN A NATURAL LOGARITHM WITH THE FORM ,
EVALUATE IT USING A CALCULATOR.

1. Press [LN].
2. Enter the value given for x, followed by [ ) ].
3. Press [ENTER].

EXAMPLE 5: EVALUATING A NATURAL LOGARITHM USING A
CALCULATOR

Evaluate  to four decimal places using a calculator.
Answer

Press [LN].
Enter 500, followed by [ ) ].
Press [ENTER].

Rounding to four decimal places, 

 Use common logarithms

The most frequently used base for logarithms is e. Base e logarithms are important in calculus and some
scientific applications; they are called natural logarithms. The base e logarithm, , has its own
notation, .

Most values of  can be found only using a calculator. The major exception is that, because the
logarithm of 1 is always 0 in any base, . For other natural logarithms, we can use the  key that can
be found on most scientific calculators. We can also find the natural logarithm of any power of e using the
inverse property of logarithms.

Try It
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An interactive or media element has been excluded from this version of the text. You can view it online
here: https://courses.lumenlearning.com/precalculus/?p=13703

TRY IT

common logarithm

logarithm

natural logarithm

Evaluate .
Answer

It is not possible to take the logarithm of a negative number in the set of real numbers.

Key Equations
Definition of the logarithmic function For ,  if and only if .

Definition of the common logarithm For ,  if and only if .

Definition of the natural logarithm For ,  if and only if .

Key Concepts
The inverse of an exponential function is a logarithmic function, and the inverse of a logarithmic function
is an exponential function.
Logarithmic equations can be written in an equivalent exponential form, using the definition of a
logarithm.
Exponential equations can be written in their equivalent logarithmic form using the definition of a
logarithm.
Logarithmic functions with base b can be evaluated mentally using previous knowledge of powers of b.
Common logarithms can be evaluated mentally using previous knowledge of powers of 10.
When common logarithms cannot be evaluated mentally, a calculator can be used.
Real-world exponential problems with base 10 can be rewritten as a common logarithm and then
evaluated using a calculator.
Natural logarithms can be evaluated using a calculator.

Glossary

the exponent to which 10 must be raised to get x;  is written simply as .

the exponent to which b must be raised to get x; written 

the exponent to which the number e must be raised to get x;  is written as .
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Learning Outcomes

Identify the domain of a logarithmic function.
Graph logarithmic functions.

In Graphs of Exponential Functions, we saw how creating a graphical representation of an exponential
model gives us another layer of insight for predicting future events. How do logarithmic graphs give us
insight into situations? Because every logarithmic function is the inverse function of an exponential function,
we can think of every output on a logarithmic graph as the input for the corresponding inverse exponential
equation. In other words, logarithms give the cause for an effect.

To illustrate, suppose we invest $2500 in an account that offers an annual interest rate of 5%, compounded
continuously. We already know that the balance in our account for any year t can be found with the equation 

.

But what if we wanted to know the year for any balance? We would need to create a corresponding new
function by interchanging the input and the output; thus we would need to create a logarithmic model for this
situation. By graphing the model, we can see the output (year) for any input (account balance). For instance,
what if we wanted to know how many years it would take for our initial investment to double? Figure 1 shows
this point on the logarithmic graph.

Figure 1

In this section we will discuss the values for which a logarithmic function is defined, and then turn our
attention to graphing the family of logarithmic functions.

Identify the domain of a logarithmic function

Before working with graphs, we will take a look at the domain (the set of input values) for which the
logarithmic function is defined.

Recall that the exponential function is defined as  for any real number x and constant , ,
where

The domain of y is .
The range of y is .
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HOW TO: GIVEN A LOGARITHMIC FUNCTION, IDENTIFY THE DOMAIN.

1. Set up an inequality showing the argument greater than zero.
2. Solve for x.
3. Write the domain in interval notation.

EXAMPLE 1: IDENTIFYING THE DOMAIN OF A LOGARITHMIC SHIFT

What is the domain of ?
Answer
The logarithmic function is defined only when the input is positive, so this function is defined when 

. Solving this inequality,

The domain of  is .

EXAMPLE 2: IDENTIFYING THE DOMAIN OF A LOGARITHMIC SHIFT AND
REFLECTION

What is the domain of ?

In the last section we learned that the logarithmic function  is the inverse of the exponential
function . So, as inverse functions:

The domain of  is the range of : .
The range of  is the domain of : .

Transformations of the parent function  behave similarly to those of other functions. Just as with
other parent functions, we can apply the four types of transformations—shifts, stretches, compressions, and
reflections—to the parent function without loss of shape.

In Graphs of Exponential Functions we saw that certain transformations can change the range of .
Similarly, applying transformations to the parent function  can change the domain. When finding
the domain of a logarithmic function, therefore, it is important to remember that the domain consists only of
positive real numbers. That is, the argument of the logarithmic function must be greater than zero.

For example, consider . This function is defined for any values of x such that the
argument, in this case , is greater than zero. To find the domain, we set up an inequality and solve
for x:

In interval notation, the domain of  is .

Try It

What is the domain of ?
Answer
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Answer
The logarithmic function is defined only when the input is positive, so this function is defined when 

. Solving this inequality,

The domain of  is .

An interactive or media element has been excluded from this version of the text. You can view it online
here: https://courses.lumenlearning.com/precalculus/?p=13706

TRY IT

Try It

What is the domain of ?
Answer

 Graph logarithmic functions

Now that we have a feel for the set of values for which a logarithmic function is defined, we move on to
graphing logarithmic functions. The family of logarithmic functions includes the parent function 
along with all its transformations: shifts, stretches, compressions, and reflections.

We begin with the parent function . Because every logarithmic function of this form is the inverse
of an exponential function with the form , their graphs will be reflections of each other across the line 

. To illustrate this, we can observe the relationship between the input and output values of  and
its equivalent  in the table below.

x –3 –2 –1 0 1 2 3

1 2 4 8

–3 –2 –1 0 1 2 3

Using the inputs and outputs from the table above, we can build another table to observe the relationship
between points on the graphs of the inverse functions  and .

As we’d expect, the x– and y-coordinates are reversed for the inverse functions. The figure below shows the
graph of f and g.
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A GENERAL NOTE: CHARACTERISTICS OF THE GRAPH OF THE PARENT
FUNCTION, F(X) = LOGB(X)

For any real number x and constant b > 0, , we can see the following characteristics in the graph of 
:

one-to-one function
vertical asymptote: x = 0
domain: 
range: 
x-intercept:  and key point 
y-intercept: none
increasing if 
decreasing if 0 < b < 1

Figure 3 shows how changing the base b in  can affect the graphs. Observe that the
graphs compress vertically as the value of the base increases. (Note: recall that the function  has
base 

Figure 2. Notice that the graphs of  and  are reflections about the line y = x.

Observe the following from the graph:
 has a y-intercept at  and  has an x-intercept at .

The domain of , , is the same as the range of .
The range of , , is the same as the domain of .
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Figure 4. The graphs of three logarithmic functions with different bases, all greater than 1.

HOW TO: GIVEN A LOGARITHMIC FUNCTION WITH THE FORM 
, GRAPH THE FUNCTION.

1. Draw and label the vertical asymptote, x = 0.
2. Plot the x-intercept, .
3. Plot the key point .
4. Draw a smooth curve through the points.
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5. State the domain, , the range, , and the vertical asymptote, x = 0.

EXAMPLE 3: GRAPHING A LOGARITHMIC FUNCTION WITH THE FORM 
.

Graph . State the domain, range, and asymptote.
Answer
Before graphing, identify the behavior and key points for the graph.

Since b = 5 is greater than one, we know the function is increasing. The left tail of the graph will
approach the vertical asymptote x = 0, and the right tail will increase slowly without bound.
The x-intercept is .
The key point  is on the graph.
We draw and label the asymptote, plot and label the points, and draw a smooth curve through the
points.

Figure 5. The domain is , the range is , and the vertical asymptote is x = 0.

Try It

Graph . State the domain, range, and asymptote.
Answer
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An interactive or media element has been excluded from this version of the text. You can view it online
here: https://courses.lumenlearning.com/precalculus/?p=13706

TRY IT

The domain is , the range is , and the vertical asymptote is x = 0.

 Graphing Transformations of Logarithmic Functions

As we mentioned in the beginning of the section, transformations of logarithmic graphs behave similarly to
those of other parent functions. We can shift, stretch, compress, and reflect the parent function 
without loss of shape.

Graphing a Horizontal Shift of 

When a constant c is added to the input of the parent function , the result is a horizontal
shift c units in the opposite direction of the sign on c. To visualize horizontal shifts, we can observe the
general graph of the parent function  and for c > 0 alongside the shift left, 

, and the shift right, .
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A GENERAL NOTE: HORIZONTAL SHIFTS OF THE PARENT FUNCTION 

For any constant c, the function 
shifts the parent function  left c units if c > 0.
shifts the parent function  right c units if c < 0.
has the vertical asymptote x = –c.
has domain .
has range .

HOW TO: GIVEN A LOGARITHMIC FUNCTION WITH THE FORM 
, GRAPH THE TRANSLATION.

1. Identify the horizontal shift:
1. If c > 0, shift the graph of  left c units.
2. If c < 0, shift the graph of  right c units.

2. Draw the vertical asymptote x = –c.
3. Identify three key points from the parent function. Find new coordinates for the shifted functions by

subtracting c from the x coordinate.
4. Label the three points.
5. The Domain is , the range is , and the vertical asymptote is x = –c.

Figure 6
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EXAMPLE 4: GRAPHING A HORIZONTAL SHIFT OF THE PARENT
FUNCTION 

Sketch the horizontal shift  alongside its parent function. Include the key points and
asymptotes on the graph. State the domain, range, and asymptote.
Answer
Since the function is , we notice .
Thus c = –2, so c < 0. This means we will shift the function  right 2 units.
The vertical asymptote is  or x = 2.
Consider the three key points from the parent function, , , and .
The new coordinates are found by adding 2 to the x coordinates.
Label the points , , and .
The domain is , the range is , and the vertical asymptote is x = 2.

Figure 7

 

Try It

Sketch a graph of  alongside its parent function. Include the key points and
asymptotes on the graph. State the domain, range, and asymptote.
Answer
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An interactive or media element has been excluded from this version of the text. You can view it online
here: https://courses.lumenlearning.com/precalculus/?p=13706

TRY IT

The domain is , the range , and the asymptote x = –4.

Graphing a Vertical Shift of 
When a constant d is added to the parent function , the result is a vertical shift d units in
the direction of the sign on d. To visualize vertical shifts, we can observe the general graph of the parent
function  alongside the shift up,  and the shift down, 
.

469



A GENERAL NOTE: VERTICAL SHIFTS OF THE PARENT FUNCTION 

For any constant d, the function 
shifts the parent function  up d units if d > 0.
shifts the parent function  down d units if d < 0.
has the vertical asymptote x = 0.
has domain .
has range .

HOW TO: GIVEN A LOGARITHMIC FUNCTION WITH THE FORM 
, GRAPH THE TRANSLATION.

1. Identify the vertical shift:
1. If d > 0, shift the graph of  up d units.
2. If d < 0, shift the graph of  down d units.

2. Draw the vertical asymptote x = 0.

Figure 8
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3. Identify three key points from the parent function. Find new coordinates for the shifted functions by
adding d to the y coordinate.

4. Label the three points.
5. The domain is , the range is , and the vertical asymptote is x = 0.

EXAMPLE 5: GRAPHING A VERTICAL SHIFT OF THE PARENT FUNCTION 

Sketch a graph of  alongside its parent function. Include the key points and asymptote
on the graph. State the domain, range, and asymptote.
Answer
Since the function is , we will notice d = –2. Thus d < 0.
This means we will shift the function  down 2 units.
The vertical asymptote is x = 0.
Consider the three key points from the parent function, , , and .
The new coordinates are found by subtracting 2 from the y coordinates.
Label the points , , and .
The domain is , the range is , and the vertical asymptote is x = 0.

Figure 9. The domain is , the range is , and the vertical asymptote is x = 0.

Try It

Sketch a graph of  alongside its parent function. Include the key points and
asymptote on the graph. State the domain, range, and asymptote.
Answer
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An interactive or media element has been excluded from this version of the text. You can view it online
here: https://courses.lumenlearning.com/precalculus/?p=13706

TRY IT

The domain is , the range is , and the vertical asymptote is x = 0.

Graphing Stretches and Compressions of 
When the parent function  is multiplied by a constant a > 0, the result is a vertical stretch or
compression of the original graph. To visualize stretches and compressions, we set a > 1 and observe the
general graph of the parent function  alongside the vertical stretch,  and
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A GENERAL NOTE: VERTICAL STRETCHES AND COMPRESSIONS OF THE
PARENT FUNCTION 

For any constant a > 1, the function 
stretches the parent function  vertically by a factor of a if a > 1.
compresses the parent function  vertically by a factor of a if 0 < a < 1.
has the vertical asymptote x = 0.
has the x-intercept .
has domain .
has range .

HOW TO: GIVEN A LOGARITHMIC FUNCTION WITH THE FORM 
, , GRAPH THE TRANSLATION.

1. Identify the vertical stretch or compressions:
1. If , the graph of  is stretched by a factor of a units.
2. If , the graph of  is compressed by a factor of a units.

2. Draw the vertical asymptote x = 0.

the vertical compression, .
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3. Identify three key points from the parent function. Find new coordinates for the shifted functions by
multiplying the y coordinates by a.

4. Label the three points.
5. The domain is , the range is , and the vertical asymptote is x = 0.

EXAMPLE 6: GRAPHING A STRETCH OR COMPRESSION OF THE PARENT
FUNCTION 

Sketch a graph of  alongside its parent function. Include the key points and asymptote
on the graph. State the domain, range, and asymptote.
Answer
Since the function is , we will notice a = 2.
This means we will stretch the function  by a factor of 2.
The vertical asymptote is x = 0.
Consider the three key points from the parent function, , , and .
The new coordinates are found by multiplying the y coordinates by 2.
Label the points , , and .
The domain is , the range is , and the vertical asymptote is x = 0.

Figure 11. The domain is , the range is , and the vertical asymptote is x = 0.

Try It

Sketch a graph of  alongside its parent function. Include the key points and asymptote
on the graph. State the domain, range, and asymptote.
Answer
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EXAMPLE 7: COMBINING A SHIFT AND A STRETCH

Sketch a graph of . State the domain, range, and asymptote.
Answer
Remember: what happens inside parentheses happens first. First, we move the graph left 2 units, then
stretch the function vertically by a factor of 5. The vertical asymptote will be shifted to x = –2. The x-
intercept will be . The domain will be . Two points will help give the shape of the graph: 

 and . We chose x = 8 as the x-coordinate of one point to graph because when x = 8, x + 2 =
10, the base of the common logarithm.

Figure 12. The domain is , the range is , and the vertical asymptote is x = –2.

The domain is , the range is , and the vertical asymptote is x = 0.

Try It

Sketch a graph of the function . State the domain, range, and asymptote.
Answer

The domain is , the range is , and the vertical asymptote is x = 2.
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An interactive or media element has been excluded from this version of the text. You can view it online
here: https://courses.lumenlearning.com/precalculus/?p=13706

TRY IT

Graphing Reflections of 

When the parent function  is multiplied by –1, the result is a reflection about the x-axis.
When the input is multiplied by –1, the result is a reflection about the y-axis. To visualize reflections, we
restrict b > 1, and observe the general graph of the parent function  alongside the reflection
about the x-axis,  and the reflection about the y-axis, .
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A GENERAL NOTE: REFLECTIONS OF THE PARENT FUNCTION 

The function 
reflects the parent function  about the x-axis.
has domain, , range, , and vertical asymptote, x = 0, which are unchanged from the
parent function.

The function 
reflects the parent function  about the y-axis.
has domain .
has range, , and vertical asymptote, x = 0, which are unchanged from the parent function.

HOW TO: GIVEN A LOGARITHMIC FUNCTION WITH THE PARENT
FUNCTION , GRAPH A TRANSLATION.
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1. Draw the vertical asymptote, x = 0. 1. Draw the vertical asymptote, x = 0.

2. Plot the x-intercept, . 2. Plot the x-intercept, .

3. Reflect the graph of the parent function 
 about the x-axis.

3. Reflect the graph of the parent function 
 about the y-axis.

4. Draw a smooth curve through the points. 4. Draw a smooth curve through the points.

5. State the domain, , the range, ,
and the vertical asymptote x = 0.

5. State the domain, , the range, 
, and the vertical asymptote x = 0.

EXAMPLE 8: GRAPHING A REFLECTION OF A LOGARITHMIC FUNCTION

Sketch a graph of  alongside its parent function. Include the key points and asymptote on
the graph. State the domain, range, and asymptote.
Answer
Before graphing , identify the behavior and key points for the graph.

Since b = 10 is greater than one, we know that the parent function is increasing. Since the input value
is multiplied by –1, f is a reflection of the parent graph about the y-axis. Thus,  will be
decreasing as x moves from negative infinity to zero, and the right tail of the graph will approach the
vertical asymptote x = 0.
The x-intercept is .
We draw and label the asymptote, plot and label the points, and draw a smooth curve through the
points.

Figure 14. The domain is , the range is , and the vertical asymptote is x = 0.

Try It

Graph . State the domain, range, and asymptote.
Answer
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HOW TO: GIVEN A LOGARITHMIC EQUATION, USE A GRAPHING
CALCULATOR TO APPROXIMATE SOLUTIONS.

1. Press [Y=]. Enter the given logarithm equation or equations as Y1= and, if needed, Y2=.
2. Press [GRAPH] to observe the graphs of the curves and use [WINDOW] to find an appropriate view

of the graphs, including their point(s) of intersection.
3. To find the value of x, we compute the point of intersection. Press [2ND] then [CALC]. Select

“intersect” and press [ENTER] three times. The point of intersection gives the value of x, for the
point(s) of intersection.

EXAMPLE 9: APPROXIMATING THE SOLUTION OF A LOGARITHMIC
EQUATION

Solve  graphically. Round to the nearest thousandth.
Answer
Press [Y=] and enter  next to Y1=. Then enter  next to Y2=. For a window, use the
values 0 to 5 for x and –10 to 10 for y. Press [GRAPH]. The graphs should intersect somewhere a little to
right of x = 1.
For a better approximation, press [2ND] then [CALC]. Select [5: intersect] and press [ENTER] three
times. The x-coordinate of the point of intersection is displayed as 1.3385297. (Your answer may be
different if you use a different window or use a different value for Guess?) So, to the nearest thousandth, 

.

The domain is , the range is , and the vertical asymptote is x = 0.

Try It

Solve  graphically. Round to the nearest thousandth.
Answer

Summarizing Translations of the Logarithmic Function

Now that we have worked with each type of translation for the logarithmic function, we can summarize each
in the table below to arrive at the general equation for translating exponential functions.
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A GENERAL NOTE: TRANSLATIONS OF LOGARITHMIC FUNCTIONS

All translations of the parent logarithmic function, , have the form

where the parent function, , is
shifted vertically up d units.
shifted horizontally to the left c units.
stretched vertically by a factor of |a| if |a| > 0.
compressed vertically by a factor of |a| if 0 < |a| < 1.
reflected about the x-axis when a < 0.

For , the graph of the parent function is reflected about the y-axis.

EXAMPLE 10: FINDING THE VERTICAL ASYMPTOTE OF A LOGARITHM
GRAPH

What is the vertical asymptote of ?
Answer
The vertical asymptote is at x = –4.

Analysis of the Solution

The coefficient, the base, and the upward translation do not affect the asymptote. The shift of the curve 4
units to the left shifts the vertical asymptote to x = –4.

Translations of the Parent Function 

Translation Form

Shift

Horizontally c units to the left
Vertically d units up

Stretch and Compress

Stretch if 
Compression if 

Reflect about the x-axis

Reflect about the y-axis

General equation for all translations

Try It

What is the vertical asymptote of ?
Answer

x = 1
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EXAMPLE 11: FINDING THE EQUATION FROM A GRAPH

Find a possible equation for the common logarithmic function graphed in Figure 15.

Figure 15

Answer
This graph has a vertical asymptote at x = –2 and has been vertically reflected. We do not know yet the
vertical shift or the vertical stretch. We know so far that the equation will have form:

It appears the graph passes through the points  and . Substituting ,

Next, substituting in ,

This gives us the equation .

Analysis of the Solution
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We can verify this answer by comparing the function values in the table below with the points on the graph
in Example 11.

x −1 0 1 2 3

f(x) 1 0 −0.58496 −1 −1.3219

x 4 5 6 7 8

f(x) −1.5850 −1.8074 −2 −2.1699 −2.3219

Try It

Give the equation of the natural logarithm graphed in Figure 16.

Figure 16

Answer

Key Equations
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Q & A

Is it possible to tell the domain and range and describe the end behavior of a function just by
looking at the graph?
Yes, if we know the function is a general logarithmic function. For example, look at the graph in Try It 11.
The graph approaches x = –3 (or thereabouts) more and more closely, so x = –3 is, or is very close to, the
vertical asymptote. It approaches from the right, so the domain is all points to the right, . The
range, as with all general logarithmic functions, is all real numbers. And we can see the end behavior
because the graph goes down as it goes left and up as it goes right. The end behavior is that as 

 and as .

General Form for the Translation of the Parent Logarithmic Function 

Key Concepts

To find the domain of a logarithmic function, set up an inequality showing the argument greater than
zero, and solve for x.
The graph of the parent function  has an x-intercept at , domain , range 

, vertical asymptote x = 0, and
if b > 1, the function is increasing.
if 0 < b < 1, the function is decreasing.

The equation  shifts the parent function  horizontally
left c units if c > 0.
right c units if c < 0.

The equation  shifts the parent function  vertically
up d units if d > 0.
down d units if d < 0.

For any constant a > 0, the equation 
stretches the parent function  vertically by a factor of a if |a| > 1.
compresses the parent function  vertically by a factor of a if |a| < 1.

When the parent function  is multiplied by –1, the result is a reflection about the x-axis.
When the input is multiplied by –1, the result is a reflection about the y-axis.

The equation  represents a reflection of the parent function about the x-axis.
The equation  represents a reflection of the parent function about the y-axis.
A graphing calculator may be used to approximate solutions to some logarithmic equations.

All translations of the logarithmic function can be summarized by the general equation 
.

Given an equation with the general form , we can identify the vertical
asymptote x = –c for the transformation.
Using the general equation , we can write the equation of a logarithmic
function given its graph.
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Learning Outcomes

Use the product rule for logarithms.
Use the quotient rule for logarithms.
Use the power rule for logarithms.
Expand logarithmic expressions.
Condense logarithmic expressions.
Use the change-of-base formula for logarithms.

484



485



Figure 1. The pH of hydrochloric acid is tested with litmus paper. (credit: David Berardan)

In chemistry, pH is used as a measure of the acidity or alkalinity of a substance. The pH scale runs from 0 to
14. Substances with a pH less than 7 are considered acidic, and substances with a pH greater than 7 are
said to be alkaline. Our bodies, for instance, must maintain a pH close to 7.35 in order for enzymes to work
properly. To get a feel for what is acidic and what is alkaline, consider the following pH levels of some
common substances:

Battery acid: 0.8
Stomach acid: 2.7
Orange juice: 3.3
Pure water: 7 (at 25° C)
Human blood: 7.35
Fresh coconut: 7.8
Sodium hydroxide (lye): 14

To determine whether a solution is acidic or alkaline, we find its pH, which is a measure of the number of
active positive hydrogen ions in the solution. The pH is defined by the following formula, where a is the
concentration of hydrogen ion in the solution

The equivalence of  and  is one of the logarithm properties we will examine in this
section.

Use the product rule for logarithms

Recall that the logarithmic and exponential functions “undo” each other. This means that logarithms have
similar properties to exponents. Some important properties of logarithms are given here. First, the following
properties are easy to prove.

For example,  since . And  since .

Next, we have the inverse property.

For example, to evaluate , we can rewrite the logarithm as , and then apply the inverse
property  to get .

To evaluate , we can rewrite the logarithm as , and then apply the inverse property  to
get .

Finally, we have the one-to-one property.
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A GENERAL NOTE: THE PRODUCT RULE FOR LOGARITHMS

The product rule for logarithms can be used to simplify a logarithm of a product by rewriting it as a sum
of individual logarithms.

HOW TO: GIVEN THE LOGARITHM OF A PRODUCT, USE THE PRODUCT
RULE OF LOGARITHMS TO WRITE AN EQUIVALENT SUM OF

LOGARITHMS.

1. Factor the argument completely, expressing each whole number factor as a product of primes.
2. Write the equivalent expression by summing the logarithms of each factor.

EXAMPLE 1: USING THE PRODUCT RULE FOR LOGARITHMS

Expand .
Answer
We begin by factoring the argument completely, expressing 30 as a product of primes.

Next we write the equivalent equation by summing the logarithms of each factor.

We can use the one-to-one property to solve the equation  for x. Since the bases
are the same, we can apply the one-to-one property by setting the arguments equal and solving for x:

But what about the equation ? The one-to-one property does not help us in
this instance. Before we can solve an equation like this, we need a method for combining terms on the left
side of the equation.

Recall that we use the product rule of exponents to combine the product of exponents by adding: 
. We have a similar property for logarithms, called the product rule for logarithms, which says

that the logarithm of a product is equal to a sum of logarithms. Because logs are exponents, and we multiply
like bases, we can add the exponents. We will use the inverse property to derive the product rule below.

Given any real number x and positive real numbers M, N, and b, where , we will show
.

Let  and . In exponential form, these equations are  and . It follows
that

Note that repeated applications of the product rule for logarithms allow us to simplify the logarithm of the
product of any number of factors. For example, consider . Using the product rule for logarithms,
we can rewrite this logarithm of a product as the sum of logarithms of its factors:
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A GENERAL NOTE: THE QUOTIENT RULE FOR LOGARITHMS

The quotient rule for logarithms can be used to simplify a logarithm or a quotient by rewriting it as the
difference of individual logarithms.

An interactive or media element has been excluded from this version of the text. You can view it online
here: https://courses.lumenlearning.com/precalculus/?p=13716

TRY IT

Try It

Expand .
Answer

Use the quotient and power rules for logarithms

For quotients, we have a similar rule for logarithms. Recall that we use the quotient rule of exponents to
combine the quotient of exponents by subtracting: . The quotient rule for logarithms says that
the logarithm of a quotient is equal to a difference of logarithms. Just as with the product rule, we can use
the inverse property to derive the quotient rule.

Given any real number x and positive real numbers M, N, and b, where , we will show
.

Let  and . In exponential form, these equations are  and . It follows
that

For example, to expand , we must first express the quotient in lowest terms. Factoring and
canceling we get,

Next we apply the quotient rule by subtracting the logarithm of the denominator from the logarithm of the
numerator. Then we apply the product rule.
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HOW TO: GIVEN THE LOGARITHM OF A QUOTIENT, USE THE QUOTIENT
RULE OF LOGARITHMS TO WRITE AN EQUIVALENT DIFFERENCE OF

LOGARITHMS.

1. Express the argument in lowest terms by factoring the numerator and denominator and canceling
common terms.

2. Write the equivalent expression by subtracting the logarithm of the denominator from the logarithm of
the numerator.

3. Check to see that each term is fully expanded. If not, apply the product rule for logarithms to expand
completely.

EXAMPLE 2: USING THE QUOTIENT RULE FOR LOGARITHMS

Expand .

Answer
First we note that the quotient is factored and in lowest terms, so we apply the quotient rule.

Notice that the resulting terms are logarithms of products. To expand completely, we apply the product
rule, noting that the prime factors of the factor 15 are 3 and 5.

Analysis of the Solution

There are exceptions to consider in this and later examples. First, because denominators must never be
zero, this expression is not defined for  and x = 2. Also, since the argument of a logarithm must be
positive, we note as we observe the expanded logarithm, that x > 0, x > 1, , and x < 2. Combining
these conditions is beyond the scope of this section, and we will not consider them here or in subsequent
exercises.

An interactive or media element has been excluded from this version of the text. You can view it online
here: https://courses.lumenlearning.com/precalculus/?p=13716

TRY IT

Try It

Expand .
Answer
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A GENERAL NOTE: THE POWER RULE FOR LOGARITHMS

The power rule for logarithms can be used to simplify the logarithm of a power by rewriting it as the
product of the exponent times the logarithm of the base.

HOW TO: GIVEN THE LOGARITHM OF A POWER, USE THE POWER RULE
OF LOGARITHMS TO WRITE AN EQUIVALENT PRODUCT OF A FACTOR

AND A LOGARITHM.

1. Express the argument as a power, if needed.
2. Write the equivalent expression by multiplying the exponent times the logarithm of the base.

EXAMPLE 3: EXPANDING A LOGARITHM WITH POWERS

Expand .
Answer
The argument is already written as a power, so we identify the exponent, 5, and the base, x, and rewrite
the equivalent expression by multiplying the exponent times the logarithm of the base.

EXAMPLE 4: REWRITING AN EXPRESSION AS A POWER BEFORE USING
THE POWER RULE

Expand  using the power rule for logs.
Answer

Using the Power Rule for Logarithms

We’ve explored the product rule and the quotient rule, but how can we take the logarithm of a power, such
as ? One method is as follows:

Notice that we used the product rule for logarithms to find a solution for the example above. By doing so,
we have derived the power rule for logarithms, which says that the log of a power is equal to the exponent
times the log of the base. Keep in mind that, although the input to a logarithm may not be written as a power,
we may be able to change it to a power. For example,

Try It

Expand .
Answer
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Expressing the argument as a power, we get .
Next we identify the exponent, 2, and the base, 5, and rewrite the equivalent expression by multiplying the
exponent times the logarithm of the base.

EXAMPLE 5: USING THE POWER RULE IN REVERSE

Rewrite  using the power rule for logs to a single logarithm with a leading coefficient of 1.
Answer
Because the logarithm of a power is the product of the exponent times the logarithm of the base, it follows
that the product of a number and a logarithm can be written as a power. For the expression , we
identify the factor, 4, as the exponent and the argument, x, as the base, and rewrite the product as a
logarithm of a power:

.

An interactive or media element has been excluded from this version of the text. You can view it online
here: https://courses.lumenlearning.com/precalculus/?p=13716

TRY IT

An interactive or media element has been excluded from this version of the text. You can view it online
here: https://courses.lumenlearning.com/precalculus/?p=13716

TRY IT

Try It

Expand .
Answer

Try It

Rewrite  using the power rule for logs to a single logarithm with a leading coefficient of 1.
Answer

Expand logarithmic expressions

Taken together, the product rule, quotient rule, and power rule are often called “laws of logs.” Sometimes we
apply more than one rule in order to simplify an expression. For example:
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EXAMPLE 6: EXPANDING LOGARITHMS USING PRODUCT, QUOTIENT,
AND POWER RULES

Rewrite  as a sum or difference of logs.

Answer
First, because we have a quotient of two expressions, we can use the quotient rule:

Then seeing the product in the first term, we use the product rule:

Finally, we use the power rule on the first term:

EXAMPLE 7: USING THE POWER RULE FOR LOGARITHMS TO SIMPLIFY
THE LOGARITHM OF A RADICAL EXPRESSION

Expand .
Answer

We can use the power rule to expand logarithmic expressions involving negative and fractional exponents.
Here is an alternate proof of the quotient rule for logarithms using the fact that a reciprocal is a negative
power:

We can also apply the product rule to express a sum or difference of logarithms as the logarithm of a
product.

With practice, we can look at a logarithmic expression and expand it mentally, writing the final answer.
Remember, however, that we can only do this with products, quotients, powers, and roots—never with
addition or subtraction inside the argument of the logarithm.

Try It

Expand .
Answer

Try It

Expand .
Answer
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Q & A

Can we expand ?
No. There is no way to expand the logarithm of a sum or difference inside the argument of the logarithm.

EXAMPLE 8: EXPANDING COMPLEX LOGARITHMIC EXPRESSIONS

Expand .

Answer
We can expand by applying the Product and Quotient Rules.

An interactive or media element has been excluded from this version of the text. You can view it online
here: https://courses.lumenlearning.com/precalculus/?p=13716

TRY IT

An interactive or media element has been excluded from this version of the text. You can view it online
here: https://courses.lumenlearning.com/precalculus/?p=13716

TRY IT

Try It

Expand .

Answer

Condense logarithmic expressions

We can use the rules of logarithms we just learned to condense sums, differences, and products with the
same base as a single logarithm. It is important to remember that the logarithms must have the same base
to be combined. We will learn later how to change the base of any logarithm before condensing.
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HOW TO: GIVEN A SUM, DIFFERENCE, OR PRODUCT OF LOGARITHMS
WITH THE SAME BASE, WRITE AN EQUIVALENT EXPRESSION AS A SINGLE

LOGARITHM.

1. Apply the power property first. Identify terms that are products of factors and a logarithm, and rewrite
each as the logarithm of a power.

2. Next apply the product property. Rewrite sums of logarithms as the logarithm of a product.
3. Apply the quotient property last. Rewrite differences of logarithms as the logarithm of a quotient.

EXAMPLE 9: USING THE PRODUCT AND QUOTIENT RULES TO COMBINE
LOGARITHMS

Write  as a single logarithm.
Answer
Using the product and quotient rules

This reduces our original expression to

Then, using the quotient rule

EXAMPLE 10: CONDENSING COMPLEX LOGARITHMIC EXPRESSIONS

Condense .

Answer
We apply the power rule first:

Next we apply the product rule to the sum:

Finally, we apply the quotient rule to the difference:

EXAMPLE 11: REWRITING AS A SINGLE LOGARITHM

Try It

Condense .
Answer

; can also be written  by reducing the fraction to lowest terms.
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Rewrite  as a single logarithm.
Answer
We apply the power rule first:

Next we apply the product rule to the sum:

Finally, we apply the quotient rule to the difference:

An interactive or media element has been excluded from this version of the text. You can view it online
here: https://courses.lumenlearning.com/precalculus/?p=13716

TRY IT

EXAMPLE 12: APPLYING OF THE LAWS OF LOGS

Recall that, in chemistry, . If the concentration of hydrogen ions in a liquid is doubled,
what is the effect on pH?
Answer
Suppose C is the original concentration of hydrogen ions, and P is the original pH of the liquid. Then 

. If the concentration is doubled, the new concentration is 2C. Then the pH of the new liquid
is

Using the product rule of logs

Since , the new pH is

When the concentration of hydrogen ions is doubled, the pH decreases by about 0.301.

Try It

Rewrite  as a single logarithm.
Answer

Try It

Condense .
Answer

; this answer could also be written .
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A GENERAL NOTE: THE CHANGE-OF-BASE FORMULA

The change-of-base formula can be used to evaluate a logarithm with any base.
For any positive real numbers M, b, and n, where  and ,

.

It follows that the change-of-base formula can be used to rewrite a logarithm with any base as the quotient
of common or natural logs.

and

HOW TO: GIVEN A LOGARITHM WITH THE FORM , USE THE
CHANGE-OF-BASE FORMULA TO REWRITE IT AS A QUOTIENT OF LOGS

WITH ANY POSITIVE BASE , WHERE .

Try It

How does the pH change when the concentration of positive hydrogen ions is decreased by half?
Answer

The pH increases by about 0.301.

 Use the change-of-base formula for logarithms

Most calculators can evaluate only common and natural logs. In order to evaluate logarithms with a base
other than 10 or , we use the change-of-base formula to rewrite the logarithm as the quotient of
logarithms of any other base; when using a calculator, we would change them to common or natural logs.

To derive the change-of-base formula, we use the one-to-one property and power rule for logarithms.

Given any positive real numbers M, b, and n, where  and , we show

Let . By taking the log base  of both sides of the equation, we arrive at an exponential form,
namely . It follows that

For example, to evaluate  using a calculator, we must first rewrite the expression as a quotient of
common or natural logs. We will use the common log.
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1. Determine the new base n, remembering that the common log, , has base 10, and the natural
log, , has base e.

2. Rewrite the log as a quotient using the change-of-base formula
The numerator of the quotient will be a logarithm with base n and argument M.
The denominator of the quotient will be a logarithm with base n and argument b.

EXAMPLE 13: CHANGING LOGARITHMIC EXPRESSIONS TO EXPRESSIONS
INVOLVING ONLY NATURAL LOGS

Change  to a quotient of natural logarithms.
Answer
Because we will be expressing  as a quotient of natural logarithms, the new base, n = e.
We rewrite the log as a quotient using the change-of-base formula. The numerator of the quotient will be
the natural log with argument 3. The denominator of the quotient will be the natural log with argument 5.

Q & A

Can we change common logarithms to natural logarithms?
Yes. Remember that  means . So, .

EXAMPLE 14: USING THE CHANGE-OF-BASE FORMULA WITH A
CALCULATOR

Evaluate  using the change-of-base formula with a calculator.
Answer
According to the change-of-base formula, we can rewrite the log base 2 as a logarithm of any other base.
Since our calculators can evaluate the natural log, we might choose to use the natural logarithm, which is
the log base e.

Try It

Change  to a quotient of natural logarithms.
Answer

Try It 21

Evaluate  using the change-of-base formula.
Answer
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change-of-base formula

power rule for logarithms

product rule for logarithms

quotient rule for logarithms

An interactive or media element has been excluded from this version of the text. You can view it online
here: https://courses.lumenlearning.com/precalculus/?p=13716

TRY IT 22

Key Equations
The Product Rule for Logarithms

The Quotient Rule for Logarithms

The Power Rule for Logarithms

The Change-of-Base Formula

Key Concepts
We can use the product rule of logarithms to rewrite the log of a product as a sum of logarithms.
We can use the quotient rule of logarithms to rewrite the log of a quotient as a difference of logarithms.
We can use the power rule for logarithms to rewrite the log of a power as the product of the exponent
and the log of its base.
We can use the product rule, the quotient rule, and the power rule together to combine or expand a
logarithm with a complex input.
The rules of logarithms can also be used to condense sums, differences, and products with the same
base as a single logarithm.
We can convert a logarithm with any base to a quotient of logarithms with any other base using the
change-of-base formula.
The change-of-base formula is often used to rewrite a logarithm with a base other than 10 and e as the
quotient of natural or common logs. That way a calculator can be used to evaluate.

Glossary

a formula for converting a logarithm with any base to a quotient of logarithms with
any other base.

a rule of logarithms that states that the log of a power is equal to the product of
the exponent and the log of its base

a rule of logarithms that states that the log of a product is equal to a sum of
logarithms

a rule of logarithms that states that the log of a quotient is equal to a
difference of logarithms
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EXPONENTIAL AND LOGARITHMIC
EQUATIONS

Learning Outcomes

Use like bases to solve exponential equations.
Use logarithms to solve exponential equations.
Use the definition of a logarithm to solve logarithmic equations.
Use the one-to-one property of logarithms to solve logarithmic equations.
Solve applied problems involving exponential and logarithmic equations.

Figure 1. Wild rabbits in Australia. The rabbit population grew so quickly in Australia that the event became known as the “rabbit plague.”
(credit: Richard Taylor, Flickr)

In 1859, an Australian landowner named Thomas Austin released 24 rabbits into the wild for hunting.
Because Australia had few predators and ample food, the rabbit population exploded. In fewer than ten
years, the rabbit population numbered in the millions.

Uncontrolled population growth, as in the wild rabbits in Australia, can be modeled with exponential
functions. Equations resulting from those exponential functions can be solved to analyze and make
predictions about exponential growth. In this section, we will learn techniques for solving exponential
functions.
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A GENERAL NOTE: USING THE ONE-TO-ONE PROPERTY OF
EXPONENTIAL FUNCTIONS TO SOLVE EXPONENTIAL EQUATIONS

For any algebraic expressions S and T, and any positive real number ,

HOW TO: GIVEN AN EXPONENTIAL EQUATION WITH THE FORM ,
WHERE S AND T ARE ALGEBRAIC EXPRESSIONS WITH AN UNKNOWN,

SOLVE FOR THE UNKNOWN.

1. Use the rules of exponents to simplify, if necessary, so that the resulting equation has the form 
.

2. Use the one-to-one property to set the exponents equal.
3. Solve the resulting equation, S = T, for the unknown.

EXAMPLE 1: SOLVING AN EXPONENTIAL EQUATION WITH A COMMON
BASE

Solve .
Answer

Use like bases to solve exponential equations

The first technique involves two functions with like bases. Recall that the one-to-one property of exponential
functions tells us that, for any real numbers b, S, and T, where ,  if and only if S = T.

In other words, when an exponential equation has the same base on each side, the exponents must be
equal. This also applies when the exponents are algebraic expressions. Therefore, we can solve many
exponential equations by using the rules of exponents to rewrite each side as a power with the same base.
Then, we use the fact that exponential functions are one-to-one to set the exponents equal to one another,
and solve for the unknown.

For example, consider the equation . To solve for x, we use the division property of exponents to
rewrite the right side so that both sides have the common base, 3. Then we apply the one-to-one property of
exponents by setting the exponents equal to one another and solving for x:
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An interactive or media element has been excluded from this version of the text. You can view it online
here: https://courses.lumenlearning.com/precalculus/?p=13722

TRY IT

HOW TO: GIVEN AN EXPONENTIAL EQUATION WITH UNLIKE BASES, USE
THE ONE-TO-ONE PROPERTY TO SOLVE IT.

1. Rewrite each side in the equation as a power with a common base.
2. Use the rules of exponents to simplify, if necessary, so that the resulting equation has the form 

.
3. Use the one-to-one property to set the exponents equal.
4. Solve the resulting equation, S = T, for the unknown.

EXAMPLE 2: SOLVING EQUATIONS BY REWRITING THEM TO HAVE A
COMMON BASE

Solve .
Answer

Try It

Solve .
Answer

x = –2

Rewriting Equations So All Powers Have the Same Base

Sometimes the common base for an exponential equation is not explicitly shown. In these cases, we simply
rewrite the terms in the equation as powers with a common base, and solve using the one-to-one property.

For example, consider the equation . We can rewrite both sides of this equation as a power of 2.
Then we apply the rules of exponents, along with the one-to-one property, to solve for x:
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EXAMPLE 3: SOLVING EQUATIONS BY REWRITING ROOTS WITH
FRACTIONAL EXPONENTS TO HAVE A COMMON BASE

Solve .
Answer

An interactive or media element has been excluded from this version of the text. You can view it online
here: https://courses.lumenlearning.com/precalculus/?p=13722

TRY IT

Q & A

Do all exponential equations have a solution? If not, how can we tell if there is a solution during
the problem-solving process?
No. Recall that the range of an exponential function is always positive. While solving the equation, we may
obtain an expression that is undefined.

EXAMPLE 4: SOLVING AN EQUATION WITH POSITIVE AND NEGATIVE
POWERS

Solve .
Answer
This equation has no solution. There is no real value of x that will make the equation a true statement
because any power of a positive number is positive.

ANALYSIS OF THE SOLUTION

Try It

Solve .
Answer

x = –1

Try It

Solve .
Answer
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The figure below shows that the two graphs do not cross so the left side is never equal to the right side.
Thus the equation has no solution.

Figure 1

Try It

Solve .
Answer

The equation has no solution.

 Use logarithms to solve exponential equations

Sometimes the terms of an exponential equation cannot be rewritten with a common base. In these cases,
we solve by taking the logarithm of each side. Recall, since  is equivalent to a = b, we may
apply logarithms with the same base on both sides of an exponential equation.
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HOW TO: GIVEN AN EXPONENTIAL EQUATION IN WHICH A COMMON
BASE CANNOT BE FOUND, SOLVE FOR THE UNKNOWN.

1. Apply the logarithm of both sides of the equation.
If one of the terms in the equation has base 10, use the common logarithm.
If none of the terms in the equation has base 10, use the natural logarithm.

2. Use the rules of logarithms to solve for the unknown.

EXAMPLE 5: SOLVING AN EQUATION CONTAINING POWERS OF
DIFFERENT BASES

Solve .
Answer

You can also finish the equation from  by dividing by the parentheses, giving an
equivalent solution of:

An interactive or media element has been excluded from this version of the text. You can view it online
here: https://courses.lumenlearning.com/precalculus/?p=13722

TRY IT

Q & A

Try It

Solve .
Answer
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HOW TO: GIVEN AN EQUATION OF THE FORM , SOLVE FOR T.

1. Divide both sides of the equation by A.
2. Apply the natural logarithm of both sides of the equation.
3. Divide both sides of the equation by k.

EXAMPLE 6: SOLVE AN EQUATION OF THE FORM 

Solve .
Answer

ANALYSIS OF THE SOLUTION

Using laws of logs, we can also write this answer in the form . If we want a decimal
approximation of the answer, we use a calculator.

Q & A

Does every equation of the form  have a solution?
No. There is a solution when , and when y and A are either both 0 or neither 0, and they have the
same sign. An example of an equation with this form that has no solution is .

EXAMPLE 7: SOLVING AN EQUATION THAT CAN BE SIMPLIFIED TO THE
FORM 

Solve .

Is there any way to solve ?
Yes. The solution is x = 0.

Equations Containing 

One common type of exponential equations are those with base e. This constant occurs again and again in
nature, in mathematics, in science, in engineering, and in finance. When we have an equation with a base
e on either side, we can use the natural logarithm to solve it.

Try It

Solve .
Answer

 or 
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Answer

EXAMPLE 8: SOLVING EXPONENTIAL FUNCTIONS IN QUADRATIC FORM

Solve .
Answer

Analysis of the Solution

When we plan to use factoring to solve a problem, we always get zero on one side of the equation,
because zero has the unique property that when a product is zero, one or both of the factors must be
zero. We reject the equation  because a positive number never equals a negative number. The
solution  is not a real number, and in the real number system this solution is rejected as an
extraneous solution.

Try It

Solve .
Answer

Extraneous Solutions

Sometimes the methods used to solve an equation introduce an extraneous solution, which is a solution
that is correct algebraically but does not satisfy the conditions of the original equation. One such situation
arises in solving when the logarithm is taken on both sides of the equation. In such cases, remember that
the argument of the logarithm must be positive. If the number we are evaluating in a logarithm function is
negative, there is no output.

Try It

Solve .
Answer
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Q & A

Does every logarithmic equation have a solution?
No. Keep in mind that we can only apply the logarithm to a positive number. Always check for extraneous
solutions.

A GENERAL NOTE: USING THE DEFINITION OF A LOGARITHM TO SOLVE
LOGARITHMIC EQUATIONS

For any algebraic expression S and real numbers b and c, where ,

EXAMPLE 9: USING ALGEBRA TO SOLVE A LOGARITHMIC EQUATION

Solve .
Answer

TRY IT

 Use the de�nition of a logarithm to solve logarithmic equations

We have already seen that every logarithmic equation  is equivalent to the exponential
equation . We can use this fact, along with the rules of logarithms, to solve logarithmic equations
where the argument is an algebraic expression.

For example, consider the equation . To solve this equation, we can use rules of
logarithms to rewrite the left side in compact form and then apply the definition of logs to solve for x:

Try It

Solve .
Answer
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An interactive or media element has been excluded from this version of the text. You can view it online
here: https://courses.lumenlearning.com/precalculus/?p=13722

EXAMPLE 10: USING ALGEBRA BEFORE AND AFTER USING THE
DEFINITION OF THE NATURAL LOGARITHM

Solve .
Answer

An interactive or media element has been excluded from this version of the text. You can view it online
here: https://courses.lumenlearning.com/precalculus/?p=13722

TRY IT

EXAMPLE 11: USING A GRAPH TO UNDERSTAND THE SOLUTION TO A
LOGARITHMIC EQUATION

Solve .
Answer

Figure 2 represents the graph of the equation. On the graph, the x-coordinate of the point at which the two
graphs intersect is close to 20. In other words . A calculator gives a better approximation: 

.

Try It

Solve .
Answer
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Figure 2. The graphs of  and y = 3 cross at the point , which is approximately (20.0855, 3).
 

Try It

Use a graphing calculator to estimate the approximate solution to the logarithmic equation  to 2
decimal places.
Answer

 Use the one-to-one property of logarithms to solve logarithmic
equations

As with exponential equations, we can use the one-to-one property to solve logarithmic equations. The one-
to-one property of logarithmic functions tells us that, for any real numbers x > 0, S > 0, T > 0 and any
positive real number b, where ,

.

For example,
.

So, if , then we can solve for x, and we get x = 9. To check, we can substitute x = 9 into the
original equation: . In other words, when a logarithmic equation has the same
base on each side, the arguments must be equal. This also applies when the arguments are algebraic
expressions. Therefore, when given an equation with logs of the same base on each side, we can use rules
of logarithms to rewrite each side as a single logarithm. Then we use the fact that logarithmic functions are
one-to-one to set the arguments equal to one another and solve for the unknown.

For example, consider the equation . To solve this equation, we can use
the rules of logarithms to rewrite the left side as a single logarithm, and then apply the one-to-one property
to solve for x:

To check the result, substitute x = 10 into .
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A GENERAL NOTE: USING THE ONE-TO-ONE PROPERTY OF LOGARITHMS
TO SOLVE LOGARITHMIC EQUATIONS

For any algebraic expressions S and T and any positive real number b, where ,

Note, when solving an equation involving logarithms, always check to see if the answer is correct or if it is
an extraneous solution.

HOW TO: GIVEN AN EQUATION CONTAINING LOGARITHMS, SOLVE IT
USING THE ONE-TO-ONE PROPERTY.

1. Use the rules of logarithms to combine like terms, if necessary, so that the resulting equation has the
form .

2. Use the one-to-one property to set the arguments equal.
3. Solve the resulting equation, S = T, for the unknown.

EXAMPLE 12: SOLVING AN EQUATION USING THE ONE-TO-ONE
PROPERTY OF LOGARITHMS

Solve .
Answer

Analysis of the Solution

There are two solutions: x = 3 or x = –1. The solution x = –1 is negative, but it checks when substituted
into the original equation because the argument of the logarithm functions is still positive.

Try It

Solve .
Answer

x = 1 or x = –1

 Solve applied problems involving exponential and logarithmic equations
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EXAMPLE 13: USING THE FORMULA FOR RADIOACTIVE DECAY TO FIND
THE QUANTITY OF A SUBSTANCE

How long will it take for ten percent of a 1000-gram sample of uranium-235 to decay?
Answer

An interactive or media element has been excluded from this version of the text. You can view it online
here: https://courses.lumenlearning.com/precalculus/?p=13722

TRY IT

In previous sections, we learned the properties and rules for both exponential and logarithmic functions. We
have seen that any exponential function can be written as a logarithmic function and vice versa. We have
used exponents to solve logarithmic equations and logarithms to solve exponential equations. We are now
ready to combine our skills to solve equations that model real-world situations, whether the unknown is in an
exponent or in the argument of a logarithm.

One such application is in science, in calculating the time it takes for half of the unstable material in a
sample of a radioactive substance to decay, called its half-life. The table below lists the half-life for several
of the more common radioactive substances.

Substance Use Half-life

gallium-67 nuclear medicine 80 hours

cobalt-60 manufacturing 5.3 years

technetium-99m nuclear medicine 6 hours

americium-241 construction 432 years

carbon-14 archeological dating 5,715 years

uranium-235 atomic power 703,800,000 years

We can see how widely the half-lives for these substances vary. Knowing the half-life of a substance allows
us to calculate the amount remaining after a specified time. We can use the formula for radioactive decay:

where
 is the amount initially present

T is the half-life of the substance
t is the time period over which the substance is studied
y is the amount of the substance present after time t
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Analysis of the Solution

Ten percent of 1000 grams is 100 grams. If 100 grams decay, the amount of uranium-235 remaining is
900 grams.

Try It

How long will it take before twenty percent of our 1000-gram sample of uranium-235 has decayed?
Answer

.

Key Equations
One-to-one property for
exponential functions

For any algebraic expressions S and T and any positive real number b,
where  if and only if S = T.

Definition of a logarithm For any algebraic expression S and positive real numbers b and c, where 
,  if and only if .

One-to-one property for
logarithmic functions

For any algebraic expressions S and T and any positive real number b,
where ,

 if and only if S = T.

Key Concepts
We can solve many exponential equations by using the rules of exponents to rewrite each side as a
power with the same base. Then we use the fact that exponential functions are one-to-one to set the
exponents equal to one another and solve for the unknown.
When we are given an exponential equation where the bases are explicitly shown as being equal, set
the exponents equal to one another and solve for the unknown.
When we are given an exponential equation where the bases are not explicitly shown as being equal,
rewrite each side of the equation as powers of the same base, then set the exponents equal to one
another and solve for the unknown.
When an exponential equation cannot be rewritten with a common base, solve by taking the logarithm
of each side.
We can solve exponential equations with base e, by applying the natural logarithm of both sides
because exponential and logarithmic functions are inverses of each other.
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extraneous solution

After solving an exponential equation, check each solution in the original equation to find and eliminate
any extraneous solutions.
When given an equation of the form , where S is an algebraic expression, we can use the
definition of a logarithm to rewrite the equation as the equivalent exponential equation , and solve
for the unknown.
We can also use graphing to solve equations with the form . We graph both equations 

 and y = c on the same coordinate plane and identify the solution as the x-value of the
intersecting point.
When given an equation of the form , where S and T are algebraic expressions, we can
use the one-to-one property of logarithms to solve the equation S = T for the unknown.
Combining the skills learned in this and previous sections, we can solve equations that model real world
situations, whether the unknown is in an exponent or in the argument of a logarithm.

Glossary

a solution introduced while solving an equation that does not satisfy the conditions of
the original equation
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EXPONENTIAL AND LOGARITHMIC MODELS

Learning Outcomes

Model exponential growth and decay.
Use Newton’s Law of Cooling.
Use logistic-growth models.
Choose an appropriate model for data.
Express an exponential model in base e.
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Figure 1. A nuclear research reactor inside the Neely Nuclear Research Center on the Georgia Institute of Technology campus (credit:
Georgia Tech Research Institute)

We have already explored some basic applications of exponential and logarithmic functions. In this section,
we explore some important applications in more depth, including radioactive isotopes and Newton’s Law of
Cooling.
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Model exponential growth and decay

In real-world applications, we need to model the behavior of a function. In mathematical modeling, we
choose a familiar general function with properties that suggest that it will model the real-world phenomenon
we wish to analyze. In the case of rapid growth, we may choose the exponential growth function:

where  is equal to the value at time zero, e is Euler’s constant, and k is a positive constant that
determines the rate (percentage) of growth. We may use the exponential growth function in applications
involving doubling time, the time it takes for a quantity to double. Such phenomena as wildlife populations,
financial investments, biological samples, and natural resources may exhibit growth based on a doubling
time. In some applications, however, as we will see when we discuss the logistic equation, the logistic model
sometimes fits the data better than the exponential model.

On the other hand, if a quantity is falling rapidly toward zero, without ever reaching zero, then we should
probably choose the exponential decay model. Again, we have the form  where  is the starting
value, and e is Euler’s constant. Now k is a negative constant that determines the rate of decay. We may
use the exponential decay model when we are calculating half-life, or the time it takes for a substance to
exponentially decay to half of its original quantity. We use half-life in applications involving radioactive
isotopes.

In our choice of a function to serve as a mathematical model, we often use data points gathered by careful
observation and measurement to construct points on a graph and hope we can recognize the shape of the
graph. Exponential growth and decay graphs have a distinctive shape, as we can see in Figure 2 and Figure
3. It is important to remember that, although parts of each of the two graphs seem to lie on the x-axis, they
are really a tiny distance above the x-axis.

Figure 2. A graph showing exponential growth. The equation is .
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A GENERAL NOTE: CHARACTERISTICS OF THE EXPONENTIAL FUNCTION, 

An exponential function with the form  has the following characteristics:
one-to-one function
horizontal asymptote: y = 0
domain: 
range: 
x intercept: none
y-intercept: 
increasing if k > 0
decreasing if k < 0

0 and with the labeled
points (1/k, (A_0)e), (0, A_0), and (-1/k, (A_0)/e). The second graph is of when k<0 and with the labeled

Figure 3. A graph showing exponential decay. The equation is .

Exponential growth and decay often involve very large or very small numbers. To describe these numbers,
we often use orders of magnitude. The order of magnitude is the power of ten, when the number is
expressed in scientific notation, with one digit to the left of the decimal. For example, the distance to the
nearest star, Proxima Centauri, measured in kilometers, is 40,113,497,200,000 kilometers. Expressed in
scientific notation, this is . So, we could describe this number as having order of
magnitude .
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EXAMPLE 1: GRAPHING EXPONENTIAL GROWTH

A population of bacteria doubles every hour. If the culture started with 10 bacteria, graph the population as
a function of time.
Answer
When an amount grows at a fixed percent per unit time, the growth is exponential. To find  we use the
fact that  is the amount at time zero, so . To find k, use the fact that after one hour  the
population doubles from 10 to 20. The formula is derived as follows

so . Thus the equation we want to graph is . The graph is
shown in Figure 5.

Figure 5. The graph of 

Analysis of the Solution

The population of bacteria after ten hours is 10,240. We could describe this amount is being of the order
of magnitude . The population of bacteria after twenty hours is 10,485,760 which is of the order of
magnitude , so we could say that the population has increased by three orders of magnitude in ten
hours.

points (-1/k, (A_0)e), (0, A_0), and (1/k, (A_0)/e).">
Figure 4. An exponential function models exponential growth when k > 0 and exponential decay when k <
0.

Half-Life

We now turn to exponential decay. One of the common terms associated with exponential decay, as stated
above, is half-life, the length of time it takes an exponentially decaying quantity to decrease to half its
original amount. Every radioactive isotope has a half-life, and the process describing the exponential decay
of an isotope is called radioactive decay.
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HOW TO: GIVEN THE HALF-LIFE, FIND THE DECAY RATE.

1. Write .
2. Replace A by  and replace t by the given half-life.
3. Solve to find k. Express k as an exact value (do not round).

Note: It is also possible to find the decay rate using .

EXAMPLE 2: FINDING THE FUNCTION THAT DESCRIBES RADIOACTIVE
DECAY

The half-life of carbon-14 is 5,730 years. Express the amount of carbon-14 remaining as a function of
time, t.
Answer
This formula is derived as follows.

The function that describes this continuous decay is . We observe that the coefficient
of t,  is negative, as expected in the case of exponential decay.

To find the half-life of a function describing exponential decay, solve the following equation:

We find that the half-life depends only on the constant k and not on the starting quantity .

The formula is derived as follows

Since t, the time, is positive, k must, as expected, be negative. This gives us the half-life formula

Try It

The half-life of plutonium-244 is 80,000,000 years. Find function gives the amount of carbon-14 remaining
as a function of time, measured in years.
Answer
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HOW TO: GIVEN THE PERCENTAGE OF CARBON-14 IN AN OBJECT,
DETERMINE ITS AGE.

Radiocarbon Dating

The formula for radioactive decay is important in radiocarbon dating, which is used to calculate the
approximate date a plant or animal died. Radiocarbon dating was discovered in 1949 by Willard Libby, who
won a Nobel Prize for his discovery. It compares the difference between the ratio of two isotopes of carbon
in an organic artifact or fossil to the ratio of those two isotopes in the air. It is believed to be accurate to
within about 1% error for plants or animals that died within the last 60,000 years.

Carbon-14 is a radioactive isotope of carbon that has a half-life of 5,730 years. It occurs in small quantities
in the carbon dioxide in the air we breathe. Most of the carbon on Earth is carbon-12, which has an atomic
weight of 12 and is not radioactive. Scientists have determined the ratio of carbon-14 to carbon-12 in the air
for the last 60,000 years, using tree rings and other organic samples of known dates—although the ratio has
changed slightly over the centuries.

As long as a plant or animal is alive, the ratio of the two isotopes of carbon in its body is close to the ratio in
the atmosphere. When it dies, the carbon-14 in its body decays and is not replaced. By comparing the ratio
of carbon-14 to carbon-12 in a decaying sample to the known ratio in the atmosphere, the date the plant or
animal died can be approximated.

Since the half-life of carbon-14 is 5,730 years, the formula for the amount of carbon-14 remaining after
t years is

where

A is the amount of carbon-14 remaining
 is the amount of carbon-14 when the plant or animal began decaying.

This formula is derived as follows:

To find the age of an object, we solve this equation for t:

Out of necessity, we neglect here the many details that a scientist takes into consideration when doing
carbon-14 dating, and we only look at the basic formula. The ratio of carbon-14 to carbon-12 in the
atmosphere is approximately 0.0000000001%. Let r be the ratio of carbon-14 to carbon-12 in the organic
artifact or fossil to be dated, determined by a method called liquid scintillation. From the equation 

 we know the ratio of the percentage of carbon-14 in the object we are dating to the
percentage of carbon-14 in the atmosphere is . We solve this equation for t, to get
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1. Express the given percentage of carbon-14 as an equivalent decimal, k.
2. Substitute for k in the equation  and solve for the age, t.

EXAMPLE 3: FINDING THE AGE OF A BONE

A bone fragment is found that contains 20% of its original carbon-14. To the nearest year, how old is the
bone?
Answer
We substitute 20% = 0.20 for k in the equation and solve for t:

The bone fragment is about 13,301 years old.

Analysis of the Solution

The instruments that measure the percentage of carbon-14 are extremely sensitive and, as we mention
above, a scientist will need to do much more work than we did in order to be satisfied. Even so, carbon
dating is only accurate to about 1%, so this age should be given as 

.

An interactive or media element has been excluded from this version of the text. You can view it online
here: https://courses.lumenlearning.com/precalculus/?p=13724

TRY IT

Try It

Cesium-137 has a half-life of about 30 years. If we begin with 200 mg of cesium-137, will it take more or
less than 230 years until only 1 milligram remains?
Answer
less than 230 years, 229.3157 to be exact

Calculating Doubling Time

For decaying quantities, we determined how long it took for half of a substance to decay. For growing
quantities, we might want to find out how long it takes for a quantity to double. As we mentioned above, the
time it takes for a quantity to double is called the doubling time.

Given the basic exponential growth equation , doubling time can be found by solving for when
the original quantity has doubled, that is, by solving .

The formula is derived as follows:
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EXAMPLE 4: FINDING A FUNCTION THAT DESCRIBES EXPONENTIAL
GROWTH

According to Moore’s Law, the doubling time for the number of transistors that can be put on a computer
chip is approximately two years. Give a function that describes this behavior.
Answer
The formula is derived as follows:

The function is .

Thus the doubling time is

Try It

Recent data suggests that, as of 2013, the rate of growth predicted by Moore’s Law no longer holds.
Growth has slowed to a doubling time of approximately three years. Find the new function that takes that
longer doubling time into account.
Answer

 Use Newton’s Law of Cooling

Exponential decay can also be applied to temperature. When a hot object is left in surrounding air that is at a
lower temperature, the object’s temperature will decrease exponentially, leveling off as it approaches the
surrounding air temperature. On a graph of the temperature function, the leveling off will correspond to a
horizontal asymptote at the temperature of the surrounding air. Unless the room temperature is zero, this will
correspond to a vertical shift of the generic exponential decay function. This translation leads to
Newton’s Law of Cooling, the scientific formula for temperature as a function of time as an object’s
temperature is equalized with the ambient temperature

This formula is derived as follows:
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A GENERAL NOTE: NEWTON’S LAW OF COOLING

The temperature of an object, T, in surrounding air with temperature  will behave according to the
formula

where

t is time
A is the difference between the initial temperature of the object and the surroundings
k is a constant, the continuous rate of cooling of the object

HOW TO: GIVEN A SET OF CONDITIONS, APPLY NEWTON’S LAW OF
COOLING.

1. Set  equal to the y-coordinate of the horizontal asymptote (usually the ambient temperature).
2. Substitute the given values into the continuous growth formula  to find the

parameters A and k.
3. Substitute in the desired time to find the temperature or the desired temperature to find the time.

EXAMPLE 5: USING NEWTON’S LAW OF COOLING

A cheesecake is taken out of the oven with an ideal internal temperature of , and is placed into a 
 refrigerator. After 10 minutes, the cheesecake has cooled to . If we must wait until the

cheesecake has cooled to  before we eat it, how long will we have to wait?
Answer
Because the surrounding air temperature in the refrigerator is 35 degrees, the cheesecake’s temperature
will decay exponentially toward 35, following the equation

We know the initial temperature was 165, so .

We were given another data point, , which we can use to solve for k.

This gives us the equation for the cooling of the cheesecake: .
Now we can solve for the time it will take for the temperature to cool to 70 degrees.
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It will take about 107 minutes, or one hour and 47 minutes, for the cheesecake to cool to .

An interactive or media element has been excluded from this version of the text. You can view it online
here: https://courses.lumenlearning.com/precalculus/?p=13724

TRY IT

Try It

A pitcher of water at 40 degrees Fahrenheit is placed into a 70 degree room. One hour later, the
temperature has risen to 45 degrees. How long will it take for the temperature to rise to 60 degrees?
Answer

6.026 hours

Use logistic-growth models

Exponential growth cannot continue forever. Exponential models, while they may be useful in the short term,
tend to fall apart the longer they continue. Consider an aspiring writer who writes a single line on day one
and plans to double the number of lines she writes each day for a month. By the end of the month, she must
write over 17 billion lines, or one-half-billion pages. It is impractical, if not impossible, for anyone to write that
much in such a short period of time. Eventually, an exponential model must begin to approach some limiting
value, and then the growth is forced to slow. For this reason, it is often better to use a model with an upper
bound instead of an exponential growth model, though the exponential growth model is still useful over a
short term, before approaching the limiting value.

The logistic growth model is approximately exponential at first, but it has a reduced rate of growth as the
output approaches the model’s upper bound, called the carrying capacity. For constants a, b, and c, the
logistic growth of a population over time x is represented by the model

Figure 6 shows how the growth rate changes over time. The graph increases from left to right, but the
growth rate only increases until it reaches its point of maximum growth rate, at which point the rate of
increase decreases.
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A GENERAL NOTE: LOGISTIC GROWTH

The logistic growth model is

where

 is the initial value
c is the carrying capacity, or limiting value
b is a constant determined by the rate of growth.

EXAMPLE 6: USING THE LOGISTIC-GROWTH MODEL

An influenza epidemic spreads through a population rapidly, at a rate that depends on two factors: The
more people who have the flu, the more rapidly it spreads, and also the more uninfected people there are,
the more rapidly it spreads. These two factors make the logistic model a good one to study the spread of
communicable diseases. And, clearly, there is a maximum value for the number of people infected: the
entire population.
For example, at time t = 0 there is one person in a community of 1,000 people who has the flu. So, in that
community, at most 1,000 people can have the flu. Researchers find that for this particular strain of the flu,
the logistic growth constant is b = 0.6030. Estimate the number of people in this community who will have

Figure 6
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had this flu after ten days. Predict how many people in this community will have had this flu after a long
period of time has passed.
Answer
We substitute the given data into the logistic growth model

Because at most 1,000 people, the entire population of the community, can get the flu, we know the
limiting value is c = 1000. To find a, we use the formula that the number of cases at time t = 0 is ,
from which it follows that a = 999. This model predicts that, after ten days, the number of people who have
had the flu is . Because the actual number must be a whole number (a
person has either had the flu or not) we round to 294. In the long term, the number of people who will
contract the flu is the limiting value, c = 1000.

Analysis of the Solution

Remember that, because we are dealing with a virus, we cannot predict with certainty the number of
people infected. The model only approximates the number of people infected and will not give us exact or
actual values.
Figure 7 gives a good picture of how this model fits the data.

Figure 7. The graph of 

TRY IT

Try It

Using the model in Example 5, estimate the number of cases of flu on day 15.
Answer

895 cases on day 15
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EXAMPLE 7: CHOOSING A MATHEMATICAL MODEL

Does a linear, exponential, logarithmic, or logistic model best fit the values listed below? Find the model,
and use a graph to check your choice.

x 1 2 3 4 5 6 7 8 9

y 0 1.386 2.197 2.773 3.219 3.584 3.892 4.159 4.394

Answer
First, plot the data on a graph as in Figure 8. For the purpose of graphing, round the data to two significant
digits.

An interactive or media element has been excluded from this version of the text. You can view it online
here: https://courses.lumenlearning.com/precalculus/?p=13724

Choose an appropriate model for data

Now that we have discussed various mathematical models, we need to learn how to choose the appropriate
model for the raw data we have. Many factors influence the choice of a mathematical model, among which
are experience, scientific laws, and patterns in the data itself. Not all data can be described by elementary
functions. Sometimes, a function is chosen that approximates the data over a given interval. For instance,
suppose data were gathered on the number of homes bought in the United States from the years 1960 to
2013. After plotting these data in a scatter plot, we notice that the shape of the data from the years 2000 to
2013 follow a logarithmic curve. We could restrict the interval from 2000 to 2010, apply regression analysis
using a logarithmic model, and use it to predict the number of home buyers for the year 2015.

Three kinds of functions that are often useful in mathematical models are linear functions, exponential
functions, and logarithmic functions. If the data lies on a straight line, or seems to lie approximately along a
straight line, a linear model may be best. If the data is non-linear, we often consider an exponential or
logarithmic model, though other models, such as quadratic models, may also be considered.

In choosing between an exponential model and a logarithmic model, we look at the way the data curves.
This is called the concavity. If we draw a line between two data points, and all (or most) of the data between
those two points lies above that line, we say the curve is concave down. We can think of it as a bowl that
bends downward and therefore cannot hold water. If all (or most) of the data between those two points lies
below the line, we say the curve is concave up. In this case, we can think of a bowl that bends upward and
can therefore hold water. An exponential curve, whether rising or falling, whether representing growth or
decay, is always concave up away from its horizontal asymptote. A logarithmic curve is always concave
away from its vertical asymptote. In the case of positive data, which is the most common case, an
exponential curve is always concave up, and a logarithmic curve always concave down.

A logistic curve changes concavity. It starts out concave up and then changes to concave down beyond a
certain point, called a point of inflection.

After using the graph to help us choose a type of function to use as a model, we substitute points, and solve
to find the parameters. We reduce round-off error by choosing points as far apart as possible.
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Figure 8

Clearly, the points do not lie on a straight line, so we reject a linear model. If we draw a line between any
two of the points, most or all of the points between those two points lie above the line, so the graph is
concave down, suggesting a logarithmic model. We can try . Plugging in the first point, ,
gives . We reject the case that a = 0 (if it were, all outputs would be 0), so we know .
Thus b = 1 and . Next we can use the point  to solve for a:

Because , an appropriate model for the data is .

To check the accuracy of the model, we graph the function together with the given points.
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Figure 9. The graph of .
We can conclude that the model is a good fit to the data.
Compare the figure above to the graph of  shown in Figure 10.

Figure 10. The graph of 
The graphs appear to be identical when x > 0. A quick check confirms this conclusion: 

 for x > 0.
However, if x < 0, the graph of  includes a “extra” branch, as shown below. This occurs
because, while  cannot have negative values in the domain (as such values would force the
argument to be negative), the function  can have negative domain values.
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Figure 11

HOW TO: GIVEN A MODEL WITH THE FORM , CHANGE IT TO THE
FORM .

1. Rewrite  as .
2. Use the power rule of logarithms to rewrite y as .
3. Note that  and  in the equation .

EXAMPLE 8: CHANGING TO BASE E

Change the function  so that this same function is written in the form .
Answer
The formula is derived as follows

Try It

Does a linear, exponential, or logarithmic model best fit the data in the table below? Find the model.

x 1 2 3 4 5 6 7 8 9

y 3.297 5.437 8.963 14.778 24.365 40.172 66.231 109.196 180.034
Answer

Exponential. .

Expressing an Exponential Model in Base e
While powers and logarithms of any base can be used in modeling, the two most common bases are  and
. In science and mathematics, the base e is often preferred. We can use laws of exponents and laws of

logarithms to change any base to base e.
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An interactive or media element has been excluded from this version of the text. You can view it online
here: https://courses.lumenlearning.com/precalculus/?p=13724

TRY IT

Try It

Change the function  to one having e as the base.
Answer

Key Equations

Half-life formula If , k < 0, the half-life is .

Carbon-14 dating
.  A is the amount of carbon-14 when the plant or animal died

t is the amount of carbon-14 remaining today

is the age of the fossil in years

Doubling time
formula If , k > 0, the doubling time is 

Newton’s Law of
Cooling

, where  is the ambient temperature, , and k is
the continuous rate of cooling.

Key Concepts

The basic exponential function is . If b > 1, we have exponential growth; if 0 < b < 1, we
have exponential decay.
We can also write this formula in terms of continuous growth as , where  is the starting
value. If  is positive, then we have exponential growth when k > 0 and exponential decay when k < 0.
In general, we solve problems involving exponential growth or decay in two steps. First, we set up a
model and use the model to find the parameters. Then we use the formula with these parameters to
predict growth and decay.
We can find the age, t, of an organic artifact by measuring the amount, k, of carbon-14 remaining in the
artifact and using the formula  to solve for t.
Given a substance’s doubling time or half-time, we can find a function that represents its exponential
growth or decay.
We can use Newton’s Law of Cooling to find how long it will take for a cooling object to reach a desired
temperature, or to find what temperature an object will be after a given time.
We can use logistic growth functions to model real-world situations where the rate of growth changes
over time, such as population growth, spread of disease, and spread of rumors.
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carrying capacity

doubling time

half-life

logistic growth model

Newton’s Law of Cooling

order of magnitude

We can use real-world data gathered over time to observe trends. Knowledge of linear, exponential,
logarithmic, and logistic graphs help us to develop models that best fit our data.
Any exponential function with the form  can be rewritten as an equivalent exponential function
with the form  where .

Glossary

in a logistic model, the limiting value of the output

the time it takes for a quantity to double

the length of time it takes for a substance to exponentially decay to half of its original quantity

a function of the form  where  is the initial value, c is the carrying
capacity, or limiting value, and b is a constant determined by the rate of growth

the scientific formula for temperature as a function of time as an object’s
temperature is equalized with the ambient temperature

the power of ten, when a number is expressed in scientific notation, with one non-zero
digit to the left of the decimal
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FITTING EXPONENTIAL MODELS TO DATA

Learning Outcomes

Build an exponential model from data.
Build a logarithmic model from data.
Build a logistic model from data.

In previous sections of this chapter, we were either given a function explicitly to graph or evaluate, or we
were given a set of points that were guaranteed to lie on the curve. Then we used algebra to find the
equation that fit the points exactly. In this section, we use a modeling technique called regression analysis to
find a curve that models data collected from real-world observations. With regression analysis, we don’t
expect all the points to lie perfectly on the curve. The idea is to find a model that best fits the data. Then we
use the model to make predictions about future events.

Do not be confused by the word model. In mathematics, we often use the terms function, equation, and
model interchangeably, even though they each have their own formal definition. The term model is typically
used to indicate that the equation or function approximates a real-world situation.

We will concentrate on three types of regression models in this section: exponential, logarithmic, and
logistic. Having already worked with each of these functions gives us an advantage. Knowing their formal
definitions, the behavior of their graphs, and some of their real-world applications gives us the opportunity to
deepen our understanding. As each regression model is presented, key features and definitions of its
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A GENERAL NOTE: EXPONENTIAL REGRESSION

Exponential regression is used to model situations in which growth begins slowly and then accelerates
rapidly without bound, or where decay begins rapidly and then slows down to get closer and closer to
zero. We use the command “ExpReg” on a graphing utility to fit an exponential function to a set of data
points. This returns an equation of the form, 
Note that:

b must be non-negative.
when b > 1, we have an exponential growth model.
when 0 < b < 1, we have an exponential decay model.

HOW TO: GIVEN A SET OF DATA, PERFORM EXPONENTIAL REGRESSION
USING A GRAPHING UTILITY.

1. Use the STAT then EDIT menu to enter given data.
1. Clear any existing data from the lists.
2. List the input values in the L1 column.
3. List the output values in the L2 column.

2. Graph and observe a scatter plot of the data using the STATPLOT feature.
1. Use ZOOM [9] to adjust axes to fit the data.
2. Verify the data follow an exponential pattern.

3. Find the equation that models the data.

associated function are included for review. Take a moment to rethink each of these functions, reflect on the
work we’ve done so far, and then explore the ways regression is used to model real-world phenomena.

Build an exponential model from data

As we’ve learned, there are a multitude of situations that can be modeled by exponential functions, such as
investment growth, radioactive decay, atmospheric pressure changes, and temperatures of a cooling object.
What do these phenomena have in common? For one thing, all the models either increase or decrease as
time moves forward. But that’s not the whole story. It’s the way data increase or decrease that helps us
determine whether it is best modeled by an exponential equation. Knowing the behavior of exponential
functions in general allows us to recognize when to use exponential regression, so let’s review exponential
growth and decay.

Recall that exponential functions have the form  or . When performing regression
analysis, we use the form most commonly used on graphing utilities, . Take a moment to reflect on
the characteristics we’ve already learned about the exponential function  (assume a > 0):

b must be greater than zero and not equal to one.
The initial value of the model is y = a.

If b > 1, the function models exponential growth. As x increases, the outputs of the model increase
slowly at first, but then increase more and more rapidly, without bound.
If 0 < b < 1, the function models exponential decay. As x increases, the outputs for the model
decrease rapidly at first and then level off to become asymptotic to the x-axis. In other words, the
outputs never become equal to or less than zero.

As part of the results, your calculator will display a number known as the correlation coefficient, labeled by
the variable r, or . (You may have to change the calculator’s settings for these to be shown.) The values
are an indication of the “goodness of fit” of the regression equation to the data. We more commonly use the
value of  instead of r, but the closer either value is to 1, the better the regression equation approximates
the data.
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1. Select “ExpReg” from the STAT then CALC menu.
2. Use the values returned for a and b to record the model, .

4. Graph the model in the same window as the scatterplot to verify it is a good fit for the data.

EXAMPLE 1: USING EXPONENTIAL REGRESSION TO FIT A MODEL TO
DATA

In 2007, a university study was published investigating the crash risk of alcohol impaired driving. Data
from 2,871 crashes were used to measure the association of a person’s blood alcohol level (BAC) with the
risk of being in an accident. The table below shows results from the study. (Note: Source: Indiana
University Center for Studies of Law in Action, 2007) The relative risk is a measure of how many times
more likely a person is to crash. So, for example, a person with a BAC of 0.09 is 3.54 times as likely to
crash as a person who has not been drinking alcohol.

BAC 0 0.01 0.03 0.05 0.07 0.09

Relative Risk of Crashing 1 1.03 1.06 1.38 2.09 3.54

BAC 0.11 0.13 0.15 0.17 0.19 0.21

Relative Risk of Crashing 6.41 12.6 22.1 39.05 65.32 99.78

1. Let x represent the BAC level, and let y represent the corresponding relative risk. Use exponential
regression to fit a model to these data.

2. After 6 drinks, a person weighing 160 pounds will have a BAC of about 0.16. How many times more
likely is a person with this weight to crash if they drive after having a 6-pack of beer? Round to the
nearest hundredth.

Answer

1. Using the STAT then EDIT menu on a graphing utility, list the BAC values in L1 and the relative risk
values in L2. Then use the STATPLOT feature to verify that the scatterplot follows the exponential
pattern shown in Figure 1:
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Figure 1

Use the “ExpReg” command from the STAT then CALC menu to obtain the exponential model,

Converting from scientific notation, we have:

534



Figure 2

Notice that  which indicates the model is a good fit to the data. To see this, graph the model
in the same window as the scatterplot to verify it is a good fit as shown in Figure 2:

2. Use the model to estimate the risk associated with a BAC of 0.16. Substitute 0.16 for x in the model
and solve for y.

If a 160-pound person drives after having 6 drinks, he or she is about 26.35 times more likely to crash
than if driving while sober.

Try It

The table below shows a recent graduate’s credit card balance each month after graduation.
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Q & A

Is it reasonable to assume that an exponential regression model will represent a situation
indefinitely?
No. Remember that models are formed by real-world data gathered for regression. It is usually reasonable
to make estimates within the interval of original observation (interpolation). However, when a model is
used to make predictions, it is important to use reasoning skills to determine whether the model makes
sense for inputs far beyond the original observation interval (extrapolation).

A GENERAL NOTE: LOGARITHMIC REGRESSION

Logarithmic regression is used to model situations where growth or decay accelerates rapidly at first and
then slows over time. We use the command “LnReg” on a graphing utility to fit a logarithmic function to a
set of data points. This returns an equation of the form,

Note that
all input values, x, must be non-negative.
when b > 0, the model is increasing.
when b < 0, the model is decreasing.

Month 1 2 3 4 5 6 7 8

Debt ($) 620.00 761.88 899.80 1039.93 1270.63 1589.04 1851.31 2154.92

a. Use exponential regression to fit a model to these data.

b. If spending continues at this rate, what will the graduate’s credit card debt be one year after
graduating?

Answer

a. The exponential regression model that fits these data is .
b. If spending continues at this rate, the graduate’s credit card debt will be $4,499.38 after one year.

 Build a logarithmic model from data

Just as with exponential functions, there are many real-world applications for logarithmic functions: intensity
of sound, pH levels of solutions, yields of chemical reactions, production of goods, and growth of infants. As
with exponential models, data modeled by logarithmic functions are either always increasing or always
decreasing as time moves forward. Again, it is the way they increase or decrease that helps us determine
whether a logarithmic model is best.

Recall that logarithmic functions increase or decrease rapidly at first, but then steadily slow as time moves
on. By reflecting on the characteristics we’ve already learned about this function, we can better analyze real
world situations that reflect this type of growth or decay. When performing logarithmic regression analysis,
we use the form of the logarithmic function most commonly used on graphing utilities, . For
this function

All input values, x, must be greater than zero.
The point (1, a) is on the graph of the model.
If b > 0, the model is increasing. Growth increases rapidly at first and then steadily slows over time.
If b < 0, the model is decreasing. Decay occurs rapidly at first and then steadily slows over time.
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HOW TO: GIVEN A SET OF DATA, PERFORM LOGARITHMIC REGRESSION
USING A GRAPHING UTILITY.

1. Use the STAT then EDIT menu to enter given data.
1. Clear any existing data from the lists.
2. List the input values in the L1 column.
3. List the output values in the L2 column.

2. Graph and observe a scatter plot of the data using the STATPLOT feature.
1. Use ZOOM [9] to adjust axes to fit the data.
2. Verify the data follow a logarithmic pattern.

3. Find the equation that models the data.
1. Select “LnReg” from the STAT then CALC menu.
2. Use the values returned for a and b to record the model, .

4. Graph the model in the same window as the scatterplot to verify it is a good fit for the data.

EXAMPLE 2: USING LOGARITHMIC REGRESSION TO FIT A MODEL TO
DATA

Due to advances in medicine and higher standards of living, life expectancy has been increasing in most
developed countries since the beginning of the 20th century.
The table below shows the average life expectancies, in years, of Americans from 1900–2010. (Note:
Source: Center for Disease Control and Prevention, 2013)

Year 1900 1910 1920 1930 1940 1950

Life Expectancy(Years) 47.3 50.0 54.1 59.7 62.9 68.2

Year 1960 1970 1980 1990 2000 2010

Life Expectancy(Years) 69.7 70.8 73.7 75.4 76.8 78.7

1. Let x represent time in decades starting with x = 1 for the year 1900, x = 2 for the year 1910, and so
on. Let y represent the corresponding life expectancy. Use logarithmic regression to fit a model to
these data.

2. Use the model to predict the average American life expectancy for the year 2030.

Answer

1. Using the STAT then EDIT menu on a graphing utility, list the years using values 1–12 in L1 and the
corresponding life expectancy in L2. Then use the STATPLOT feature to verify that the scatterplot
follows a logarithmic pattern.
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Figure 3

Use the “LnReg” command from the STAT then CALC menu to obtain the logarithmic model,

Figure 4

Next, graph the model in the same window as the scatterplot to verify it is a good fit.
2. To predict the life expectancy of an American in the year 2030, substitute x = 14 for the in the model

and solve for y:

538



If life expectancy continues to increase at this pace, the average life expectancy of an American will be
79.1 by the year 2030.

A GENERAL NOTE: LOGISTIC REGRESSION

Logistic regression is used to model situations where growth accelerates rapidly at first and then steadily
slows to an upper limit. We use the command “Logistic” on a graphing utility to fit a logistic function to a
set of data points. This returns an equation of the form

Try It

Sales of a video game released in the year 2000 took off at first, but then steadily slowed as time moved
on. The table below shows the number of games sold, in thousands, from the years 2000–2010.

Year 2000 2001 2002 2003 2004 2005

Number Sold (thousands) 142 149 154 155 159 161

Year 2006 2007 2008 2009 2010 —

Number Sold (thousands) 163 164 164 166 167 —

a. Let x represent time in years starting with x = 1 for the year 2000. Let y represent the number of
games sold in thousands. Use logarithmic regression to fit a model to these data.
b. If games continue to sell at this rate, how many games will sell in 2015? Round to the nearest
thousand.

Answer

a. The logarithmic regression model that fits these data is 
b. If sales continue at this rate, about 171,000 games will be sold in the year 2015.

 Build a logistic model from data

Like exponential and logarithmic growth, logistic growth increases over time. One of the most notable
differences with logistic growth models is that, at a certain point, growth steadily slows and the function
approaches an upper bound, or limiting value. Because of this, logistic regression is best for modeling
phenomena where there are limits in expansion, such as availability of living space or nutrients.

It is worth pointing out that logistic functions actually model resource-limited exponential growth. There are
many examples of this type of growth in real-world situations, including population growth and spread of
disease, rumors, and even stains in fabric. When performing logistic regression analysis, we use the form
most commonly used on graphing utilities:

Recall that:
 is the initial value of the model.

when b > 0, the model increases rapidly at first until it reaches its point of maximum growth rate, 
. At that point, growth steadily slows and the function becomes asymptotic to the upper bound

y = c.
c is the limiting value, sometimes called the carrying capacity, of the model.
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Note that
The initial value of the model is .
Output values for the model grow closer and closer to y = c as time increases.

HOW TO: GIVEN A SET OF DATA, PERFORM LOGISTIC REGRESSION
USING A GRAPHING UTILITY.

1. Use the STAT then EDIT menu to enter given data.
1. Clear any existing data from the lists.
2. List the input values in the L1 column.
3. List the output values in the L2 column.

2. Graph and observe a scatter plot of the data using the STATPLOT feature.
1. Use ZOOM [9] to adjust axes to fit the data.
2. Verify the data follow a logistic pattern.

3. Find the equation that models the data.
1. Select “Logistic” from the STAT then CALC menu.
2. Use the values returned for a, b, and c to record the model, .

4. Graph the model in the same window as the scatterplot to verify it is a good fit for the data.

EXAMPLE 3: USING LOGISTIC REGRESSION TO FIT A MODEL TO DATA

Mobile telephone service has increased rapidly in America since the mid 1990s. Today, almost all
residents have cellular service. The table below shows the percentage of Americans with cellular service
between the years 1995 and 2012. (Note: Source: The World Bank, 2013)

Year Americans with Cellular Service (%) Year Americans with Cellular Service (%)

1995 12.69 2004 62.852

1996 16.35 2005 68.63

1997 20.29 2006 76.64

1998 25.08 2007 82.47

1999 30.81 2008 85.68

2000 38.75 2009 89.14

2001 45.00 2010 91.86

2002 49.16 2011 95.28

2003 55.15 2012 98.17

1. Let x represent time in years starting with x = 0 for the year 1995. Let y represent the corresponding
percentage of residents with cellular service. Use logistic regression to fit a model to these data.

2. Use the model to calculate the percentage of Americans with cell service in the year 2013. Round to
the nearest tenth of a percent.

3. Discuss the value returned for the upper limit, c. What does this tell you about the model? What would
the limiting value be if the model were exact?

Answer
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Figure 5

1. Using the STAT then EDIT menu on a graphing utility, list the years using values 0–15 in L1 and the
corresponding percentage in L2. Then use the STATPLOT feature to verify that the scatterplot follows
a logistic pattern as shown in Figure 5:
Use the
“Logistic”
command
from the
STAT then
CALC menu
to obtain the
logistic
model,

Figure 6

Next, graph the model in the same window as shown in Figure 6 to verify it is a good fit:
2. To approximate the percentage of Americans with cellular service in the year 2013, substitute x = 18

for the in the model and solve for y:

According to the model, about 98.8% of Americans had cellular service in 2013.
3. The model gives a limiting value of about 105. This means that the maximum possible percentage of

Americans with cellular service would be 105%, which is impossible. (How could over 100% of a
population have cellular service?) If the model were exact, the limiting value would be c = 100 and the
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model’s outputs would get very close to, but never actually reach 100%. After all, there will always be
someone out there without cellular service!

Try It

The table below shows the population, in thousands, of harbor seals in the Wadden Sea over the years
1997 to 2012.

Year Seal Population (Thousands) Year Seal Population (Thousands)

1997 3.493 2005 19.590

1998 5.282 2006 21.955

1999 6.357 2007 22.862

2000 9.201 2008 23.869

2001 11.224 2009 24.243

2002 12.964 2010 24.344

2003 16.226 2011 24.919

2004 18.137 2012 25.108

a. Let x represent time in years starting with x = 0 for the year 1997. Let y represent the number of
seals in thousands. Use logistic regression to fit a model to these data.

b. Use the model to predict the seal population for the year 2020.

c. To the nearest whole number, what is the limiting value of this model?
Answer

a. The logistic regression model that fits these data is .
b. If the population continues to grow at this rate, there will be about 25,634 seals in 2020.
c. To the nearest whole number, the carrying capacity is 25,657

Key Concepts

Exponential regression is used to model situations where growth begins slowly and then accelerates
rapidly without bound, or where decay begins rapidly and then slows down to get closer and closer to
zero.
We use the command “ExpReg” on a graphing utility to fit function of the form  to a set of data
points.
Logarithmic regression is used to model situations where growth or decay accelerates rapidly at first
and then slows over time.
We use the command “LnReg” on a graphing utility to fit a function of the form  to a set
of data points.
Logistic regression is used to model situations where growth accelerates rapidly at first and then
steadily slows as the function approaches an upper limit.
We use the command “Logistic” on a graphing utility to fit a function of the form  to a set of
data points.
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MODULE 5: SYSTEMS OF
EQUATIONS AND INEQUALITIES

SYSTEMS OF LINEAR EQUATIONS: THREE
VARIABLES

Learning Outcomes

By the end of this section, you will be able to:
Solve systems of three equations in three variables.
Identify inconsistent systems of equations containing three variables.
Express the solution of a system of dependent equations containing three variables.
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Figure 1. (credit: “Elembis,” Wikimedia Commons)

John received an inheritance of $12,000 that he divided into three parts and invested in three ways: in a
money-market fund paying 3% annual interest; in municipal bonds paying 4% annual interest; and in mutual
funds paying 7% annual interest. John invested $4,000 more in municipal funds than in municipal bonds. He
earned $670 in interest the first year. How much did John invest in each type of fund?

Understanding the correct approach to setting up problems such as this one makes finding a solution a
matter of following a pattern. We will solve this and similar problems involving three equations and three
variables in this section. Doing so uses similar techniques as those used to solve systems of two equations
in two variables. However, finding solutions to systems of three equations requires a bit more organization
and a touch of visual gymnastics.

Solving Systems of Three Equations in Three Variables

In order to solve systems of equations in three variables, known as three-by-three systems, the primary tool
we will be using is called Gaussian elimination, named after the prolific German mathematician Karl
Friedrich Gauss. While there is no definitive order in which operations are to be performed, there are
specific guidelines as to what type of moves can be made. We may number the equations to keep track of
the steps we apply. The goal is to eliminate one variable at a time to achieve upper triangular form, the
ideal form for a three-by-three system because it allows for straightforward back-substitution to find a
solution  which we call an ordered triple. A system in upper triangular form looks like the following:
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A GENERAL NOTE: NUMBER OF POSSIBLE SOLUTIONS

Figure 2 and Figure 3 illustrate possible solution scenarios for three-by-three systems.
Systems that have a single solution are those which, after elimination, result in a solution set
consisting of an ordered triple . Graphically, the ordered triple defines a point that is the
intersection of three planes in space.
Systems that have an infinite number of solutions are those which, after elimination, result in an
expression that is always true, such as . Graphically, an infinite number of solutions represents a
line or coincident plane that serves as the intersection of three planes in space.
Systems that have no solution are those that, after elimination, result in a statement that is a
contradiction, such as . Graphically, a system with no solution is represented by three planes
with no point in common.

Figure 2. (a)Three planes intersect at a single point, representing a three-by-three system with a single solution. (b) Three planes
intersect in a line, representing a three-by-three system with infinite solutions.

The third equation can be solved for  and then we back-substitute to find  and . To write the system in
upper triangular form, we can perform the following operations:

1. Interchange the order of any two equations.
2. Multiply both sides of an equation by a nonzero constant.
3. Add a nonzero multiple of one equation to another equation.

The solution set to a three-by-three system is an ordered triple . Graphically, the ordered triple
defines the point that is the intersection of three planes in space. You can visualize such an intersection by
imagining any corner in a rectangular room. A corner is defined by three planes: two adjoining walls and the
floor (or ceiling). Any point where two walls and the floor meet represents the intersection of three planes.
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Figure 3

EXAMPLE 1: DETERMINING WHETHER AN ORDERED TRIPLE IS A
SOLUTION TO A SYSTEM

Determine whether the ordered triple  is a solution to the system.

Answer
We will check each equation by substituting in the values of the ordered triple for , and .

The ordered triple  is indeed a solution to the system.

HOW TO: GIVEN A LINEAR SYSTEM OF THREE EQUATIONS, SOLVE FOR
THREE UNKNOWNS.

1. Pick any pair of equations and solve for one variable.
2. Pick another pair of equations and solve for the same variable.
3. You have created a system of two equations in two unknowns. Solve the resulting two-by-two system.
4. Back-substitute known variables into any one of the original equations and solve for the missing

variable.

EXAMPLE 2: SOLVING A SYSTEM OF THREE EQUATIONS IN THREE
VARIABLES BY ELIMINATION

546



Find a solution to the following system:

Answer
There will always be several choices as to where to begin, but the most obvious first step here is to
eliminate  by adding equations (1) and (2).

The second step is multiplying equation (1) by  and adding the result to equation (3). These two steps
will eliminate the variable .

 

In equations (4) and (5), we have created a new two-by-two system. We can solve for  by adding the two
equations.

 

Choosing one equation from each new system, we obtain the upper triangular form:

Next, we back-substitute  into equation (4) and solve for .

Finally, we can back-substitute  and  into equation (1). This will yield the solution for .

The solution is the ordered triple .
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Figure 4

EXAMPLE 3: SOLVING A REAL-WORLD PROBLEM USING A SYSTEM OF
THREE EQUATIONS IN THREE VARIABLES

In the problem posed at the beginning of the section, John invested his inheritance of $12,000 in three
different funds: part in a money-market fund paying 3% interest annually; part in municipal bonds paying
4% annually; and the rest in mutual funds paying 7% annually. John invested $4,000 more in mutual funds
than he invested in municipal bonds. The total interest earned in one year was $670. How much did he
invest in each type of fund?
Answer
To solve this problem, we use all of the information given and set up three equations. First, we assign a
variable to each of the three investment amounts:

The first equation indicates that the sum of the three principal amounts is $12,000.

We form the second equation according to the information that John invested $4,000 more in mutual funds
than he invested in municipal bonds.

The third equation shows that the total amount of interest earned from each fund equals $670.

Then, we write the three equations as a system.
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To make the calculations simpler, we can multiply the third equation by 100. Thus,

Step 1. Interchange equation (2) and equation (3) so that the two equations with three variables will line
up.

Step 2. Multiply equation (1) by  and add to equation (2). Write the result as row 2.

Step 3. Add equation (2) to equation (3) and write the result as equation (3).

Step 4. Solve for  in equation (3). Back-substitute that value in equation (2) and solve for . Then, back-
substitute the values for  and  into equation (1) and solve for .

John invested $2,000 in a money-market fund, $3,000 in municipal bonds, and $7,000 in mutual funds.

An interactive or media element has been excluded from this version of the text. You can view it online
here: https://courses.lumenlearning.com/precalculus/?p=14570

TRY IT

Try It

Solve the system of equations in three variables.

Answer

549



EXAMPLE 4: SOLVING AN INCONSISTENT SYSTEM OF THREE EQUATIONS
IN THREE VARIABLES

Solve the following system.

Answer
Looking at the coefficients of , we can see that we can eliminate  by adding equation (1) to equation (2).

 

Next, we multiply equation (1) by  and add it to equation (3).

 

Then, we multiply equation (4) by 2 and add it to equation (5).

 

The final equation  is a contradiction, so we conclude that the system of equations in inconsistent
and, therefore, has no solution.

Analysis of the Solution

In this system, each plane intersects the other two, but not at the same location. Therefore, the system is
inconsistent.

Inconsistent and Dependent Systems in Three Variables

Just as with systems of equations in two variables, we may come across an inconsistent system of
equations in three variables, which means that it does not have a solution that satisfies all three equations.
The equations could represent three parallel planes, two parallel planes and one intersecting plane, or three
planes that intersect the other two but not at the same location. The process of elimination will result in a
false statement, such as  or some other contradiction.

Try It

Solve the system of three equations in three variables.

Answer

No solution.
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EXAMPLE 5: FINDING THE SOLUTION TO A DEPENDENT SYSTEM OF
EQUATIONS

Find the solution to the given system of three equations in three variables.

Answer
First, we can multiply equation (1) by  and add it to equation (2).

 

We do not need to proceed any further. The result we get is an identity, , which tells us that this
system has an infinite number of solutions. There are other ways to begin to solve this system, such as
multiplying equation (3) by , and adding it to equation (1). We then perform the same steps as above
and find the same result, .
When a system is dependent, we can find general expressions for the solutions. Adding equations (1) and
(3), we have

We then solve the resulting equation for .

We back-substitute the expression for  into one of the equations and solve for .

So the general solution is . In this solution,  can be any real number. The values of  and 
are dependent on the value selected for .

Analysis of the Solution

Expressing the Solution of a System of Dependent Equations
Containing Three Variables

We know from working with systems of equations in two variables that a dependent system of equations
has an infinite number of solutions. The same is true for dependent systems of equations in three variables.
An infinite number of solutions can result from several situations. The three planes could be the same, so
that a solution to one equation will be the solution to the other two equations. All three equations could be
different but they intersect on a line, which has infinite solutions. Or two of the equations could be the same
and intersect the third on a line.
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As shown in Figure 5, two of the planes are the same and they intersect the third plane on a line. The
solution set is infinite, as all points along the intersection line will satisfy all three equations.

Figure 5

Q & A

DOES THE GENERIC SOLUTION TO A DEPENDENT SYSTEM ALWAYS
HAVE TO BE WRITTEN IN TERMS OF 

No, you can write the generic solution in terms of any of the variables, but it is common to write it in terms
of x and if needed  and .

An interactive or media element has been excluded from this version of the text. You can view it online
here: https://courses.lumenlearning.com/precalculus/?p=14570

TRY IT

Try It

Solve the following system.

Answer

Infinite number of solutions of the form .
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solution set

Key Concepts

A solution set is an ordered triple  that represents the intersection of three planes in space.
A system of three equations in three variables can be solved by using a series of steps that forces a
variable to be eliminated. The steps include interchanging the order of equations, multiplying both sides
of an equation by a nonzero constant, and adding a nonzero multiple of one equation to another
equation.
Systems of three equations in three variables are useful for solving many different types of real-world
problems.
A system of equations in three variables is inconsistent if no solution exists. After performing elimination
operations, the result is a contradiction.
Systems of equations in three variables that are inconsistent could result from three parallel planes, two
parallel planes and one intersecting plane, or three planes that intersect the other two but not at the
same location.
A system of equations in three variables is dependent if it has an infinite number of solutions. After
performing elimination operations, the result is an identity.
Systems of equations in three variables that are dependent could result from three identical planes,
three planes intersecting at a line, or two identical planes that intersect the third on a line.

Glossary

the set of all ordered pairs or triples that satisfy all equations in a system of equations
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SYSTEMS OF NONLINEAR EQUATIONS AND
INEQUALITIES: TWO VARIABLES

Learning Outcomes

By the end of this section, you will be able to:
Solve a system of nonlinear equations.
Graph a nonlinear inequality.
Graph a system of nonlinear inequalities.

Halley’s Comet orbits the sun about once every 75 years. Its path can be considered to be a very elongated
ellipse. Other comets follow similar paths in space. These orbital paths can be studied using systems of
equations. These systems, however, are different from the ones we considered in the previous section
because the equations are not linear.
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A GENERAL NOTE: POSSIBLE TYPES OF SOLUTIONS FOR POINTS OF
INTERSECTION OF A PARABOLA AND A LINE

Figure 2 illustrates possible solution sets for a system of equations involving a parabola and a line.
No solution. The line will never intersect the parabola.

Figure 1. Halley’s Comet (credit: “NASA Blueshift”/Flickr)

In this section, we will consider the intersection of a parabola and a line, a circle and a line, and a circle and
an ellipse. The methods for solving systems of nonlinear equations are similar to those for linear equations.

Solving a System of Nonlinear Equations Using Substitution

A system of nonlinear equations is a system of two or more equations in two or more variables containing
at least one equation that is not linear. Recall that a linear equation can take the form .
Any equation that cannot be written in this form in nonlinear. The substitution method we used for linear
systems is the same method we will use for nonlinear systems. We solve one equation for one variable and
then substitute the result into the second equation to solve for another variable, and so on. There is,
however, a variation in the possible outcomes.

Intersection of a Parabola and a Line

There are three possible types of solutions for a system of nonlinear equations involving a parabola and a
line.
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One solution. The line is tangent to the parabola and intersects the parabola at exactly one point.
Two solutions. The line crosses on the inside of the parabola and intersects the parabola at two
points.

Figure 2

HOW TO: GIVEN A SYSTEM OF EQUATIONS CONTAINING A LINE AND A
PARABOLA, FIND THE SOLUTION.

1. Solve the linear equation for one of the variables.
2. Substitute the expression obtained in step one into the parabola equation.
3. Solve for the remaining variable.
4. Check your solutions in both equations.

EXAMPLE 1: SOLVING A SYSTEM OF NONLINEAR EQUATIONS
REPRESENTING A PARABOLA AND A LINE

Solve the system of equations.

Answer
Solve the first equation for  and then substitute the resulting expression into the second equation.

Expand the equation and set it equal to zero.
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Solving for  gives  and . Next, substitute each value for  into the first equation to solve for .
Always substitute the value into the linear equation to check for extraneous solutions.

The solutions are  and  which can be verified by substituting these  values into both of
the original equations.

Figure 3

Q & A

COULD WE HAVE SUBSTITUTED VALUES FOR  INTO THE SECOND
EQUATION TO SOLVE FOR  IN EXAMPLE 1?

Yes, but because  is squared in the second equation this could give us extraneous solutions for .
For 
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This gives us the same value as in the solution.
For 

Notice that  is an extraneous solution.

An interactive or media element has been excluded from this version of the text. You can view it online
here: https://courses.lumenlearning.com/precalculus/?p=14582

TRY IT

A GENERAL NOTE: POSSIBLE TYPES OF SOLUTIONS FOR THE POINTS OF
INTERSECTION OF A CIRCLE AND A LINE

Figure 4 illustrates possible solution sets for a system of equations involving a circle and a line.
No solution. The line does not intersect the circle.
One solution. The line is tangent to the circle and intersects the circle at exactly one point.
Two solutions. The line crosses the circle and intersects it at two points.

Try It

Solve the given system of equations by substitution.

Answer

 and 

Intersection of a Circle and a Line

Just as with a parabola and a line, there are three possible outcomes when solving a system of equations
representing a circle and a line.
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Figure 4

HOW TO: GIVEN A SYSTEM OF EQUATIONS CONTAINING A LINE AND A
CIRCLE, FIND THE SOLUTION.

1. Solve the linear equation for one of the variables.
2. Substitute the expression obtained in step one into the equation for the circle.
3. Solve for the remaining variable.
4. Check your solutions in both equations.

EXAMPLE 2: FINDING THE INTERSECTION OF A CIRCLE AND A LINE BY
SUBSTITUTION

Find the intersection of the given circle and the given line by substitution.

Answer
One of the equations has already been solved for . We will substitute  into the equation for the
circle.

Now, we factor and solve for .

Substitute the two x-values into the original linear equation to solve for .
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The line intersects the circle at  and , which can be verified by substituting these  values
into both of the original equations.

Figure 5

An interactive or media element has been excluded from this version of the text. You can view it online
here: https://courses.lumenlearning.com/precalculus/?p=14582

TRY IT

Try It

Solve the system of nonlinear equations.

Answer

Solving a System of Nonlinear Equations Using Elimination
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A GENERAL NOTE: POSSIBLE TYPES OF SOLUTIONS FOR THE POINTS OF
INTERSECTION OF A CIRCLE AND AN ELLIPSE

Figure 6 illustrates possible solution sets for a system of equations involving a circle and an ellipse.
No solution. The circle and ellipse do not intersect. One shape is inside the other or the circle and the
ellipse are a distance away from the other.
One solution. The circle and ellipse are tangent to each other, and intersect at exactly one point.
Two solutions. The circle and the ellipse intersect at two points.
Three solutions. The circle and the ellipse intersect at three points.
Four solutions. The circle and the ellipse intersect at four points.

Figure 6

EXAMPLE 3: SOLVING A SYSTEM OF NONLINEAR EQUATIONS
REPRESENTING A CIRCLE AND AN ELLIPSE

Solve the system of nonlinear equations.

Answer
Let’s begin by multiplying equation (1) by  and adding it to equation (2).

After we add the two equations together, we solve for .

Substitute  into one of the equations and solve for .

We have seen that substitution is often the preferred method when a system of equations includes a linear
equation and a nonlinear equation. However, when both equations in the system have like variables of the
second degree, solving them using elimination by addition is often easier than substitution. Generally,
elimination is a far simpler method when the system involves only two equations in two variables (a two-by-
two system), rather than a three-by-three system, as there are fewer steps. As an example, we will
investigate the possible types of solutions when solving a system of equations representing a circle and an
ellipse.
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There are four solutions: .

Figure 7

TRY IT

Try It

Find the solution set for the given system of nonlinear equations.

Answer
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An interactive or media element has been excluded from this version of the text. You can view it online
here: https://courses.lumenlearning.com/precalculus/?p=14582

HOW TO: GIVEN AN INEQUALITY BOUNDED BY A PARABOLA, SKETCH A
GRAPH.

1. Graph the parabola as if it were an equation. This is the boundary for the region that is the solution
set.

2. If the boundary is included in the region (the operator is  or  ), the parabola is graphed as a solid
line.

3. If the boundary is not included in the region (the operator is < or >), the parabola is graphed as a
dashed line.

4. Test a point in one of the regions to determine whether it satisfies the inequality statement. If the
statement is true, the solution set is the region including the point. If the statement is false, the
solution set is the region on the other side of the boundary line.

5. Shade the region representing the solution set.

 Graphing Nonlinear Inequalities and Systems of Nonlinear
Inequalities

All of the equations in the systems that we have encountered so far have involved equalities, but we may
also encounter systems that involve inequalities. We have already learned to graph linear inequalities by
graphing the corresponding equation, and then shading the region represented by the inequality symbol.
Now, we will follow similar steps to graph a nonlinear inequality so that we can learn to solve systems of
nonlinear inequalities. A nonlinear inequality is an inequality containing a nonlinear expression. Graphing a
nonlinear inequality is much like graphing a linear inequality.

Recall that when the inequality is greater than, , or less than,  the graph is drawn with a dashed
line. When the inequality is greater than or equal to,  or less than or equal to,  the graph is
drawn with a solid line. The graphs will create regions in the plane, and we will test each region for a
solution. If one point in the region works, the whole region works. That is the region we shade.

Figure 8. (a) an example of ; (b) an example of ; (c) an example of ; (d) an example of 
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EXAMPLE 4: GRAPHING AN INEQUALITY FOR A PARABOLA

Graph the inequality .
Answer
First, graph the corresponding equation . Since  has a greater than symbol, we draw
the graph with a dashed line. Then we choose points to test both inside and outside the parabola. Let’s
test the points   and . One point is clearly inside the parabola and the other point is clearly
outside.

The graph is shown in Figure 9. We can see that the solution set consists of all points inside the parabola,
but not on the graph itself.

Figure 9

Graphing a System of Nonlinear Inequalities

Now that we have learned to graph nonlinear inequalities, we can learn how to graph systems of nonlinear
inequalities. A system of nonlinear inequalities is a system of two or more inequalities in two or more
variables containing at least one inequality that is not linear. Graphing a system of nonlinear inequalities is
similar to graphing a system of linear inequalities. The difference is that our graph may result in more
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HOW TO: GIVEN A SYSTEM OF NONLINEAR INEQUALITIES, SKETCH A
GRAPH.

1. Find the intersection points by solving the corresponding system of nonlinear equations.
2. Graph the nonlinear equations.
3. Find the shaded regions of each inequality.
4. Identify the feasible region as the intersection of the shaded regions of each inequality or the set of

points common to each inequality.

EXAMPLE 5: GRAPHING A SYSTEM OF INEQUALITIES

Graph the given system of inequalities.

Answer
These two equations are clearly parabolas. We can find the points of intersection by the elimination
process: Add both equations and the variable  will be eliminated. Then we solve for .

Substitute the x-values into one of the equations and solve for .

The two points of intersection are  and . Notice that the equations can be rewritten as follows.

Graph each inequality. The feasible region is the region between the two equations bounded by 
 on the top and  on the bottom.

shaded regions that represent a solution than we find in a system of linear inequalities. The solution to a
nonlinear system of inequalities is the region of the graph where the shaded regions of the graph of each
inequality overlap, or where the regions intersect, called the feasible region.
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Figure 10

Try It

Graph the given system of inequalities.

Answer
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feasible region

nonlinear inequality

system of nonlinear equations

An interactive or media element has been excluded from this version of the text. You can view it online
here: https://courses.lumenlearning.com/precalculus/?p=14582

TRY IT

Shade the area bounded by the two curves, above the quadratic and below the line.

Key Concepts

There are three possible types of solutions to a system of equations representing a line and a parabola:
(1) no solution, the line does not intersect the parabola; (2) one solution, the line is tangent to the
parabola; and (3) two solutions, the line intersects the parabola in two points.
There are three possible types of solutions to a system of equations representing a circle and a line: (1)
no solution, the line does not intersect the circle; (2) one solution, the line is tangent to the parabola; (3)
two solutions, the line intersects the circle in two points.
There are five possible types of solutions to the system of nonlinear equations representing an ellipse
and a circle:
(1) no solution, the circle and the ellipse do not intersect; (2) one solution, the circle and the ellipse are
tangent to each other; (3) two solutions, the circle and the ellipse intersect in two points; (4) three
solutions, the circle and ellipse intersect in three places; (5) four solutions, the circle and the ellipse
intersect in four points.
An inequality is graphed in much the same way as an equation, except for > or <, we draw a dashed
line and shade the region containing the solution set.
Inequalities are solved the same way as equalities, but solutions to systems of inequalities must satisfy
both inequalities.

Glossary

the solution to a system of nonlinear inequalities that is the region of the graph where the
shaded regions of each inequality intersect

an inequality containing a nonlinear expression

a system of equations containing at least one equation that is of degree
larger than one
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system of nonlinear inequalities a system of two or more inequalities in two or more variables containing
at least one inequality that is not linear
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PARTIAL FRACTIONS

Learning Outcomes

By the end of this section, you will be able to:

Decompose  , where Q( x ) has only nonrepeated linear factors.

Decompose  , where Q( x ) has repeated linear factors.

Decompose  , where Q( x ) has a nonrepeated irreducible quadratic factor.

Decompose  , where Q( x ) has a repeated irreducible quadratic factor.

Earlier in this chapter, we studied systems of two equations in two variables, systems of three equations in
three variables, and nonlinear systems. Here we introduce another way that systems of equations can be
utilized—the decomposition of rational expressions.

Fractions can be complicated; adding a variable in the denominator makes them even more so. The
methods studied in this section will help simplify the concept of a rational expression.

Decomposing P(x) / Q(x), Where Q(x) Has Only Nonrepeated
Linear Factors

Recall the algebra regarding adding and subtracting rational expressions. These operations depend on
finding a common denominator so that we can write the sum or difference as a single, simplified rational
expression. In this section, we will look at partial fraction decomposition, which is the undoing of the
procedure to add or subtract rational expressions. In other words, it is a return from the single simplified
rational expression to the original expressions, called the partial fractions.

For example, suppose we add the following fractions:

We would first need to find a common denominator, .

Next, we would write each expression with this common denominator and find the sum of the terms.
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A GENERAL NOTE: PARTIAL FRACTION DECOMPOSITION OF 

HAS NONREPEATED LINEAR FACTORS

The partial fraction decomposition of  when  has nonrepeated linear factors and the degree
of  is less than the degree of  is

.

HOW TO: GIVEN A RATIONAL EXPRESSION WITH DISTINCT LINEAR
FACTORS IN THE DENOMINATOR, DECOMPOSE IT.

1. Use a variable for the original numerators, usually  or , depending on the number of factors,
placing each variable over a single factor. For the purpose of this definition, we use  for each
numerator

2. Multiply both sides of the equation by the common denominator to eliminate fractions.
3. Expand the right side of the equation and collect like terms.
4. Set coefficients of like terms from the left side of the equation equal to those on the right side to

create a system of equations to solve for the numerators.

EXAMPLE 1: DECOMPOSING A RATIONAL FUNCTION WITH DISTINCT
LINEAR FACTORS

Decompose the given rational expression with distinct linear factors.

Answer
We will separate the denominator factors and give each numerator a symbolic label, like , or .

Partial fraction decomposition is the reverse of this procedure. We would start with the solution and rewrite
(decompose) it as the sum of two fractions.

We will investigate rational expressions with linear factors and quadratic factors in the denominator where
the degree of the numerator is less than the degree of the denominator. Regardless of the type of
expression we are decomposing, the first and most important thing to do is factor the denominator.

When the denominator of the simplified expression contains distinct linear factors, it is likely that each of the
original rational expressions, which were added or subtracted, had one of the linear factors as the
denominator. In other words, using the example above, the factors of  are , the
denominators of the decomposed rational expression. So we will rewrite the simplified form as the sum of
individual fractions and use a variable for each numerator. Then, we will solve for each numerator using one
of several methods available for partial fraction decomposition.
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Multiply both sides of the equation by the common denominator to eliminate the fractions:

The resulting equation is

Expand the right side of the equation and collect like terms.

Set up a system of equations associating corresponding coefficients.

Add the two equations and solve for .

Substitute  into one of the original equations in the system.

Thus, the partial fraction decomposition is

 
Another method to use to solve for  or  is by considering the equation that resulted from eliminating the
fractions and substituting a value for  that will make either the  or term equal 0. If we let ,
the   term becomes 0 and we can simply solve for .

Next, either substitute  into the equation and solve for , or make the term 0 by substituting 
 into the equation.

We obtain the same values for  and  using either method, so the decompositions are the same using
either method.

Although this method is not seen very often in textbooks, we present it here as an alternative that may
make some partial fraction decompositions easier. It is known as the Heaviside method, named after
Charles Heaviside, a pioneer in the study of electronics.
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An interactive or media element has been excluded from this version of the text. You can view it online
here: https://courses.lumenlearning.com/precalculus/?p=14590

TRY IT

A GENERAL NOTE: PARTIAL FRACTION DECOMPOSITION OF 

HAS REPEATED LINEAR FACTORS

The partial fraction decomposition of , when  has a repeated linear factor occurring  times

and the degree of  is less than the degree of , is

Write the denominator powers in increasing order.

HOW TO: GIVEN A RATIONAL EXPRESSION WITH REPEATED LINEAR
FACTORS, DECOMPOSE IT.

1. Use a variable like , or  for the numerators and account for increasing powers of the
denominators.

2. Multiply both sides of the equation by the common denominator to eliminate fractions.
3. Expand the right side of the equation and collect like terms.
4. Set coefficients of like terms from the left side of the equation equal to those on the right side to

create a system of equations to solve for the numerators.

Try It

Find the partial fraction decomposition of the following expression.

Answer

Decomposing P(x)/ Q(x), Where Q(x) Has Repeated Linear
Factors

Some fractions we may come across are special cases that we can decompose into partial fractions with
repeated linear factors. We must remember that we account for repeated factors by writing each factor in
increasing powers.
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EXAMPLE 2: DECOMPOSING WITH REPEATED LINEAR FACTORS

Decompose the given rational expression with repeated linear factors.

Answer
The denominator factors are . To allow for the repeated factor of , the decomposition will
include three denominators: , and . Thus,

Next, we multiply both sides by the common denominator.

On the right side of the equation, we expand and collect like terms.

Next, we compare the coefficients of both sides. This will give the system of equations in three variables:

(1)

(2)

Solving for  , we have

Substitute  into equation (1).

Then, to solve for , substitute the values for  and  into equation (2).

Thus,

Try It

Find the partial fraction decomposition of the expression with repeated linear factors.
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An interactive or media element has been excluded from this version of the text. You can view it online
here: https://courses.lumenlearning.com/precalculus/?p=14590

TRY IT

A GENERAL NOTE: DECOMPOSITION OF  HAS A

NONREPEATED IRREDUCIBLE QUADRATIC FACTOR

The partial fraction decomposition of  such that  has a nonrepeated irreducible quadratic

factor and the degree of  is less than the degree of  is written as

The decomposition may contain more rational expressions if there are linear factors. Each linear factor will
have a different constant numerator: , and so on.

HOW TO: GIVEN A RATIONAL EXPRESSION WHERE THE FACTORS OF THE
DENOMINATOR ARE DISTINCT, IRREDUCIBLE QUADRATIC FACTORS,

DECOMPOSE IT.

1. Use variables such as , or  for the constant numerators over linear factors, and linear
expressions such as , etc., for the numerators of each quadratic factor in the
denominator.

2. Multiply both sides of the equation by the common denominator to eliminate fractions.
3. Expand the right side of the equation and collect like terms.
4. Set coefficients of like terms from the left side of the equation equal to those on the right side to

create a system of equations to solve for the numerators.

Answer

Decomposing P(x) / Q(x), Where Q(x) Has a Nonrepeated
Irreducible Quadratic Factor

So far, we have performed partial fraction decomposition with expressions that have had linear factors in the
denominator, and we applied numerators , or  representing constants. Now we will look at an example
where one of the factors in the denominator is a quadratic expression that does not factor. This is referred
to as an irreducible quadratic factor. In cases like this, we use a linear numerator such as ,
etc.

572



EXAMPLE 3: DECOMPOSING  WHEN Q(X) CONTAINS A

NONREPEATED IRREDUCIBLE QUADRATIC FACTOR

Find a partial fraction decomposition of the given expression.

Answer
We have one linear factor and one irreducible quadratic factor in the denominator, so one numerator will
be a constant and the other numerator will be a linear expression. Thus,

We follow the same steps as in previous problems. First, clear the fractions by multiplying both sides of
the equation by the common denominator.

Notice we could easily solve for  by choosing a value for  that will make the  term equal 0. Let 
 and substitute it into the equation.

Now that we know the value of , substitute it back into the equation. Then expand the right side and
collect like terms.

Setting the coefficients of terms on the right side equal to the coefficients of terms on the left side gives
the system of equations.

Solve for  using equation (1) and solve for  using equation (3).

Thus, the partial fraction decomposition of the expression is
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Q & A

COULD WE HAVE JUST SET UP A SYSTEM OF EQUATIONS TO SOLVE
EXAMPLE 3?

Yes, we could have solved it by setting up a system of equations without solving for  first. The expansion
on the right would be:

So the system of equations would be:

An interactive or media element has been excluded from this version of the text. You can view it online
here: https://courses.lumenlearning.com/precalculus/?p=14590

TRY IT

A GENERAL NOTE: DECOMPOSITION OF  WHEN Q(X) HAS A

REPEATED IRREDUCIBLE QUADRATIC FACTOR

The partial fraction decomposition of , when  has a repeated irreducible quadratic factor and

the degree of  is less than the degree of , is

Try It

Find the partial fraction decomposition of the expression with a nonrepeating irreducible quadratic factor.

Answer

 Decomposing P(x) / Q(x), When Q(x) Has a Repeated Irreducible
Quadratic Factor

Now that we can decompose a simplified rational expression with an irreducible quadratic factor, we will
learn how to do partial fraction decomposition when the simplified rational expression has repeated
irreducible quadratic factors. The decomposition will consist of partial fractions with linear numerators over
each irreducible quadratic factor represented in increasing powers.
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Write the denominators in increasing powers.

HOW TO: GIVEN A RATIONAL EXPRESSION THAT HAS A REPEATED
IRREDUCIBLE FACTOR, DECOMPOSE IT.

1. Use variables like , or  for the constant numerators over linear factors, and linear expressions
such as , etc., for the numerators of each quadratic factor in the denominator
written in increasing powers, such as

2. Multiply both sides of the equation by the common denominator to eliminate fractions.
3. Expand the right side of the equation and collect like terms.
4. Set coefficients of like terms from the left side of the equation equal to those on the right side to

create a system of equations to solve for the numerators.

EXAMPLE 4: DECOMPOSING A RATIONAL FUNCTION WITH A REPEATED
IRREDUCIBLE QUADRATIC FACTOR IN THE DENOMINATOR

Decompose the given expression that has a repeated irreducible factor in the denominator.

Answer
The factors of the denominator are , and . Recall that, when a factor in the
denominator is a quadratic that includes at least two terms, the numerator must be of the linear form 

. So, let’s begin the decomposition.

We eliminate the denominators by multiplying each term by . Thus,

Expand the right side.

Now we will collect like terms.

Set up the system of equations matching corresponding coefficients on each side of the equal sign.

We can use substitution from this point. Substitute  into the first equation.
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Substitute  and  into the third equation.

Substitute  into the fourth equation.

Now we have solved for all of the unknowns on the right side of the equal sign. We have , , 
, , and . We can write the decomposition as follows:

An interactive or media element has been excluded from this version of the text. You can view it online
here: https://courses.lumenlearning.com/precalculus/?p=14590

TRY IT

Try It

Find the partial fraction decomposition of the expression with a repeated irreducible quadratic factor.

Answer

Key Concepts

Decompose  by writing the partial fractions as . Solve by clearing the fractions,
expanding the right side, collecting like terms, and setting corresponding coefficients equal to each
other, then setting up and solving a system of equations.
The decomposition of  with repeated linear factors must account for the factors of the denominator
in increasing powers.
The decomposition of  with a nonrepeated irreducible quadratic factor needs a linear numerator
over the quadratic factor, as in .

In the decomposition of , where  has a repeated irreducible quadratic factor, when the
irreducible quadratic factors are repeated, powers of the denominator factors must be represented in
increasing powers as

.

Glossary
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partial fractions

partial fraction decomposition

the individual fractions that make up the sum or difference of a rational expression before
combining them into a simplified rational expression

the process of returning a simplified rational expression to its original form,
a sum or difference of simpler rational expressions

Licensing & Attributions

CC licensed content, Speci�c attribution

Precalculus. Authored by: OpenStax College. Provided by: OpenStax. Located at: http://cnx.org/contents/fd53eae1-fa23-47c7-bb1b-972349835c3c@5.175:1/Preface. License: CC BY: Attribution

MATRICES AND MATRIX OPERATIONS

Learning Outcomes

By the end of this section, you will be able to:
Find the sum and difference of two matrices.
Find scalar multiples of a matrix.
Find the product of two matrices.
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Figure 1. (credit: “SD Dirk,” Flickr)

Two club soccer teams, the Wildcats and the Mud Cats, are hoping to obtain new equipment for an
upcoming season. [link] shows the needs of both teams.

Wildcats Mud Cats

Goals 6 10

Balls 30 24

Jerseys 14 20

A goal costs $300; a ball costs $10; and a jersey costs $30. How can we find the total cost for the equipment
needed for each team? In this section, we discover a method in which the data in the soccer equipment
table can be displayed and used for calculating other information. Then, we will be able to calculate the cost
of the equipment.
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A GENERAL NOTE: MATRICES

A matrix is a rectangular array of numbers that is usually named by a capital letter:  and so on.
Each entry in a matrix is referred to as , such that  represents the row and  represents the column.
Matrices are often referred to by their dimensions:  indicating  rows and  columns.

EXAMPLE 1: FINDING THE DIMENSIONS OF THE GIVEN MATRIX AND
LOCATING ENTRIES

Given matrix 

1. What are the dimensions of matrix 
2. What are the entries at  and 

Finding the Sum and Di�erence of Two Matrices

To solve a problem like the one described for the soccer teams, we can use a matrix, which is a rectangular
array of numbers. A row in a matrix is a set of numbers that are aligned horizontally. A column in a matrix is
a set of numbers that are aligned vertically. Each number is an entry, sometimes called an element, of the
matrix. Matrices (plural) are enclosed in [ ] or ( ), and are usually named with capital letters. For example,
three matrices named  and  are shown below.

Describing Matrices

A matrix is often referred to by its size or dimensions:  indicating  rows and  columns. Matrix
entries are defined first by row and then by column. For example, to locate the entry in matrix  identified as

 we look for the entry in row  column . In matrix  shown below, the entry in row 2,
column 3 is .

A square matrix is a matrix with dimensions  meaning that it has the same number of rows as
columns. The  matrix above is an example of a square matrix.

A row matrix is a matrix consisting of one row with dimensions .

A column matrix is a matrix consisting of one column with dimensions .

A matrix may be used to represent a system of equations. In these cases, the numbers represent the
coefficients of the variables in the system. Matrices often make solving systems of equations easier because
they are not encumbered with variables. We will investigate this idea further in the next section, but first we
will look at basic matrix operations.
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Answer

1. The dimensions are  because there are three rows and three columns.
2. Entry  is the number at row 3, column 1, which is 3. The entry  is the number at row 2, column

2, which is 4. Remember, the row comes first, then the column.

A GENERAL NOTE: ADDING AND SUBTRACTING MATRICES

Given matrices  and  of like dimensions, addition and subtraction of  and  will produce matrix 
or matrix  of the same dimension.

Matrix addition is commutative.

It is also associative.

EXAMPLE 2: FINDING THE SUM OF MATRICES

Find the sum of  and  given

Answer
Add corresponding entries.

A+B=\left[a

d\right]+\left[e

h\right]

=\left[a+e

d+h\right]

EXAMPLE 3: ADDING MATRIX A AND MATRIX B

Adding and Subtracting Matrices

We use matrices to list data or to represent systems. Because the entries are numbers, we can perform
operations on matrices. We add or subtract matrices by adding or subtracting corresponding entries.

In order to do this, the entries must correspond. Therefore, addition and subtraction of matrices is only
possible when the matrices have the same dimensions. We can add or subtract a  matrix and
another  matrix, but we cannot add or subtract a  matrix and a  matrix because some
entries in one matrix will not have a corresponding entry in the other matrix.

580



Find the sum of  and .

Answer
Add corresponding entries. Add the entry in row 1, column 1,  of matrix  to the entry in row 1, column
1, , of . Continue the pattern until all entries have been added.

A+B=\left[4

2\right]+\left[5

7\right]

=\left[4+5

2+7\right]

=\left[9

9\right]

EXAMPLE 4: FINDING THE DIFFERENCE OF TWO MATRICES

Find the difference of  and .

Answer
We subtract the corresponding entries of each matrix.

A-B=\left[-2

1\right]-\left[8

4\right]

=\left[-2 - 8

1 - 4\right]

=\left[-10

-3\right]

EXAMPLE 5: FINDING THE SUM AND DIFFERENCE OF TWO 3 X 3
MATRICES

Given  and 

1. Find the sum.
2. Find the difference.
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Answer

1. Add the corresponding entries.

A+B=\left[2

2\right]+\left[6

-2\right]

=\left[2+6

2 - 2\right]

=\left[8

0\right]

2. Subtract the corresponding entries.

A-B=\left[2

2\right]-\left[6

-2\right]

=\left[2 - 6

2+2\right]

=\left[-4

4\right]

Try It 1

Add matrix  and matrix .

Answer
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An interactive or media element has been excluded from this version of the text. You can view it online
here: https://courses.lumenlearning.com/precalculus/?p=14595

TRY IT

An interactive or media element has been excluded from this version of the text. You can view it online
here: https://courses.lumenlearning.com/precalculus/?p=14595

TRY IT

Finding Scalar Multiples of a Matrix

Besides adding and subtracting whole matrices, there are many situations in which we need to multiply a
matrix by a constant called a scalar. Recall that a scalar is a real number quantity that has magnitude, but
not direction. For example, time, temperature, and distance are scalar quantities. The process of scalar
multiplication involves multiplying each entry in a matrix by a scalar. A scalar multiple is any entry of a
matrix that results from scalar multiplication.

Consider a real-world scenario in which a university needs to add to its inventory of computers, computer
tables, and chairs in two of the campus labs due to increased enrollment. They estimate that 15% more
equipment is needed in both labs. The school’s current inventory is displayed in the table below.

Lab A Lab B

Computers 15 27

Computer Tables 16 34

Chairs 16 34

Converting the data to a matrix, we have

To calculate how much computer equipment will be needed, we multiply all entries in matrix  by 0.15.

We must round up to the next integer, so the amount of new equipment needed is
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A GENERAL NOTE: SCALAR MULTIPLICATION

Scalar multiplication involves finding the product of a constant by each entry in the matrix. Given

the scalar multiple  is
cA=c\left[{a}_{11}

{a}_{22}\right]

=\left[c{a}_{11}

c{a}_{22}\right]

Scalar multiplication is distributive. For the matrices , and  with scalars  and ,

EXAMPLE 6: MULTIPLYING THE MATRIX BY A SCALAR

Multiply matrix  by the scalar 3.

Answer
Multiply each entry in  by the scalar 3.

3A=3\left[8

4\right]

= \left[3\cdot 8

3\cdot 4\right]

= \left[24

12\right]

Adding the two matrices as shown below, we see the new inventory amounts.

This means

Thus, Lab A will have 18 computers, 19 computer tables, and 19 chairs; Lab B will have 32 computers, 40
computer tables, and 40 chairs.
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EXAMPLE 7: FINDING THE SUM OF SCALAR MULTIPLES

Find the sum .

Answer
First, find  then .

3A=\left[3\cdot 1

3\left(-6\right)\right]

=\left[3

-18\right]

2B=\left[2\left(-1\right)

2\left(-4\right)\right]

=\left[-2

-8\right]

Now, add .

3A+2B=\left[3

-18\right]+\left[-2

Try It

Given matrix  find  where

Answer
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-8\right]

=\left[3 - 2

-18 - 8\right]

=\left[1

-26\right]

An interactive or media element has been excluded from this version of the text. You can view it online
here: https://courses.lumenlearning.com/precalculus/?p=14595

TRY IT

Finding the Product of Two Matrices

In addition to multiplying a matrix by a scalar, we can multiply two matrices. Finding the product of two
matrices is only possible when the inner dimensions are the same, meaning that the number of columns of
the first matrix is equal to the number of rows of the second matrix. If  is an  matrix and  is an 

 matrix, then the product matrix  is an  matrix. For example, the product  is possible
because the number of columns in  is the same as the number of rows in . If the inner dimensions do not
match, the product is not defined.
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Figure 1

We multiply entries of  with entries of  according to a specific pattern as outlined below. The process of
matrix multiplication becomes clearer when working a problem with real numbers.

To obtain the entries in row  of  we multiply the entries in row  of  by column  in  and add. For
example, given matrices  and  where the dimensions of  are  and the dimensions of  are 

 the product of  will be a  matrix.

Multiply and add as follows to obtain the first entry of the product matrix .

1. To obtain the entry in row 1, column 1 of  multiply the first row in  by the first column in , and
add.

2. To obtain the entry in row 1, column 2 of  multiply the first row of  by the second column in , and
add.

3. To obtain the entry in row 1, column 3 of  multiply the first row of  by the third column in , and
add.

We proceed the same way to obtain the second row of . In other words, row 2 of  times column 1 of ;
row 2 of  times column 2 of ; row 2 of  times column 3 of . When complete, the product matrix will be
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A GENERAL NOTE: PROPERTIES OF MATRIX MULTIPLICATION

For the matrices  and  the following properties hold.
Matrix multiplication is associative:

Matrix multiplication is distributive:

Note that matrix multiplication is not commutative.

EXAMPLE 8: MULTIPLYING TWO MATRICES

Multiply matrix  and matrix .

Answer
First, we check the dimensions of the matrices. Matrix  has dimensions  and matrix  has
dimensions . The inner dimensions are the same so we can perform the multiplication. The product
will have the dimensions .
We perform the operations outlined previously.

EXAMPLE 9: MULTIPLYING TWO MATRICES

Given  and 

1. Find .
2. Find .

Answer
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1. As the dimensions of  are  and the dimensions of  are  these matrices can be
multiplied together because the number of columns in  matches the number of rows in . The
resulting product will be a  matrix, the number of rows in  by the number of columns in .

AB=\left[-1

5\right]\left[5

3\right]

=\left[-1\left(5\right)+2\left(-4\right)+3\left(2\right)

4\left(-1\right)+0\left(0\right)+5\left(3\right)\right]

=\left[-7

11\right]

2. The dimensions of  are  and the dimensions of  are . The inner dimensions match so
the product is defined and will be a  matrix.

BA=\left[5

3\right]\left[-1

5\right]

=\left[5\left(-1\right)+-1\left(4\right)

2\left(3\right)+3\left(5\right)\right]

=\left[-9

21\right]

Analysis of the Solution

Notice that the products  and  are not equal.

This illustrates the fact that matrix multiplication is not commutative.

An interactive or media element has been excluded from this version of the text. You can view it online
here: https://courses.lumenlearning.com/precalculus/?p=14595

TRY IT
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Q & A

IS IT POSSIBLE FOR AB TO BE DEFINED BUT NOT BA?

Yes, consider a matrix A with dimension  and matrix B with dimension . For the product AB the
inner dimensions are 4 and the product is defined, but for the product BA the inner dimensions are 2 and 3
so the product is undefined.

EXAMPLE 10: USING MATRICES IN REAL-WORLD PROBLEMS

Let’s return to the problem presented at the opening of this section. We have the table below, representing
the equipment needs of two soccer teams.

Wildcats Mud Cats

Goals 6 10

Balls 30 24

Jerseys 14 20

We are also given the prices of the equipment, as shown in the table below.

Goal $300

Ball $10

Jersey $30

We will convert the data to matrices. Thus, the equipment need matrix is written as

The cost matrix is written as

We perform matrix multiplication to obtain costs for the equipment.

CE=\left[300 30\r

20\right]

=\left[300\left(6\right)+10\left(30\right)+30\left(14\right) 300\left(10\right)+10\left(24\right)+30\left(20\right)\right]

=\left[2,520 3,840\right]

The total cost for equipment for the Wildcats is $2,520, and the total cost for equipment for the Mud Cats
is $3,840.

Key Concepts
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column

entry

matrix

row

scalar multiple

HOW TO: GIVEN A MATRIX OPERATION, EVALUATE USING A
CALCULATOR.

1. Save each matrix as a matrix variable .
2. Enter the operation into the calculator, calling up each matrix variable as needed.
3. If the operation is defined, the calculator will present the solution matrix; if the operation is undefined,

it will display an error message.

EXAMPLE 11: USING A CALCULATOR TO PERFORM MATRIX OPERATIONS

Find  given

.

Answer
On the matrix page of the calculator, we enter matrix  above as the matrix variable , matrix  above
as the matrix variable , and matrix  above as the matrix variable .
On the home screen of the calculator, we type in the problem and call up each matrix variable as needed.

The calculator gives us the following matrix.

A matrix is a rectangular array of numbers. Entries are arranged in rows and columns.
The dimensions of a matrix refer to the number of rows and the number of columns. A  matrix has
three rows and two columns.
We add and subtract matrices of equal dimensions by adding and subtracting corresponding entries of
each matrix.
Scalar multiplication involves multiplying each entry in a matrix by a constant.
Scalar multiplication is often required before addition or subtraction can occur.
Multiplying matrices is possible when inner dimensions are the same—the number of columns in the
first matrix must match the number of rows in the second.
The product of two matrices,  and , is obtained by multiplying each entry in row 1 of  by each entry
in column 1 of ; then multiply each entry of row 1 of  by each entry in columns 2 of  and so on.
Many real-world problems can often be solved using matrices.
We can use a calculator to perform matrix operations after saving each matrix as a matrix variable.

Glossary

a set of numbers aligned vertically in a matrix

an element, coefficient, or constant in a matrix

a rectangular array of numbers

a set of numbers aligned horizontally in a matrix

an entry of a matrix that has been multiplied by a scalar
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SOLVING SYSTEMS WITH GAUSSIAN
ELIMINATION

Learning Outcomes

By the end of this section, you will be able to:
Write the augmented matrix of a system of equations.
Write the system of equations from an augmented matrix.
Perform row operations on a matrix.
Solve a system of linear equations using matrices.
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Figure 1. German mathematician Carl Friedrich Gauss (1777–1855).

Carl Friedrich Gauss lived during the late 18th century and early 19th century, but he is still considered one
of the most prolific mathematicians in history. His contributions to the science of mathematics and physics
span fields such as algebra, number theory, analysis, differential geometry, astronomy, and optics, among
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HOW TO: GIVEN A SYSTEM OF EQUATIONS, WRITE AN AUGMENTED
MATRIX.

1. Write the coefficients of the x-terms as the numbers down the first column.
2. Write the coefficients of the y-terms as the numbers down the second column.
3. If there are z-terms, write the coefficients as the numbers down the third column.
4. Draw a vertical line and write the constants to the right of the line.

others. His discoveries regarding matrix theory changed the way mathematicians have worked for the last
two centuries.

We first encountered Gaussian elimination in Systems of Linear Equations: Two Variables. In this section,
we will revisit this technique for solving systems, this time using matrices.

The Augmented Matrix of a System of Equations

A matrix can serve as a device for representing and solving a system of equations. To express a system in
matrix form, we extract the coefficients of the variables and the constants, and these become the entries of
the matrix. We use a vertical line to separate the coefficient entries from the constants, essentially replacing
the equal signs. When a system is written in this form, we call it an augmented matrix.

For example, consider the following  system of equations.

We can write this system as an augmented matrix:

We can also write a matrix containing just the coefficients. This is called the coefficient matrix.

A three-by-three system of equations such as

has a coefficient matrix

and is represented by the augmented matrix

Notice that the matrix is written so that the variables line up in their own columns: x-terms go in the first
column, y-terms in the second column, and z-terms in the third column. It is very important that each
equation is written in standard form  so that the variables line up. When there is a missing
variable term in an equation, the coefficient is 0.
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EXAMPLE 1: WRITING THE AUGMENTED MATRIX FOR A SYSTEM OF
EQUATIONS

Write the augmented matrix for the given system of equations.

Answer
The augmented matrix displays the coefficients of the variables, and an additional column for the
constants.

An interactive or media element has been excluded from this version of the text. You can view it online
here: https://courses.lumenlearning.com/precalculus/?p=14598

TRY IT

EXAMPLE 2: WRITING A SYSTEM OF EQUATIONS FROM AN AUGMENTED
MATRIX FORM

Find the system of equations from the augmented matrix.

Answer
When the columns represent the variables , , and ,

Try It

Write the augmented matrix of the given system of equations.

Answer

Writing a System of Equations from an Augmented Matrix

We can use augmented matrices to help us solve systems of equations because they simplify operations
when the systems are not encumbered by the variables. However, it is important to understand how to move
back and forth between formats in order to make finding solutions smoother and more intuitive. Here, we will
use the information in an augmented matrix to write the system of equations in standard form.
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An interactive or media element has been excluded from this version of the text. You can view it online
here: https://courses.lumenlearning.com/precalculus/?p=14598

TRY IT

Try It

Write the system of equations from the augmented matrix.

Answer

Performing Row Operations on a Matrix

Now that we can write systems of equations in augmented matrix form, we will examine the various row
operations that can be performed on a matrix, such as addition, multiplication by a constant, and
interchanging rows.

Performing row operations on a matrix is the method we use for solving a system of equations. In order to
solve the system of equations, we want to convert the matrix to row-echelon form, in which there are ones
down the main diagonal from the upper left corner to the lower right corner, and zeros in every position
below the main diagonal as shown.

\left[1

1\right]

We use row operations corresponding to equation operations to obtain a new matrix that is row-equivalent
in a simpler form. Here are the guidelines to obtaining row-echelon form.

1. In any nonzero row, the first nonzero number is a 1. It is called a leading 1.
2. Any all-zero rows are placed at the bottom on the matrix.
3. Any leading 1 is below and to the right of a previous leading 1.
4. Any column containing a leading 1 has zeros in all other positions in the column.

To solve a system of equations we can perform the following row operations to convert the coefficient
matrix to row-echelon form and do back-substitution to find the solution.
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A GENERAL NOTE: GAUSSIAN ELIMINATION

The Gaussian elimination method refers to a strategy used to obtain the row-echelon form of a matrix.
The goal is to write matrix  with the number 1 as the entry down the main diagonal and have all zeros
below.

The first step of the Gaussian strategy includes obtaining a 1 as the first entry, so that row 1 may be used
to alter the rows below.

HOW TO: GIVEN AN AUGMENTED MATRIX, PERFORM ROW OPERATIONS
TO ACHIEVE ROW-ECHELON FORM.

1. The first equation should have a leading coefficient of 1. Interchange rows or multiply by a constant, if
necessary.

2. Use row operations to obtain zeros down the first column below the first entry of 1.
3. Use row operations to obtain a 1 in row 2, column 2.
4. Use row operations to obtain zeros down column 2, below the entry of 1.
5. Use row operations to obtain a 1 in row 3, column 3.
6. Continue this process for all rows until there is a 1 in every entry down the main diagonal and there

are only zeros below.
7. If any rows contain all zeros, place them at the bottom.

EXAMPLE 3: SOLVING A  SYSTEM BY GAUSSIAN ELIMINATION

Solve the given system by Gaussian elimination.

Answer
First, we write this as an augmented matrix.

We want a 1 in row 1, column 1. This can be accomplished by interchanging row 1 and row 2.

We now have a 1 as the first entry in row 1, column 1. Now let’s obtain a 0 in row 2, column 1. This can be
accomplished by multiplying row 1 by , and then adding the result to row 2.

1. Interchange rows. (Notation:  )
2. Multiply a row by a constant. (Notation:  )
3. Add the product of a row multiplied by a constant to another row. (Notation: )

Each of the row operations corresponds to the operations we have already learned to solve systems of
equations in three variables. With these operations, there are some key moves that will quickly achieve the
goal of writing a matrix in row-echelon form. To obtain a matrix in row-echelon form for finding solutions, we
use Gaussian elimination, a method that uses row operations to obtain a 1 as the first entry so that row 1
can be used to convert the remaining rows.
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We only have one more step, to multiply row 2 by .

Use back-substitution. The second row of the matrix represents . Back-substitute  into the first
equation.

The solution is the point .

EXAMPLE 4: USING GAUSSIAN ELIMINATION TO SOLVE A SYSTEM OF
EQUATIONS

Use Gaussian elimination to solve the given  system of equations.
\begin{align}2x+y&=1 \\ 4x+2y&=6 \end{array}
Answer
Write the system as an augmented matrix.

Obtain a 1 in row 1, column 1. This can be accomplished by multiplying the first row by .

Next, we want a 0 in row 2, column 1. Multiply row 1 by  and add row 1 to row 2.

The second row represents the equation . Therefore, the system is inconsistent and has no solution.

EXAMPLE 5: SOLVING A DEPENDENT SYSTEM

Solve the system of equations.

Answer
Perform row operations on the augmented matrix to try and achieve row-echelon form.

Try It

Solve the given system by Gaussian elimination.

Answer
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-\frac{1}{2}{R}_{2}+{R}_{1}={R}_{1}\to \left[\left.0

\right\rvert

24\right]

{R}_{1}\leftrightarrow {R}_{2}\to \left[\left.6

\right\rvert

0\right]

The matrix ends up with all zeros in the last row: . Thus, there are an infinite number of solutions
and the system is classified as dependent. To find the generic solution, return to one of the original
equations and solve for .

So the solution to this system is .

EXAMPLE 6: PERFORMING ROW OPERATIONS ON A 3×3 AUGMENTED
MATRIX TO OBTAIN ROW-ECHELON FORM

Perform row operations on the given matrix to obtain row-echelon form.

Answer
The first row already has a 1 in row 1, column 1. The next step is to multiply row 1 by  and add it to row
2. Then replace row 2 with the result.

Next, obtain a zero in row 3, column 1.

Next, obtain a zero in row 3, column 2.

The last step is to obtain a 1 in row 3, column 3.
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EXAMPLE 7: SOLVING A SYSTEM OF LINEAR EQUATIONS USING
MATRICES

Solve the system of linear equations using matrices.

Answer
First, we write the augmented matrix.

Next, we perform row operations to obtain row-echelon form.

The easiest way to obtain a 1 in row 2 of column 1 is to interchange  and .

Try It

Write the system of equations in row-echelon form.

Answer

Solving a System of Linear Equations Using Matrices

We have seen how to write a system of equations with an augmented matrix, and then how to use row
operations and back-substitution to obtain row-echelon form. Now, we will take row-echelon form a step
farther to solve a 3 by 3 system of linear equations. The general idea is to eliminate all but one variable
using row operations and then back-substitute to solve for the other variables.
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Then

-5{R}_{2}+{R}_{3}={R}_{3}\to \left[\left.1

\right\rvert

57\right] \frac{1}{57}{R}_{3}={R}_{3}\to \left[\left.1

\right\rvert

1\right]

The last matrix represents the equivalent system.

Using back-substitution, we obtain the solution as .

EXAMPLE 8: SOLVING A DEPENDENT SYSTEM OF LINEAR EQUATIONS
USING MATRICES

Solve the following system of linear equations using matrices.

Answer
Write the augmented matrix.

First, multiply row 1 by  to get a 1 in row 1, column 1. Then, perform row operations to obtain row-
echelon form.
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The last matrix represents the following system.

We see by the identity  that this is a dependent system with an infinite number of solutions. We then
find the generic solution. By solving the second equation for  and substituting it into the first equation we
can solve for  in terms of .

Now we substitute the expression for  into the second equation to solve for  in terms of .

The generic solution is .

Q & A

CAN ANY SYSTEM OF LINEAR EQUATIONS BE SOLVED BY GAUSSIAN
ELIMINATION?

Try It

Solve the system using matrices.

Answer
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Yes, a system of linear equations of any size can be solved by Gaussian elimination.

HOW TO: GIVEN A SYSTEM OF EQUATIONS, SOLVE WITH MATRICES
USING A CALCULATOR.

1. Save the augmented matrix as a matrix variable .
2. Use the ref( function in the calculator, calling up each matrix variable as needed.

EXAMPLE 9: SOLVING SYSTEMS OF EQUATIONS WITH MATRICES USING
A CALCULATOR

Solve the system of equations.

Answer
Write the augmented matrix for the system of equations.

On the matrix page of the calculator, enter the augmented matrix above as the matrix variable .

Use the ref( function in the calculator, calling up the matrix variable .

Evaluate.

Using back-substitution, the solution is .

EXAMPLE 10: APPLYING 2 × 2 MATRICES TO FINANCE

Carolyn invests a total of $12,000 in two municipal bonds, one paying 10.5% interest and the other paying
12% interest. The annual interest earned on the two investments last year was $1,335. How much was
invested at each rate?
Answer
We have a system of two equations in two variables. Let  the amount invested at 10.5% interest, and 

 the amount invested at 12% interest.

As a matrix, we have
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Multiply row 1 by  and add the result to row 2.

Then,

So .
Thus, $5,000 was invested at 12% interest and $7,000 at 10.5% interest.

EXAMPLE 11: APPLYING 3 × 3 MATRICES TO FINANCE

Ava invests a total of $10,000 in three accounts, one paying 5% interest, another paying 8% interest, and
the third paying 9% interest. The annual interest earned on the three investments last year was $770. The
amount invested at 9% was twice the amount invested at 5%. How much was invested at each rate?
Answer
We have a system of three equations in three variables. Let  be the amount invested at 5% interest, let 
be the amount invested at 8% interest, and let  be the amount invested at 9% interest. Thus,

As a matrix, we have

Now, we perform Gaussian elimination to achieve row-echelon form.

The third row tells us ; thus .
The second row tells us . Substituting , we get

604



augmented matrix

coefficient matrix

Gaussian elimination

main diagonal

row-echelon form

row-equivalent

row operations

The first row tells us . Substituting  and , we get

The answer is $3,000 invested at 5% interest, $1,000 invested at 8%, and $6,000 invested at 9% interest.

Try It

A small shoe company took out a loan of $1,500,000 to expand their inventory. Part of the money was
borrowed at 7%, part was borrowed at 8%, and part was borrowed at 10%. The amount borrowed at 10%
was four times the amount borrowed at 7%, and the annual interest on all three loans was $130,500. Use
matrices to find the amount borrowed at each rate.
Answer

$150,000 at 7%, $750,000 at 8%, $600,000 at 10%

Key Concepts

An augmented matrix is one that contains the coefficients and constants of a system of equations.
A matrix augmented with the constant column can be represented as the original system of equations.
Row operations include multiplying a row by a constant, adding one row to another row, and
interchanging rows.
We can use Gaussian elimination to solve a system of equations.
Row operations are performed on matrices to obtain row-echelon form.
To solve a system of equations, write it in augmented matrix form. Perform row operations to obtain row-
echelon form. Back-substitute to find the solutions.
A calculator can be used to solve systems of equations using matrices.
Many real-world problems can be solved using augmented matrices.

Glossary

a coefficient matrix adjoined with the constant column separated by a vertical line within
the matrix brackets

a matrix that contains only the coefficients from a system of equations

using elementary row operations to obtain a matrix in row-echelon form

entries from the upper left corner diagonally to the lower right corner of a square matrix

after performing row operations, the matrix form that contains ones down the main
diagonal and zeros at every space below the diagonal

two matrices  and  are row-equivalent if one can be obtained from the other by
performing basic row operations

adding one row to another row, multiplying a row by a constant, interchanging rows, and so
on, with the goal of achieving row-echelon form
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A GENERAL NOTE: THE IDENTITY MATRIX AND MULTIPLICATIVE INVERSE

The identity matrix, , is a square matrix containing ones down the main diagonal and zeros
everywhere else.

{I}_{2}=\left[1

SOLVING SYSTEMS WITH INVERSES

Learning Outcomes

By the end of this section, you will be able to:
Find the inverse of a matrix.
Solve a system of linear equations using an inverse matrix.

Nancy plans to invest $10,500 into two different bonds to spread out her risk. The first bond has an annual
return of 10%, and the second bond has an annual return of 6%. In order to receive an 8.5% return from the
two bonds, how much should Nancy invest in each bond? What is the best method to solve this problem?

There are several ways we can solve this problem. As we have seen in previous sections, systems of
equations and matrices are useful in solving real-world problems involving finance. After studying this
section, we will have the tools to solve the bond problem using the inverse of a matrix.

Finding the Inverse of a Matrix

We know that the multiplicative inverse of a real number  is , and . For
example,  and . The multiplicative inverse of a matrix is similar in concept, except that
the product of matrix  and its inverse  equals the identity matrix. The identity matrix is a square
matrix containing ones down the main diagonal and zeros everywhere else. We identify identity matrices by 

 where  represents the dimension of the matrix. The equations below are the identity matrices for a 
matrix and a  matrix, respectively.

The identity matrix acts as a 1 in matrix algebra. For example, .

A matrix that has a multiplicative inverse has the properties

A matrix that has a multiplicative inverse is called an invertible matrix. Only a square matrix may have a
multiplicative inverse, as the reversibility, , is a requirement. Not all square matrices
have an inverse, but if  is invertible, then  is unique. We will look at two methods for finding the inverse
of a  matrix and a third method that can be used on both  and  matrices.
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1\right] {I}_{3}=\left[1

1\right]

If  is an  matrix and  is an  matrix such that , then , the
multiplicative inverse of a matrix .

EXAMPLE 1: SHOWING THAT THE IDENTITY MATRIX ACTS AS A 1

Given matrix A, show that .

Answer
Use matrix multiplication to show that the product of  and the identity is equal to the product of the
identity and A.

HOW TO: GIVEN TWO MATRICES, SHOW THAT ONE IS THE
MULTIPLICATIVE INVERSE OF THE OTHER.

1. Given matrix  of order  and matrix  of order  multiply .
2. If , then find the product . If , then  and .

EXAMPLE 2: SHOWING THAT MATRIX A IS THE MULTIPLICATIVE INVERSE
OF MATRIX B

Show that the given matrices are multiplicative inverses of each other.

Answer
Multiply  and . If both products equal the identity, then the two matrices are inverses of each other.
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 and  are inverses of each other.

EXAMPLE 3: FINDING THE MULTIPLICATIVE INVERSE USING MATRIX
MULTIPLICATION

Use matrix multiplication to find the inverse of the given matrix.

Answer
For this method, we multiply  by a matrix containing unknown constants and set it equal to the identity.

Find the product of the two matrices on the left side of the equal sign.

Try It

Show that the following two matrices are inverses of each other.

Answer

AB=\left[1

-3\right]\cdot \left[-3

1\right]=\left[1\left(-3\right)+4\left(1\right)

-1\left(-4\right)+-3\left(1\right)\right]=\left[1

1\right]

BA=\left[-3

1\right] \cdot \left[1

-3\right]=\left[-3\left(1\right)+-4\left(-1\right)

1\left(4\right)+1\left(-3\right)\right]=\left[1

1\right]

Finding the Multiplicative Inverse Using Matrix Multiplication

We can now determine whether two matrices are inverses, but how would we find the inverse of a given
matrix? Since we know that the product of a matrix and its inverse is the identity matrix, we can find the
inverse of a matrix by setting up an equation using matrix multiplication.
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Next, set up a system of equations with the entry in row 1, column 1 of the new matrix equal to the first
entry of the identity, 1. Set the entry in row 2, column 1 of the new matrix equal to the corresponding entry
of the identity, which is 0.

Using row operations, multiply and add as follows: . Add the equations, and solve for 
.

Back-substitute to solve for .

Write another system of equations setting the entry in row 1, column 2 of the new matrix equal to the
corresponding entry of the identity, 0. Set the entry in row 2, column 2 equal to the corresponding entry of
the identity.

Using row operations, multiply and add as follows: . Add the two equations and solve
for .

Once more, back-substitute and solve for .

Finding the Multiplicative Inverse by Augmenting with the
Identity

Another way to find the multiplicative inverse is by augmenting with the identity. When matrix  is
transformed into , the augmented matrix  transforms into .

For example, given

augment  with the identity

Perform row operations with the goal of turning  into the identity.

1. Switch row 1 and row 2.
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EXAMPLE 4: USING THE FORMULA TO FIND THE MULTIPLICATIVE
INVERSE OF MATRIX A

Use the formula to find the multiplicative inverse of

Answer
Using the formula, we have

2. Multiply row 2 by  and add to row 1.

3. Multiply row 1 by  and add to row 2.

4. Add row 2 to row 1.

5. Multiply row 2 by .

The matrix we have found is .

Finding the Multiplicative Inverse of 2×2 Matrices Using a
Formula

When we need to find the multiplicative inverse of a  matrix, we can use a special formula instead of
using matrix multiplication or augmenting with the identity.

If  is a  matrix, such as

the multiplicative inverse of  is given by the formula

where . If , then  has no inverse.
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Analysis of the Solution

We can check that our formula works by using one of the other methods to calculate the inverse. Let’s
augment  with the identity.

Perform row operations with the goal of turning  into the identity.

1. Multiply row 1 by  and add to row 2.

2. Multiply row 1 by 2 and add to row 1.

So, we have verified our original solution.

EXAMPLE 5: FINDING THE INVERSE OF THE MATRIX, IF IT EXISTS

Find the inverse, if it exists, of the given matrix.

Answer
We will use the method of augmenting with the identity.

1. Switch row 1 and row 2.

2. Multiply row 1 by −3 and add it to row 2.

3. There is nothing further we can do. The zeros in row 2 indicate that this matrix has no inverse.

Try It

Use the formula to find the inverse of matrix . Verify your answer by augmenting with the identity matrix.

Answer

Finding the Multiplicative Inverse of 3×3 Matrices
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An interactive or media element has been excluded from this version of the text. You can view it online
here: https://courses.lumenlearning.com/precalculus/?p=14600

TRY IT

HOW TO: GIVEN A  MATRIX, FIND THE INVERSE

1. Write the original matrix augmented with the identity matrix on the right.
2. Use elementary row operations so that the identity appears on the left.
3. What is obtained on the right is the inverse of the original matrix.
4. Use matrix multiplication to show that  and .

EXAMPLE 6: FINDING THE INVERSE OF A 3 × 3 MATRIX

Given the  matrix , find the inverse.

Answer
Augment  with the identity matrix, and then begin row operations until the identity matrix replaces . The
matrix on the right will be the inverse of .

Unfortunately, we do not have a formula similar to the one for a  matrix to find the inverse of a 
matrix. Instead, we will augment the original matrix with the identity matrix and use row operations to obtain
the inverse.

Given a  matrix

augment  with the identity matrix

To begin, we write the augmented matrix with the identity on the right and  on the left. Performing
elementary row operations so that the identity matrix appears on the left, we will obtain the inverse
matrix on the right. We will find the inverse of this matrix in the next example.
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Thus,

Analysis of the Solution

To prove that , let’s multiply the two matrices together to see if the product equals the identity, if 
 and .

Try It

Find the inverse of the  matrix.
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An interactive or media element has been excluded from this version of the text. You can view it online
here: https://courses.lumenlearning.com/precalculus/?p=14600

TRY IT

Answer

Solving a System of Linear Equations Using the Inverse of a
Matrix

Solving a system of linear equations using the inverse of a matrix requires the definition of two new
matrices:  is the matrix representing the variables of the system, and  is the matrix representing the
constants. Using matrix multiplication, we may define a system of equations with the same number of
equations as variables as

To solve a system of linear equations using an inverse matrix, let  be the coefficient matrix, let  be the
variable matrix, and let  be the constant matrix. Thus, we want to solve a system . For example,
look at the following system of equations.

From this system, the coefficient matrix is

The variable matrix is

And the constant matrix is

Then  looks like

Recall the discussion earlier in this section regarding multiplying a real number by its inverse, 
. To solve a single linear equation  for , we would simply multiply both sides of

the equation by the multiplicative inverse (reciprocal) of . Thus,
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A GENERAL NOTE: SOLVING A SYSTEM OF EQUATIONS USING THE
INVERSE OF A MATRIX

Given a system of equations, write the coefficient matrix , the variable matrix , and the constant matrix
. Then

Multiply both sides by the inverse of  to obtain the solution.

Q & A

IF THE COEFFICIENT MATRIX DOES NOT HAVE AN INVERSE, DOES THAT
MEAN THE SYSTEM HAS NO SOLUTION?

No, if the coefficient matrix is not invertible, the system could be inconsistent and have no solution, or be
dependent and have infinitely many solutions.

EXAMPLE 7: SOLVING A 2 × 2 SYSTEM USING THE INVERSE OF A MATRIX

Solve the given system of equations using the inverse of a matrix.

Answer
Write the system in terms of a coefficient matrix, a variable matrix, and a constant matrix.

The only difference between a solving a linear equation and a system of equations written in matrix form is
that finding the inverse of a matrix is more complicated, and matrix multiplication is a longer process.
However, the goal is the same—to isolate the variable.

We will investigate this idea in detail, but it is helpful to begin with a  system and then move on to a 
 system.
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Then

First, we need to calculate . Using the formula to calculate the inverse of a 2 by 2 matrix, we have:
{A}^{-1}=\frac{1}{ad-bc}\left[d

a\right]

=\frac{1}{3\left(11\right)-8\left(4\right)}\left[11

3\right]

=\frac{1}{1}\left[11

3\right]

So,

Now we are ready to solve. Multiply both sides of the equation by .

\left[11

3\right]\left[3

11\right]\left[x

y\right]=\left[11

3\right]\left[5

7\right]

\left[1

1\right]\left[x

y\right]=\left[11\left(5\right)+\left(-8\right)7

-4\left(5\right)+3\left(7\right)\right]

\left[x

y\right]=\left[-1

1\right]

The solution is .

Q & A

CAN WE SOLVE FOR  BY FINDING THE PRODUCT 

No, recall that matrix multiplication is not commutative, so . Consider our steps for solving
the matrix equation.
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Notice in the first step we multiplied both sides of the equation by , but the  was to the left of  on
the left side and to the left of  on the right side. Because matrix multiplication is not commutative, order
matters.

EXAMPLE 8: SOLVING A 3 × 3 SYSTEM USING THE INVERSE OF A MATRIX

Solve the following system using the inverse of a matrix.

Answer
Write the equation .

First, we will find the inverse of  by augmenting with the identity.

Multiply row 1 by .

Multiply row 1 by 4 and add to row 2.

Add row 1 to row 3.

Multiply row 2 by −3 and add to row 1.

Multiply row 3 by 5.
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Multiply row 3 by  and add to row 1.

Multiply row 3 by  and add to row 2.

So,

Multiply both sides of the equation by . We want 

Thus,

The solution is .

HOW TO: GIVEN A SYSTEM OF EQUATIONS, SOLVE WITH MATRIX
INVERSES USING A CALCULATOR.

1. Save the coefficient matrix and the constant matrix as matrix variables  and .
2. Enter the multiplication into the calculator, calling up each matrix variable as needed.
3. If the coefficient matrix is invertible, the calculator will present the solution matrix; if the coefficient

matrix is not invertible, the calculator will present an error message.

EXAMPLE 9: USING A CALCULATOR TO SOLVE A SYSTEM OF EQUATIONS
WITH MATRIX INVERSES

Try It

Solve the system using the inverse of the coefficient matrix.

Answer
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identity matrix

Solve the system of equations with matrix inverses using a calculator

Answer
On the matrix page of the calculator, enter the coefficient matrix as the matrix variable , and enter the
constant matrix as the matrix variable .

On the home screen of the calculator, type in the multiplication to solve for , calling up each matrix
variable as needed.

Evaluate the expression.

Key Equations

Identity matrix for a  matrix

Identity matrix for a  matrix

Multiplicative inverse of a  matrix

Key Concepts

An identity matrix has the property .
An invertible matrix has the property .
Use matrix multiplication and the identity to find the inverse of a  matrix.
The multiplicative inverse can be found using a formula.
Another method of finding the inverse is by augmenting with the identity.
We can augment a  matrix with the identity on the right and use row operations to turn the original
matrix into the identity, and the matrix on the right becomes the inverse.
Write the system of equations as , and multiply both sides by the inverse of 

.
We can also use a calculator to solve a system of equations with matrix inverses.

Glossary

a square matrix containing ones down the main diagonal and zeros everywhere else; it acts
as a 1 in matrix algebra
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multiplicative inverse of a matrix

A GENERAL NOTE: FIND THE DETERMINANT OF A 2 × 2 MATRIX

The determinant of a  matrix, given

is defined as

a matrix that, when multiplied by the original, equals the identity matrix

Licensing & Attributions

CC licensed content, Speci�c attribution

Precalculus. Authored by: OpenStax College. Provided by: OpenStax. Located at: http://cnx.org/contents/fd53eae1-fa23-47c7-bb1b-972349835c3c@5.175:1/Preface. License: CC BY: Attribution

SOLVING SYSTEMS WITH CRAMER'S RULE

Learning Outcomes

By the end of this section, you will be able to:
Evaluate 2 × 2 determinants.
Use Cramer’s Rule to solve a system of equations in two variables.
Evaluate 3 × 3 determinants.
Use Cramer’s Rule to solve a system of three equations in three variables.
Know the properties of determinants.

We have learned how to solve systems of equations in two variables and three variables, and by multiple
methods: substitution, addition, Gaussian elimination, using the inverse of a matrix, and graphing. Some of
these methods are easier to apply than others and are more appropriate in certain situations. In this section,
we will study two more strategies for solving systems of equations.

Using Cramer’s Rule to Solve a System of Two Equations in Two
Variables

Evaluating the Determinant of a 2×2 Matrix

A determinant is a real number that can be very useful in mathematics because it has multiple applications,
such as calculating area, volume, and other quantities. Here, we will use determinants to reveal whether a
matrix is invertible by using the entries of a square matrix to determine whether there is a solution to the
system of equations. Perhaps one of the more interesting applications, however, is their use in cryptography.
Secure signals or messages are sometimes sent encoded in a matrix. The data can only be decrypted with
an invertible matrix and the determinant. For our purposes, we focus on the determinant as an indication of
the invertibility of the matrix. Calculating the determinant of a matrix involves following the specific patterns
that are outlined in this section.
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Figure 1

Notice the change in notation. There are several ways to indicate the determinant, including  and
replacing the brackets in a matrix with straight lines, .

EXAMPLE 1: FINDING THE DETERMINANT OF A 2 × 2 MATRIX

Find the determinant of the given matrix.

Answer

An interactive or media element has been excluded from this version of the text. You can view it online
here: https://courses.lumenlearning.com/precalculus/?p=14608

TRY IT

Using Cramer’s Rule to Solve a System of Two Equations in Two
Variables

We will now introduce a final method for solving systems of equations that uses determinants. Known as
Cramer’s Rule, this technique dates back to the middle of the 18th century and is named for its innovator,
the Swiss mathematician Gabriel Cramer (1704–1752), who introduced it in 1750 in Introduction à l’Analyse
des lignes Courbes algébriques. Cramer’s Rule is a viable and efficient method for finding solutions to
systems with an arbitrary number of unknowns, provided that we have the same number of equations as
unknowns.

Cramer’s Rule will give us the unique solution to a system of equations, if it exists. However, if the system
has no solution or an infinite number of solutions, this will be indicated by a determinant of zero. To find out if
the system is inconsistent or dependent, another method, such as elimination, will have to be used.

To understand Cramer’s Rule, let’s look closely at how we solve systems of linear equations using basic row
operations. Consider a system of two equations in two variables.

We eliminate one variable using row operations and solve for the other. Say that we wish to solve for . If
equation (2) is multiplied by the opposite of the coefficient of  in equation (1), equation (1) is multiplied by
the coefficient of  in equation (2), and we add the two equations, the variable  will be eliminated.
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A GENERAL NOTE: CRAMER’S RULE FOR 2×2 SYSTEMS

Cramer’s Rule is a method that uses determinants to solve systems of equations that have the same
number of equations as variables.
Consider a system of two linear equations in two variables.

The solution using Cramer’s Rule is given as

 

Now, solve for .

Similarly, to solve for , we will eliminate .

 

Solving for  gives

Notice that the denominator for both  and  is the determinant of the coefficient matrix.

We can use these formulas to solve for  and , but Cramer’s Rule also introduces new notation:
 determinant of the coefficient matrix
 determinant of the numerator in the solution of 

 determinant of the numerator in the solution of 

The key to Cramer’s Rule is replacing the variable column of interest with the constant column and
calculating the determinants. We can then express  and  as a quotient of two determinants.
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.

If we are solving for , the  column is replaced with the constant column. If we are solving for , the 
column is replaced with the constant column.

EXAMPLE 2: USING CRAMER’S RULE TO SOLVE A 2 × 2 SYSTEM

Solve the following  system using Cramer’s Rule.

Answer
Solve for .

Solve for .

The solution is .

An interactive or media element has been excluded from this version of the text. You can view it online
here: https://courses.lumenlearning.com/precalculus/?p=14608

TRY IT

Try It

Use Cramer’s Rule to solve the 2 × 2 system of equations.

Answer

Using Cramer’s Rule to Solve a System of Three Equations in
Three Variables

Evaluating the Determinant of a 3 × 3 Matrix

Finding the determinant of a 2×2 matrix is straightforward, but finding the determinant of a 3×3 matrix is
more complicated. One method is to augment the 3×3 matrix with a repetition of the first two columns, giving
a 3×5 matrix. Then we calculate the sum of the products of entries down each of the three diagonals (upper
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EXAMPLE 3: FINDING THE DETERMINANT OF A 3 × 3 MATRIX

Find the determinant of the 3 × 3 matrix given

Answer
Augment the matrix with the first two columns and then follow the formula. Thus,

left to lower right), and subtract the products of entries up each of the three diagonals (lower left to upper
right). This is more easily understood with a visual and an example.

Find the determinant of the 3×3 matrix.

1. Augment  with the first two columns.

2. From upper left to lower right: Multiply the entries down the first diagonal. Add the result to the product
of entries down the second diagonal. Add this result to the product of the entries down the third
diagonal.

3. From lower left to upper right: Subtract the product of entries up the first diagonal. From this result
subtract the product of entries up the second diagonal. From this result, subtract the product of entries
up the third diagonal.

Figure 2

The algebra is as follows:

Try It

Find the determinant of the 3 × 3 matrix.
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An interactive or media element has been excluded from this version of the text. You can view it online
here: https://courses.lumenlearning.com/precalculus/?p=14608

TRY IT

Q & A

CAN WE USE THE SAME METHOD TO FIND THE DETERMINANT OF A
LARGER MATRIX?

Yes, but for larger matrices it is best to use a graphing utility or computer software.

Answer

Using Cramer’s Rule to Solve a System of Three Equations in
Three Variables

Now that we can find the determinant of a 3 × 3 matrix, we can apply Cramer’s Rule to solve a system of
three equations in three variables. Cramer’s Rule is straightforward, following a pattern consistent with
Cramer’s Rule for 2 × 2 matrices. As the order of the matrix increases to 3 × 3, however, there are many
more calculations required.

When we calculate the determinant to be zero, Cramer’s Rule gives no indication as to whether the system
has no solution or an infinite number of solutions. To find out, we have to perform elimination on the system.

Consider a 3 × 3 system of equations.
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EXAMPLE 4: SOLVING A 3 × 3 SYSTEM USING CRAMER’S RULE

Find the solution to the given 3 × 3 system using Cramer’s Rule.

Answer
Use Cramer’s Rule.

Then,

Figure 3

where

Figure 4

If we are writing the determinant , we replace the  column with the constant column. If we are writing the
determinant , we replace the  column with the constant column. If we are writing the determinant , we
replace the  column with the constant column. Always check the answer.
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The solution is .

EXAMPLE 5: USING CRAMER’S RULE TO SOLVE AN INCONSISTENT
SYSTEM

Solve the system of equations using Cramer’s Rule.

Answer
We begin by finding the determinants .

We know that a determinant of zero means that either the system has no solution or it has an infinite
number of solutions. To see which one, we use the process of elimination. Our goal is to eliminate one of
the variables.

1. Multiply equation (1) by .
2. Add the result to equation .

We obtain the equation , which is false. Therefore, the system has no solution. Graphing the
system reveals two parallel lines.

Try It

Use Cramer’s Rule to solve the 3 × 3 matrix.

Answer
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Figure 5

EXAMPLE 6: USE CRAMER’S RULE TO SOLVE A DEPENDENT SYSTEM

Solve the system with an infinite number of solutions.

Answer
Let’s find the determinant first. Set up a matrix augmented by the first two columns.

Then,
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As the determinant equals zero, there is either no solution or an infinite number of solutions. We have to
perform elimination to find out.

1. Multiply equation (1) by  and add the result to equation (3):

2. Obtaining an answer of , a statement that is always true, means that the system has an infinite
number of solutions. Graphing the system, we can see that two of the planes are the same and they
both intersect the third plane on a line.

Figure 6

An interactive or media element has been excluded from this version of the text. You can view it online
here: https://courses.lumenlearning.com/precalculus/?p=14608

TRY IT

A GENERAL NOTE: PROPERTIES OF DETERMINANTS

1. If the matrix is in upper triangular form, the determinant equals the product of entries down the main
diagonal.

2. When two rows are interchanged, the determinant changes sign.
3. If either two rows or two columns are identical, the determinant equals zero.
4. If a matrix contains either a row of zeros or a column of zeros, the determinant equals zero.
5. The determinant of an inverse matrix  is the reciprocal of the determinant of the matrix .
6. If any row or column is multiplied by a constant, the determinant is multiplied by the same factor.

Understanding Properties of Determinants

There are many properties of determinants. Listed here are some properties that may be helpful in
calculating the determinant of a matrix.
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EXAMPLE 7: ILLUSTRATING PROPERTIES OF DETERMINANTS

Illustrate each of the properties of determinants.
Answer
Property 1 states that if the matrix is in upper triangular form, the determinant is the product of the entries
down the main diagonal.

Augment  with the first two columns.

Then

Property 2 states that interchanging rows changes the sign. Given

A=\left[-1

-3\right],\mathrm{det}\left(A\right)=\left(-1\right)\left(-3\right)-\left(4\right)\left(5\right)=3 - 20=-17

B=\left[4

5\right],\mathrm{det}\left(B\right)=\left(4\right)\left(5\right)-\left(-1\right)\left(-3\right)=20 - 3=17

Property 3 states that if two rows or two columns are identical, the determinant equals zero.
A=\left[\left.1

2\right\rvert1

2\right]

Property 4 states that if a row or column equals zero, the determinant equals zero. Thus,

Property 5 states that the determinant of an inverse matrix  is the reciprocal of the determinant .
Thus,

A=\left[1

4\right],\mathrm{det}\left(A\right)=1\left(4\right)-3\left(2\right)=-2
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{A}^{-1}=\left[-2

-\frac{1}{2}\right],\mathrm{det}\left({A}^{-1}\right)=-2\left(-\frac{1}{2}\right)-\left(\frac{3}{2}\right)\left(1\rig

Property 6 states that if any row or column of a matrix is multiplied by a constant, the determinant is
multiplied by the same factor. Thus,

A=\left[1

4\right],\mathrm{det}\left(A\right)=1\left(4\right)-2\left(3\right)=-2

B=\left[2\left(1\right)

4\right],\mathrm{det}\left(B\right)=2\left(4\right)-3\left(4\right)=-4

EXAMPLE 8: USING CRAMER’S RULE AND DETERMINANT PROPERTIES TO
SOLVE A SYSTEM

Find the solution to the given 3 × 3 system.

Answer
Using Cramer’s Rule, we have

Notice that the second and third columns are identical. According to Property 3, the determinant will be
zero, so there is either no solution or an infinite number of solutions. We have to perform elimination to
find out.
Multiply equation (3) by –2 and add the result to equation (1).

Obtaining a statement that is a contradiction means that the system has no solution.

Key Concepts

The determinant for  is .

Cramer’s Rule replaces a variable column with the constant column. Solutions are .
To find the determinant of a 3×3 matrix, augment with the first two columns. Add the three diagonal
entries (upper left to lower right) and subtract the three diagonal entries (lower left to upper right).
To solve a system of three equations in three variables using Cramer’s Rule, replace a variable column
with the constant column for each desired solution: .
Cramer’s Rule is also useful for finding the solution of a system of equations with no solution or infinite
solutions.
Certain properties of determinants are useful for solving problems. For example:
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Cramer’s Rule

determinant

If the matrix is in upper triangular form, the determinant equals the product of entries down the main
diagonal.
When two rows are interchanged, the determinant changes sign.
If either two rows or two columns are identical, the determinant equals zero.
If a matrix contains either a row of zeros or a column of zeros, the determinant equals zero.
The determinant of an inverse matrix  is the reciprocal of the determinant of the matrix .
If any row or column is multiplied by a constant, the determinant is multiplied by the same factor.

Glossary

a method for solving systems of equations that have the same number of equations as
variables using determinants

a number calculated using the entries of a square matrix that determines such information as
whether there is a solution to a system of equations
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PROBLEM SET 29: SYSTEMS OF LINEAR
EQUATIONS: TWO VARIABLES

1. Can a system of linear equations have exactly two solutions? Explain why or why not.

2. If you are performing a break-even analysis for a business and their cost and revenue equations are
dependent, explain what this means for the company’s profit margins.

3. If you are solving a break-even analysis and get a negative break-even point, explain what this signifies
for the company?

4. If you are solving a break-even analysis and there is no break-even point, explain what this means for the
company. How should they ensure there is a break-even point?

5. Given a system of equations, explain at least two different methods of solving that system.

For the following exercises, determine whether the given ordered pair is a solution to the system of
equations.

6.  and 

7.  and 

8.   and 

9.  and 
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10.   and 

For the following exercises, solve each system by substitution.

11. 

12. 

13. 

14. 

15. 

16. 

17. 

18. 

19. 

20. 

For the following exercises, solve each system by addition.

21. 

22. 

23. 

24. 

25. 
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26. 

27. 

28. 

29. 

30. 

For the following exercises, solve each system by any method.

31. 

32. 

33. 

34. 

35. 

36. 

37. 

38. 

39. 
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40. 

For the following exercises, graph the system of equations and state whether the system is consistent,
inconsistent, or dependent and whether the system has one solution, no solution, or infinite solutions.

41. 

42. 

43. 

44. 

45. 

For the following exercises, use the intersect function on a graphing device to solve each system. Round all
answers to the nearest hundredth.

46. 

47. 

48. 

49. 

50. 

For the following exercises, solve each system in terms of  and  where  are nonzero
numbers. Note that  and .

51. 

52. 

53. 

54. 

55. 
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For the following exercises, solve for the desired quantity.

56. A stuffed animal business has a total cost of production  and a revenue function .
Find the break-even point.

57. A fast-food restaurant has a cost of production  and a revenue function .
When does the company start to turn a profit?

58. A cell phone factory has a cost of production  and a revenue function 
. What is the break-even point?

59. A musician charges  where  is the total number of attendees at the concert. The
venue charges $80 per ticket. After how many people buy tickets does the venue break even, and what is
the value of the total tickets sold at that point?

60. A guitar factory has a cost of production . If the company needs to break even
after 150 units sold, at what price should they sell each guitar? Round up to the nearest dollar, and write the
revenue function.

For the following exercises, use a system of linear equations with two variables and two equations to solve.

61. Find two numbers whose sum is 28 and difference is 13.

62. A number is 9 more than another number. Twice the sum of the two numbers is 10. Find the two
numbers.

63. The startup cost for a restaurant is $120,000, and each meal costs $10 for the restaurant to make. If
each meal is then sold for $15, after how many meals does the restaurant break even?

64. A moving company charges a flat rate of $150, and an additional $5 for each box. If a taxi service would
charge $20 for each box, how many boxes would you need for it to be cheaper to use the moving company,
and what would be the total cost?

65. A total of 1,595 first- and second-year college students gathered at a pep rally. The number of freshmen
exceeded the number of sophomores by 15. How many freshmen and sophomores were in attendance?

66. 276 students enrolled in a freshman-level chemistry class. By the end of the semester, 5 times the
number of students passed as failed. Find the number of students who passed, and the number of students
who failed.

67. There were 130 faculty at a conference. If there were 18 more women than men attending, how many of
each gender attended the conference?

68. A jeep and BMW enter a highway running east-west at the same exit heading in opposite directions. The
jeep entered the highway 30 minutes before the BMW did, and traveled 7 mph slower than the BMW. After 2
hours from the time the BMW entered the highway, the cars were 306.5 miles apart. Find the speed of each
car, assuming they were driven on cruise control.

69. If a scientist mixed 10% saline solution with 60% saline solution to get 25 gallons of 40% saline solution,
how many gallons of 10% and 60% solutions were mixed?

70. An investor earned triple the profits of what she earned last year. If she made $500,000.48 total for both
years, how much did she earn in profits each year?

71. An investor who dabbles in real estate invested 1.1 million dollars into two land investments. On the first
investment, Swan Peak, her return was a 110% increase on the money she invested. On the second
investment, Riverside Community, she earned 50% over what she invested. If she earned $1 million in
profits, how much did she invest in each of the land deals?
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72. If an investor invests a total of $25,000 into two bonds, one that pays 3% simple interest, and the other
that pays  interest, and the investor earns $737.50 annual interest, how much was invested in each
account?

73. If an investor invests $23,000 into two bonds, one that pays 4% in simple interest, and the other paying
2% simple interest, and the investor earns $710.00 annual interest, how much was invested in each
account?

74. CDs cost $5.96 more than DVDs at All Bets Are Off Electronics. How much would 6 CDs and 2 DVDs
cost if 5 CDs and 2 DVDs cost $127.73?

75. A store clerk sold 60 pairs of sneakers. The high-tops sold for $98.99 and the low-tops sold for $129.99.
If the receipts for the two types of sales totaled $6,404.40, how many of each type of sneaker were sold?

76. A concert manager counted 350 ticket receipts the day after a concert. The price for a student ticket was
$12.50, and the price for an adult ticket was $16.00. The register confirms that $5,075 was taken in. How
many student tickets and adult tickets were sold?

77. Admission into an amusement park for 4 children and 2 adults is $116.90. For 6 children and 3 adults,
the admission is $175.35. Assuming a different price for children and adults, what is the price of the child’s
ticket and the price of the adult ticket?
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MODULE 6: SEQUENCES,
PROBABILITY, AND COUNTING

THEORY

SEQUENCES AND THEIR NOTATIONS

Learning Outcomes

By the end of this section, you will be able to:
Write the terms of a sequence defined by an explicit formula.
Write the terms of a sequence defined by a recursive formula.
Write an explicit formula for a sequence.

Writing the Terms of a Sequence De�ned by an Explicit Formula

One way to describe an ordered list of numbers is as a sequence. A sequence is a function whose domain
is a subset of the counting numbers. The sequence established by the number of hits on the website is

.

The ellipsis (…) indicates that the sequence continues indefinitely. Each number in the sequence is called a
term. The first five terms of this sequence are 2, 4, 8, 16, and 32.

Listing all of the terms for a sequence can be cumbersome. For example, finding the number of hits on the
website at the end of the month would require listing out as many as 31 terms. A more efficient way to
determine a specific term is by writing a formula to define the sequence.

One type of formula is an explicit formula, which defines the terms of a sequence using their position in the
sequence. Explicit formulas are helpful if we want to find a specific term of a sequence without finding all of
the previous terms. We can use the formula to find the  term of the sequence, where  is any positive
number. In our example, each number in the sequence is double the previous number, so we can use
powers of 2 to write a formula for the  term.
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Figure 1

The first term of the sequence is , the second term is , the third term is , and so on. The 
 term of the sequence can be found by raising 2 to the  power. An explicit formula for a sequence is

named by a lower case letter . with the subscript . The explicit formula for this sequence is
.

Now that we have a formula for the  term of the sequence, we can answer the question posed at the
beginning of this section. We were asked to find the number of hits at the end of the month, which we will
take to be 31 days. To find the number of hits on the last day of the month, we need to find the 31st term of
the sequence. We will substitute 31 for  in the formula.

If the doubling trend continues, the company will get  hits on the last day of the month. That is
over 2.1 billion hits! The huge number is probably a little unrealistic because it does not take consumer
interest and competition into account. It does, however, give the company a starting point from which to
consider business decisions.

Another way to represent the sequence is by using a table. The first five terms of the sequence and the 
term of the sequence are shown in the table.

1 2 3 4 5

 term of the sequence, 2 4 8 16 32

Graphing provides a visual representation of the sequence as a set of distinct points. We can see from the
graph in Figure 2 that the number of hits is rising at an exponential rate. This particular sequence forms an
exponential function.
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A GENERAL NOTE: SEQUENCE

A sequence is a function whose domain is the set of positive integers. A finite sequence is a sequence
whose domain consists of only the first  positive integers. The numbers in a sequence are called terms.
The variable  with a number subscript is used to represent the terms in a sequence and to indicate the
position of the term in the sequence.

We call  the first term of the sequence,  the second term of the sequence,  the third term of the
sequence, and so on. The term  is called the  term of the sequence, or the general term of the
sequence. An explicit formula defines the  term of a sequence using the position of the term. A
sequence that continues indefinitely is an infinite sequence.

Figure 2

Lastly, we can write this particular sequence as
.

A sequence that continues indefinitely is called an infinite sequence. The domain of an infinite sequence is
the set of counting numbers. If we consider only the first 10 terms of the sequence, we could write

.

This sequence is called a finite sequence because it does not continue indefinitely.
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Q & A

DOES A SEQUENCE ALWAYS HAVE TO BEGIN WITH 

No. In certain problems, it may be useful to define the initial term as  instead of . In these problems,
the domain of the function includes 0.

HOW TO: GIVEN AN EXPLICIT FORMULA, WRITE THE FIRST  TERMS OF A
SEQUENCE.

1. Substitute each value of  into the formula. Begin with  to find the first term, .
2. To find the second term, , use .
3. Continue in the same manner until you have identified all  terms.

EXAMPLE 1: WRITING THE TERMS OF A SEQUENCE DEFINED BY AN
EXPLICIT FORMULA

Write the first five terms of the sequence defined by the explicit formula .
Answer
Substitute  into the formula. Repeat with values 2 through 5 for .

The first five terms are .

Analysis of the Solution

The sequence values can be listed in a table. A table is a convenient way to input the function into a
graphing utility.

1 2 3 4 5

5 2 –1 –4 –7

A graph can be made from this table of values. From the graph in Figure 2, we can see that this sequence
represents a linear function, but notice the graph is not continuous because the domain is over the
positive integers only.
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Figure 3

Try It

Write the first five terms of the sequence defined by the explicit formula .
Answer

The first five terms are .
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An interactive or media element has been excluded from this version of the text. You can view it online
here: https://courses.lumenlearning.com/precalculus/?p=14773

TRY IT

HOW TO: GIVEN AN EXPLICIT FORMULA WITH ALTERNATING TERMS,
WRITE THE FIRST  TERMS OF A SEQUENCE.

1. Substitute each value of  into the formula. Begin with  to find the first term, . The sign of the
term is given by the  in the explicit formula.

2. To find the second term, , use .
3. Continue in the same manner until you have identified all  terms.

EXAMPLE 2: WRITING THE TERMS OF AN ALTERNATING SEQUENCE
DEFINED BY AN EXPLICIT FORMULA

Write the first five terms of the sequence.

Answer
Substitute , , and so on in the formula.

The first five terms are .

Analysis of the Solution

Investigating Alternating Sequences

Sometimes sequences have terms that are alternate. In fact, the terms may actually alternate in sign. The
steps to finding terms of the sequence are the same as if the signs did not alternate. However, the resulting
terms will not show increase or decrease as  increases. Let’s take a look at the following sequence.

Notice the first term is greater than the second term, the second term is less than the third term, and the
third term is greater than the fourth term. This trend continues forever. Do not rearrange the terms in
numerical order to interpret the sequence.
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The graph of this function, shown in Figure 4, looks different from the ones we have seen previously in this
section because the terms of the sequence alternate between positive and negative values.

Figure 4

Q & A

IN EXAMPLE 2, DOES THE (–1) TO THE POWER OF  ACCOUNT FOR THE
OSCILLATIONS OF SIGNS?

Yes, the power might be , and so on, but any odd powers will result in a negative term, and
any even power will result in a positive term.

Try It
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An interactive or media element has been excluded from this version of the text. You can view it online
here: https://courses.lumenlearning.com/precalculus/?p=14773

TRY IT

HOW TO: GIVEN AN EXPLICIT FORMULA FOR A PIECEWISE FUNCTION,
WRITE THE FIRST  TERMS OF A SEQUENCE

1. Identify the formula to which  applies.
2. To find the first term, , use  in the appropriate formula.
3. Identify the formula to which  applies.
4. To find the second term, , use  in the appropriate formula.
5. Continue in the same manner until you have identified all  terms.

EXAMPLE 3: WRITING THE TERMS OF A SEQUENCE DEFINED BY A
PIECEWISE EXPLICIT FORMULA

Write the first six terms of the sequence.

Answer
Substitute , and so on in the appropriate formula. Use  when  is not a multiple of 3. Use 
when  is a multiple of 3.

The first six terms are .

Write the first five terms of the sequence:

Answer

The first five terms are .

Investigating Explicit Formulas

We’ve learned that sequences are functions whose domain is over the positive integers. This is true for other
types of functions, including some piecewise functions. Recall that a piecewise function is a function
defined by multiple subsections. A different formula might represent each individual subsection.
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Analysis of the Solution

Every third point on the graph shown in Figure 5 stands out from the two nearby points. This occurs
because the sequence was defined by a piecewise function.

Figure 5

HOW TO: GIVEN THE FIRST FEW TERMS OF A SEQUENCE, FIND AN
EXPLICIT FORMULA FOR THE SEQUENCE.

Try It

Write the first six terms of the sequence.

Answer

The first six terms are .

Finding an Explicit Formula

Thus far, we have been given the explicit formula and asked to find a number of terms of the sequence.
Sometimes, the explicit formula for the  term of a sequence is not given. Instead, we are given several
terms from the sequence. When this happens, we can work in reverse to find an explicit formula from the
first few terms of a sequence. The key to finding an explicit formula is to look for a pattern in the terms. Keep
in mind that the pattern may involve alternating terms, formulas for numerators, formulas for denominators,
exponents, or bases.
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1. Look for a pattern among the terms.
2. If the terms are fractions, look for a separate pattern among the numerators and denominators.
3. Look for a pattern among the signs of the terms.
4. Write a formula for  in terms of . Test your formula for , and  .

EXAMPLE 4: WRITING AN EXPLICIT FORMULA FOR THE NTH TERM OF A
SEQUENCE

Write an explicit formula for the  term of each sequence.

1. 
2. 
3. 

Answer
Look for the pattern in each sequence.

1. The terms alternate between positive and negative. We can use  to make the terms alternate.
The numerator can be represented by . The denominator can be represented by .

2. The terms are all negative.

So we
know that the fraction is negative, the numerator is 2, and the denominator can be represented by 

.

3. The terms are powers of . For , the first term is  so the exponent must be .

Try It

Write an explicit formula for the  term of the sequence.

Answer

Try It

Write an explicit formula for the  term of the sequence.

Answer

647



An interactive or media element has been excluded from this version of the text. You can view it online
here: https://courses.lumenlearning.com/precalculus/?p=14773

TRY IT

Try It

Write an explicit formula for the  term of the sequence.

Answer

Writing the Terms of a Sequence De�ned by a Recursive
Formula

Sequences occur naturally in the growth patterns of nautilus shells, pinecones, tree branches, and many
other natural structures. We may see the sequence in the leaf or branch arrangement, the number of petals
of a flower, or the pattern of the chambers in a nautilus shell. Their growth follows the Fibonacci sequence, a
famous sequence in which each term can be found by adding the preceding two terms. The numbers in the
sequence are 1, 1, 2, 3, 5, 8, 13, 21, 34,…. Other examples from the natural world that exhibit the Fibonacci
sequence are the Calla Lily, which has just one petal, the Black-Eyed Susan with 13 petals, and different
varieties of daisies that may have 21 or 34 petals.

Each term of the Fibonacci sequence depends on the terms that come before it. The Fibonacci sequence
cannot easily be written using an explicit formula. Instead, we describe the sequence using a recursive
formula, a formula that defines the terms of a sequence using previous terms.

A recursive formula always has two parts: the value of an initial term (or terms), and an equation defining 
in terms of preceding terms. For example, suppose we know the following:

We can find the subsequent terms of the sequence using the first term.

So the first four terms of the sequence are  .

The recursive formula for the Fibonacci sequence states the first two terms and defines each successive
term as the sum of the preceding two terms.

To find the tenth term of the sequence, for example, we would need to add the eighth and ninth terms. We
were told previously that the eighth and ninth terms are 21 and 34, so
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A GENERAL NOTE: RECURSIVE FORMULA

A recursive formula is a formula that defines each term of a sequence using preceding term(s).
Recursive formulas must always state the initial term, or terms, of the sequence.

Q & A

MUST THE FIRST TWO TERMS ALWAYS BE GIVEN IN A RECURSIVE
FORMULA?

No. The Fibonacci sequence defines each term using the two preceding terms, but many recursive
formulas define each term using only one preceding term. These sequences need only the first term to be
defined.

HOW TO: GIVEN A RECURSIVE FORMULA WITH ONLY THE FIRST TERM
PROVIDED, WRITE THE FIRST  TERMS OF A SEQUENCE.

1. Identify the initial term, , which is given as part of the formula. This is the first term.
2. To find the second term, , substitute the initial term into the formula for . Solve.
3. To find the third term, , substitute the second term into the formula. Solve.
4. Repeat until you have solved for the  term.

EXAMPLE 5: WRITING THE TERMS OF A SEQUENCE DEFINED BY A
RECURSIVE FORMULA

Write the first five terms of the sequence defined by the recursive formula.

Answer
The first term is given in the formula. For each subsequent term, we replace  with the value of the
preceding term.

The first five terms are .
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Figure 6

An interactive or media element has been excluded from this version of the text. You can view it online
here: https://courses.lumenlearning.com/precalculus/?p=14773

TRY IT

HOW TO: GIVEN A RECURSIVE FORMULA WITH TWO INITIAL TERMS,
WRITE THE FIRST  TERMS OF A SEQUENCE.

1. Identify the initial term, , which is given as part of the formula.
2. Identify the second term, , which is given as part of the formula.
3. To find the third term, substitute the initial term and the second term into the formula. Evaluate.
4. Repeat until you have evaluated the  term.

EXAMPLE 6: WRITING THE TERMS OF A SEQUENCE DEFINED BY A
RECURSIVE FORMULA

Try It

Write the first five terms of the sequence defined by the recursive formula.

Answer

650



Write the first six terms of the sequence defined by the recursive formula.

Answer
The first two terms are given. For each subsequent term, we replace  and  with the values of the
two preceding terms.

The first six terms are .

Figure 7

Try It

Write the first eight terms of the sequence defined by the recursive formula.

Answer
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An interactive or media element has been excluded from this version of the text. You can view it online
here: https://courses.lumenlearning.com/precalculus/?p=14773

TRY IT

A GENERAL NOTE: FACTORIAL

n factorial is a mathematical operation that can be defined using a recursive formula. The factorial of ,
denoted , is defined for a positive integer  as:

The special case  is defined as .

Q & A

CAN FACTORIALS ALWAYS BE FOUND USING A CALCULATOR?

No. Factorials get large very quickly—faster than even exponential functions! When the output gets too
large for the calculator, it will not be able to calculate the factorial.

EXAMPLE 7: WRITING THE TERMS OF A SEQUENCE USING FACTORIALS

Write the first five terms of the sequence defined by the explicit formula .

Answer
Substitute , and so on in the formula.

Using Factorial Notation

The formulas for some sequences include products of consecutive positive integers.  factorial, written as 
, is the product of the positive integers from 1 to . For example,

An example of formula containing a factorial is . The sixth term of the sequence can be found
by substituting 6 for .

The factorial of any whole number  is  We can therefore also think of  as 
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The first five terms are .

ANALYSIS OF THE SOLUTION

Figure 8 shows the graph of the sequence. Notice that, since factorials grow very quickly, the presence of
the factorial term in the denominator results in the denominator becoming much larger than the numerator
as  increases. This means the quotient gets smaller and, as the plot of the terms shows, the terms are
decreasing and nearing zero.

Figure 8

TRY IT

Try It

Write the first five terms of the sequence defined by the explicit formula .
Answer

The first five terms are .
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explicit formula

finite sequence

infinite sequence

n factorial

nth term of a sequence

recursive formula

sequence

term

An interactive or media element has been excluded from this version of the text. You can view it online
here: https://courses.lumenlearning.com/precalculus/?p=14773

Key Equations

Formula for a factorial

Key Concepts

A sequence is a list of numbers, called terms, written in a specific order.
Explicit formulas define each term of a sequence using the position of the term.
An explicit formula for the  term of a sequence can be written by analyzing the pattern of several
terms.
Recursive formulas define each term of a sequence using previous terms.
Recursive formulas must state the initial term, or terms, of a sequence.
A set of terms can be written by using a recursive formula.
A factorial is a mathematical operation that can be defined recursively.
The factorial of  is the product of all integers from 1 to 

Glossary

a formula that defines each term of a sequence in terms of its position in the sequence

a function whose domain consists of a finite subset of the positive integers  for
some positive integer 

a function whose domain is the set of positive integers

the product of all the positive integers from 1 to 

a formula for the general term of a sequence

a formula that defines each term of a sequence using previous term(s)

a function whose domain is a subset of the positive integers

a number in a sequence
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A GENERAL NOTE: ARITHMETIC SEQUENCE

An arithmetic sequence is a sequence that has the property that the difference between any two
consecutive terms is a constant. This constant is called the common difference. If  is the first term of
an arithmetic sequence and  is the common difference, the sequence will be:

EXAMPLE 1: FINDING COMMON DIFFERENCES

Is each sequence arithmetic? If so, find the common difference.

1. 
2. 

Answer
Subtract each term from the subsequent term to determine whether a common difference exists.

1. The sequence is not arithmetic because there is no common difference.

2. The sequence is arithmetic because there is a common difference. The common difference is 4.

Analysis of the Solution

The graph of each of these sequences is shown in Figure 1. We can see from the graphs that, although
both sequences show growth,  is not linear whereas  is linear. Arithmetic sequences have a constant
rate of change so their graphs will always be points on a line.

Learning Outcomes

By the end of this section, you will be able to:
Find the common difference for an arithmetic sequence.
Give terms of an arithmetic sequence.
Write the formula for an arithmetic sequence.

The values of the truck in the example are said to form an arithmetic sequence because they change by a
constant amount each year. Each term increases or decreases by the same constant value called the
common difference of the sequence. For this sequence, the common difference is –3,400.

The sequence below is another example of an arithmetic sequence. In this case, the constant difference is
3. You can choose any term of the sequence, and add 3 to find the subsequent term.
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Figure 1

Q & A

IF WE ARE TOLD THAT A SEQUENCE IS ARITHMETIC, DO WE HAVE TO
SUBTRACT EVERY TERM FROM THE FOLLOWING TERM TO FIND THE

COMMON DIFFERENCE?

No. If we know that the sequence is arithmetic, we can choose any one term in the sequence, and
subtract it from the subsequent term to find the common difference.

An interactive or media element has been excluded from this version of the text. You can view it online
here: https://courses.lumenlearning.com/precalculus/?p=14790

TRY IT

Try It

Is the given sequence arithmetic? If so, find the common difference.

Answer

The sequence is arithmetic. The common difference is .

Try It

Is the given sequence arithmetic? If so, find the common difference.

Answer

The sequence is not arithmetic because .

Writing Terms of Arithmetic Sequences
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HOW TO: GIVEN THE FIRST TERM AND THE COMMON DIFFERENCE OF
AN ARITHMETIC SEQUENCE, FIND THE FIRST SEVERAL TERMS.

1. Add the common difference to the first term to find the second term.
2. Add the common difference to the second term to find the third term.
3. Continue until all of the desired terms are identified.
4. Write the terms separated by commas within brackets.

EXAMPLE 2: WRITING TERMS OF ARITHMETIC SEQUENCES

Write the first five terms of the arithmetic sequence with  and .
Answer
Adding  is the same as subtracting 3. Beginning with the first term, subtract 3 from each term to find
the next term.
The first five terms are 

ANALYSIS OF THE SOLUTION

As expected, the graph of the sequence consists of points on a line as shown in Figure 2.

Figure 2

Now that we can recognize an arithmetic sequence, we will find the terms if we are given the first term and
the common difference. The terms can be found by beginning with the first term and adding the common
difference repeatedly. In addition, any term can also be found by plugging in the values of  and  into
formula below.

Try It

List the first five terms of the arithmetic sequence with  and  .
Answer
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An interactive or media element has been excluded from this version of the text. You can view it online
here: https://courses.lumenlearning.com/precalculus/?p=14790

TRY IT

HOW TO: GIVEN ANY THE FIRST TERM AND ANY OTHER TERM IN AN
ARITHMETIC SEQUENCE, FIND A GIVEN TERM.

1. Substitute the values given for  into the formula  to solve for .
2. Find a given term by substituting the appropriate values for , and  into the formula 

.

EXAMPLE 3: WRITING TERMS OF ARITHMETIC SEQUENCES

Given  and  , find .
Answer
The sequence can be written in terms of the initial term 8 and the common difference .

We know the fourth term equals 14; we know the fourth term has the form .
We can find the common difference .

Find the fifth term by adding the common difference to the fourth term.

Analysis of the Solution

Notice that the common difference is added to the first term once to find the second term, twice to find the
third term, three times to find the fourth term, and so on. The tenth term could be found by adding the
common difference to the first term nine times or by using the equation .

Try It

Given  and  , find  .
Answer

Using Formulas for Arithmetic Sequences
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A GENERAL NOTE: RECURSIVE FORMULA FOR AN ARITHMETIC
SEQUENCE

The recursive formula for an arithmetic sequence with common difference  is:

HOW TO: GIVEN AN ARITHMETIC SEQUENCE, WRITE ITS RECURSIVE
FORMULA.

1. Subtract any term from the subsequent term to find the common difference.
2. State the initial term and substitute the common difference into the recursive formula for arithmetic

sequences.

EXAMPLE 4: WRITING A RECURSIVE FORMULA FOR AN ARITHMETIC
SEQUENCE

Write a recursive formula for the arithmetic sequence.

Answer
The first term is given as  . The common difference can be found by subtracting the first term from the
second term.

Substitute the initial term and the common difference into the recursive formula for arithmetic sequences.

Analysis of the Solution

We see that the common difference is the slope of the line formed when we graph the terms of the
sequence, as shown in Figure 3. The growth pattern of the sequence shows the constant difference of 11
units.

Some arithmetic sequences are defined in terms of the previous term using a recursive formula. The
formula provides an algebraic rule for determining the terms of the sequence. A recursive formula allows us
to find any term of an arithmetic sequence using a function of the preceding term. Each term is the sum of
the previous term and the common difference. For example, if the common difference is 5, then each term is
the previous term plus 5. As with any recursive formula, the first term must be given.
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Figure 3

HOW TO: DO WE HAVE TO SUBTRACT THE FIRST TERM FROM THE
SECOND TERM TO FIND THE COMMON DIFFERENCE?

No. We can subtract any term in the sequence from the subsequent term. It is, however, most common to
subtract the first term from the second term because it is often the easiest method of finding the common
difference.

Try It

Write a recursive formula for the arithmetic sequence.

Answer

Using Explicit Formulas for Arithmetic Sequences

We can think of an arithmetic sequence as a function on the domain of the natural numbers; it is a linear
function because it has a constant rate of change. The common difference is the constant rate of change, or
the slope of the function. We can construct the linear function if we know the slope and the vertical intercept.

To find the y-intercept of the function, we can subtract the common difference from the first term of the
sequence. Consider the following sequence.
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A GENERAL NOTE: EXPLICIT FORMULA FOR AN ARITHMETIC SEQUENCE

An explicit formula for the  term of an arithmetic sequence is given by

HOW TO: GIVEN THE FIRST SEVERAL TERMS FOR AN ARITHMETIC
SEQUENCE, WRITE AN EXPLICIT FORMULA.

1. Find the common difference, .
2. Substitute the common difference and the first term into .

EXAMPLE 5: WRITING THE NTH TERM EXPLICIT FORMULA FOR AN
ARITHMETIC SEQUENCE

Write an explicit formula for the arithmetic sequence.

Answer

The common difference is  , so the sequence represents a linear function with a slope of  . To find
the  -intercept, we subtract  from  . You can also find the  -
intercept by graphing the function and determining where a line that connects the points would intersect the
vertical axis. The graph is shown in Figure 4.

Figure 4

Recall the slope-intercept form of a line is . When dealing with sequences, we use  in place of
 and  in place of . If we know the slope and vertical intercept of the function, we can substitute them for 
 and  in the slope-intercept form of a line. Substituting  for the slope and  for the vertical intercept,

we get the following equation:

We do not need to find the vertical intercept to write an explicit formula for an arithmetic sequence. Another
explicit formula for this sequence is  , which simplifies to .
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The common difference can be found by subtracting the first term from the second term.

The common difference is 10. Substitute the common difference and the first term of the sequence into the
formula and simplify.

Analysis of the Solution

The graph of this sequence, represented in Figure 5, shows a slope of 10 and a vertical intercept of  .

Figure 5

An interactive or media element has been excluded from this version of the text. You can view it online
here: https://courses.lumenlearning.com/precalculus/?p=14790

TRY IT

Try It

Write an explicit formula for the following arithmetic sequence.

Answer
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HOW TO: GIVEN THE FIRST THREE TERMS AND THE LAST TERM OF A
FINITE ARITHMETIC SEQUENCE, FIND THE TOTAL NUMBER OF TERMS.

1. Find the common difference .
2. Substitute the common difference and the first term into .
3. Substitute the last term for  and solve for .

EXAMPLE 6: FINDING THE NUMBER OF TERMS IN A FINITE ARITHMETIC
SEQUENCE

Find the number of terms in the finite arithmetic sequence.

Answer
The common difference can be found by subtracting the first term from the second term.

The common difference is  . Substitute the common difference and the initial term of the sequence into
the  term formula and simplify.

Substitute  for  and solve for 

There are eight terms in the sequence.

Finding the Number of Terms in a Finite Arithmetic Sequence

Explicit formulas can be used to determine the number of terms in a finite arithmetic sequence. We need to
find the common difference, and then determine how many times the common difference must be added to
the first term to obtain the final term of the sequence.

Try It

Find the number of terms in the finite arithmetic sequence.

Answer

There are 11 terms in the sequence.

Solving Application Problems with Arithmetic Sequences

In many application problems, it often makes sense to use an initial term of  instead of . In these
problems, we alter the explicit formula slightly to account for the difference in initial terms. We use the
following formula:
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EXAMPLE 7: SOLVING APPLICATION PROBLEMS WITH ARITHMETIC
SEQUENCES

A five-year old child receives an allowance of $1 each week. His parents promise him an annual increase
of $2 per week.

1. Write a formula for the child’s weekly allowance in a given year.
2. What will the child’s allowance be when he is 16 years old?

Answer

1. The situation can be modeled by an arithmetic sequence with an initial term of 1 and a common
difference of 2.Let  be the amount of the allowance and  be the number of years after age 5. Using
the altered explicit formula for an arithmetic sequence we get:

2. We can find the number of years since age 5 by subtracting.

We are looking for the child’s allowance after 11 years. Substitute 11 into the formula to find the child’s
allowance at age 16.

The child’s allowance at age 16 will be $23 per week.

Try It

A woman decides to go for a 10-minute run every day this week and plans to increase the time of her
daily run by 4 minutes each week. Write a formula for the time of her run after n weeks. How long will her
daily run be 8 weeks from today?
Answer

The formula is , and it will take her 42 minutes.

Key Equations

recursive formula for nth term of an arithmetic sequence

explicit formula for nth term of an arithmetic sequence

Key Concepts

An arithmetic sequence is a sequence where the difference between any two consecutive terms is a
constant.
The constant between two consecutive terms is called the common difference.
The common difference is the number added to any one term of an arithmetic sequence that generates
the subsequent term.
The terms of an arithmetic sequence can be found by beginning with the initial term and adding the
common difference repeatedly.
A recursive formula for an arithmetic sequence with common difference  is given by 

.
As with any recursive formula, the initial term of the sequence must be given.
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arithmetic sequence

common difference

A GENERAL NOTE: DEFINITION OF A GEOMETRIC SEQUENCE

A geometric sequence is one in which any term divided by the previous term is a constant. This constant
is called the common ratio of the sequence. The common ratio can be found by dividing any term in the
sequence by the previous term. If  is the initial term of a geometric sequence and  is the common ratio,
the sequence will be

.

An explicit formula for an arithmetic sequence with common difference  is given by 
.
An explicit formula can be used to find the number of terms in a sequence.
In application problems, we sometimes alter the explicit formula slightly to .

Glossary

a sequence in which the difference between any two consecutive terms is a constant

the difference between any two consecutive terms in an arithmetic sequence
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GEOMETRIC SEQUENCES

Learning Outcomes

By the end of this section, you will be able to:
Find the common ratio for a geometric sequence.
Give terms of a geometric sequence.
Write the formula for a geometric sequence.

Finding Common Ratios

The yearly salary values described form a geometric sequence because they change by a constant factor
each year. Each term of a geometric sequence increases or decreases by a constant factor called the
common ratio. The sequence below is an example of a geometric sequence because each term increases
by a constant factor of 6. Multiplying any term of the sequence by the common ratio 6 generates the
subsequent term.
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HOW TO: GIVEN A SET OF NUMBERS, DETERMINE IF THEY REPRESENT A
GEOMETRIC SEQUENCE.

1. Divide each term by the previous term.
2. Compare the quotients. If they are the same, a common ratio exists and the sequence is geometric.

EXAMPLE 1: FINDING COMMON RATIOS

Is the sequence geometric? If so, find the common ratio.

1. .
2. .

Answer
Divide each term by the previous term to determine whether a common ratio exists.

1. 
The sequence is geometric because there is a common ratio. The common ratio is 2.

2. 

The sequence is not geometric because there is not a common ratio.

Analysis of the Solution

The graph of each sequence is shown in Figure 1. It seems from the graphs that both (a) and (b) appear
have the form of the graph of an exponential function in this viewing window. However, we know that (a) is
geometric and so this interpretation holds, but (b) is not.

Figure 1

Q & A

IF YOU ARE TOLD THAT A SEQUENCE IS GEOMETRIC, DO YOU HAVE TO
DIVIDE EVERY TERM BY THE PREVIOUS TERM TO FIND THE COMMON

RATIO?

666



No. If you know that the sequence is geometric, you can choose any one term in the sequence and divide
it by the previous term to find the common ratio.

An interactive or media element has been excluded from this version of the text. You can view it online
here: https://courses.lumenlearning.com/precalculus/?p=14802

TRY IT

HOW TO: GIVEN THE FIRST TERM AND THE COMMON FACTOR, FIND
THE FIRST FOUR TERMS OF A GEOMETRIC SEQUENCE.

1. Multiply the initial term, , by the common ratio to find the next term, .
2. Repeat the process, using  to find  and then  to find  until all four terms have been

identified.
3. Write the terms separated by commons within brackets.

EXAMPLE 2: WRITING THE TERMS OF A GEOMETRIC SEQUENCE

Try It

Is the sequence geometric? If so, find the common ratio.

Answer

The sequence is not geometric because  .

Try It

Is the sequence geometric? If so, find the common ratio.

Answer

The sequence is geometric. The common ratio is  .

Writing Terms of Geometric Sequences

Now that we can identify a geometric sequence, we will learn how to find the terms of a geometric sequence
if we are given the first term and the common ratio. The terms of a geometric sequence can be found by
beginning with the first term and multiplying by the common ratio repeatedly. For instance, if the first term of
a geometric sequence is  and the common ratio is , we can find subsequent terms by
multiplying  to get  then multiplying the result  to get  and so on.

The first four terms are .
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List the first four terms of the geometric sequence with  and .
Answer
Multiply  by  to find . Repeat the process, using  to find , and so on.

The first four terms are .

An interactive or media element has been excluded from this version of the text. You can view it online
here: https://courses.lumenlearning.com/precalculus/?p=14802

TRY IT

A GENERAL NOTE: RECURSIVE FORMULA FOR A GEOMETRIC SEQUENCE

The recursive formula for a geometric sequence with common ratio  and first term  is

HOW TO: GIVEN THE FIRST SEVERAL TERMS OF A GEOMETRIC
SEQUENCE, WRITE ITS RECURSIVE FORMULA.

1. State the initial term.
2. Find the common ratio by dividing any term by the preceding term.
3. Substitute the common ratio into the recursive formula for a geometric sequence.

EXAMPLE 3: USING RECURSIVE FORMULAS FOR GEOMETRIC SEQUENCES

Write a recursive formula for the following geometric sequence.

Answer

Try It

List the first five terms of the geometric sequence with  and .
Answer

Using Recursive Formulas for Geometric Sequences

A recursive formula allows us to find any term of a geometric sequence by using the previous term. Each
term is the product of the common ratio and the previous term. For example, suppose the common ratio is 9.
Then each term is nine times the previous term. As with any recursive formula, the initial term must be
given.
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The first term is given as 6. The common ratio can be found by dividing the second term by the first term.

Substitute the common ratio into the recursive formula for geometric sequences and define .

ANALYSIS OF THE SOLUTION

The sequence of data points follows an exponential pattern. The common ratio is also the base of an
exponential function as shown in Figure 2.

Figure 2

Q & A

DO WE HAVE TO DIVIDE THE SECOND TERM BY THE FIRST TERM TO
FIND THE COMMON RATIO?

No. We can divide any term in the sequence by the previous term. It is, however, most common to divide
the second term by the first term because it is often the easiest method of finding the common ratio.

Try It

Write a recursive formula for the following geometric sequence.

Answer

Using Explicit Formulas for Geometric Sequences

669



A GENERAL NOTE: EXPLICIT FORMULA FOR A GEOMETRIC SEQUENCE

The nth term of a geometric sequence is given by the explicit formula:

Because a geometric sequence is an exponential function whose domain is the set of positive integers, and
the common ratio is the base of the function, we can write explicit formulas that allow us to find particular
terms.

Let’s take a look at the sequence . This is a geometric sequence with a common
ratio of 2 and an exponential function with a base of 2. An explicit formula for this sequence is

The graph of the sequence is shown in Figure 3.

Figure 3
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EXAMPLE 4: WRITING TERMS OF GEOMETRIC SEQUENCES USING THE
EXPLICIT FORMULA

Given a geometric sequence with  and , find .
Answer
The sequence can be written in terms of the initial term and the common ratio .

.
Find the common ratio using the given fourth term.

Find the second term by multiplying the first term by the common ratio.

Analysis of the Solution

The common ratio is multiplied by the first term once to find the second term, twice to find the third term,
three times to find the fourth term, and so on. The tenth term could be found by multiplying the first term
by the common ratio nine times or by multiplying by the common ratio raised to the ninth power.

EXAMPLE 6: WRITING AN EXPLICIT FORMULA FOR THE NTH TERM OF A
GEOMETRIC SEQUENCE

Write an explicit formula for the  term of the following geometric sequence.

Answer
The first term is 2. The common ratio can be found by dividing the second term by the first term.

The common ratio is 5. Substitute the common ratio and the first term of the sequence into the formula.

The graph of this sequence in Figure 4 shows an exponential pattern.

Try It

Given a geometric sequence with  and  , find .
Answer
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Figure 4

An interactive or media element has been excluded from this version of the text. You can view it online
here: https://courses.lumenlearning.com/precalculus/?p=14802

TRY IT

EXAMPLE 7: SOLVING APPLICATION PROBLEMS WITH GEOMETRIC
SEQUENCES

In 2013, the number of students in a small school is 284. It is estimated that the student population will
increase by 4% each year.

Try It

Write an explicit formula for the following geometric sequence.

Answer

Solving Application Problems with Geometric Sequences

In real-world scenarios involving arithmetic sequences, we may need to use an initial term of  instead of 
. In these problems, we can alter the explicit formula slightly by using the following formula:
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common ratio

1. Write a formula for the student population.
2. Estimate the student population in 2020.

Answer

1. The situation can be modeled by a geometric sequence with an initial term of 284. The student
population will be 104% of the prior year, so the common ratio is 1.04. Let  be the student
population and  be the number of years after 2013. Using the explicit formula for a geometric
sequence we get

2. We can find the number of years since 2013 by subtracting.

We are looking for the population after 7 years. We can substitute 7 for  to estimate the population in
2020.

The student population will be about 374 in 2020.

Try It

A business starts a new website. Initially the number of hits is 293 due to the curiosity factor. The
business estimates the number of hits will increase by 2.6% per week.

a. Write a formula for the number of hits.

b. Estimate the number of hits in 5 weeks.
Answer

a. 
b. The number of hits will be about 333.

Key Equations

recursive formula for  term of a geometric sequence

explicit formula for  term of a geometric sequence

Key Concepts

A geometric sequence is a sequence in which the ratio between any two consecutive terms is a
constant.
The constant ratio between two consecutive terms is called the common ratio.
The common ratio can be found by dividing any term in the sequence by the previous term.
The terms of a geometric sequence can be found by beginning with the first term and multiplying by the
common ratio repeatedly.
A recursive formula for a geometric sequence with common ratio  is given by  for  .
As with any recursive formula, the initial term of the sequence must be given.
An explicit formula for a geometric sequence with common ratio  is given by .
In application problems, we sometimes alter the explicit formula slightly to .

Glossary

the ratio between any two consecutive terms in a geometric sequence
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geometric sequence a sequence in which the ratio of a term to a previous term is a constant
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SERIES AND THEIR NOTATIONS

Learning Outcomes

By the end of this section, you will be able to:
Use summation notation.
Use the formula for the sum of the first n terms of an arithmetic series.
Use the formula for the sum of the first n terms of a geometric series.
Use the formula for the sum of an infinite geometric series.
Solve word problems involving series.

Using Summation Notation

To find the total amount of money in the college fund and the sum of the amounts deposited, we need to add
the amounts deposited each month and the amounts earned monthly. The sum of the terms of a sequence is
called a series. Consider, for example, the following series.

The  partial sum of a series is the sum of a finite number of consecutive terms beginning with the first
term. The notation  represents the partial sum.

Summation notation is used to represent series. Summation notation is often known as sigma notation
because it uses the Greek capital letter sigma, , to represent the sum. Summation notation includes an
explicit formula and specifies the first and last terms in the series. An explicit formula for each term of the
series is given to the right of the sigma. A variable called the index of summation is written below the
sigma. The index of summation is set equal to the lower limit of summation, which is the number used to
generate the first term in the series. The number above the sigma, called the upper limit of summation, is
the number used to generate the last term in a series.

If we interpret the given notation, we see that it asks us to find the sum of the terms in the series  for
 through . We can begin by substituting the terms for  and listing out the terms of this series.
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A GENERAL NOTE: SUMMATION NOTATION

The sum of the first  terms of a series can be expressed in summation notation as follows:

This notation tells us to find the sum of  from  to .
 is called the index of summation, 1 is the lower limit of summation, and  is the upper limit of

summation.

Q & A

DOES THE LOWER LIMIT OF SUMMATION HAVE TO BE 1?

No. The lower limit of summation can be any number, but 1 is frequently used. We will look at examples
with lower limits of summation other than 1.

HOW TO: GIVEN SUMMATION NOTATION FOR A SERIES, EVALUATE THE
VALUE.

1. Identify the lower limit of summation.
2. Identify the upper limit of summation.
3. Substitute each value of  from the lower limit to the upper limit into the formula.
4. Add to find the sum.

EXAMPLE 1: USING SUMMATION NOTATION

Evaluate .
Answer
According to the notation, the lower limit of summation is 3 and the upper limit is 7. So we need to find the
sum of  from  to . We find the terms of the series by substituting , and  into the
function . We add the terms to find the sum.

We can find the sum of the series by adding the terms:

Try It

Evaluate .
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An interactive or media element has been excluded from this version of the text. You can view it online
here: https://courses.lumenlearning.com/precalculus/?p=14807

TRY IT

A GENERAL NOTE: FORMULA FOR THE SUM OF THE FIRST N TERMS OF
AN ARITHMETIC SERIES

An arithmetic series is the sum of the terms of an arithmetic sequence. The formula for the sum of the
first  terms of an arithmetic sequence is

HOW TO: GIVEN TERMS OF AN ARITHMETIC SERIES, FIND THE SUM OF
THE FIRST  TERMS.

1. Identify  and .
2. Determine .
3. Substitute values for , and  into the formula .
4. Simplify to find .

Answer

38

Using the Formula for Arithmetic Series

Just as we studied special types of sequences, we will look at special types of series. Recall that an
arithmetic sequence is a sequence in which the difference between any two consecutive terms is the
common difference, . The sum of the terms of an arithmetic sequence is called an arithmetic series. We
can write the sum of the first  terms of an arithmetic series as:

.

We can also reverse the order of the terms and write the sum as
.

If we add these two expressions for the sum of the first  terms of an arithmetic series, we can derive a
formula for the sum of the first  terms of any arithmetic series.

Because there are  terms in the series, we can simplify this sum to
.

We divide by 2 to find the formula for the sum of the first  terms of an arithmetic series.

676



EXAMPLE 2: FINDING THE FIRST N TERMS OF AN ARITHMETIC SERIES

Find the sum of each arithmetic series.

1. 
2. 
3. 

Answer

1. We are given  and .Count the number of terms in the sequence to find .
Substitute values for , and  into the formula and simplify.

2. We are given  and .Use the formula for the general term of an arithmetic sequence
to find .

Substitute values for  into the formula and simplify.

3. To find , substitute  into the given explicit formula.

We are given that . To find , substitute  into the given explicit formula.

Substitute values for , and  into the formula and simplify.

Use the formula to find the sum of each arithmetic series.

Try It

Answer

26.4

Try It

Answer
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An interactive or media element has been excluded from this version of the text. You can view it online
here: https://courses.lumenlearning.com/precalculus/?p=14807

TRY IT

EXAMPLE 3: SOLVING APPLICATION PROBLEMS WITH ARITHMETIC
SERIES

On the Sunday after a minor surgery, a woman is able to walk a half-mile. Each Sunday, she walks an
additional quarter-mile. After 8 weeks, what will be the total number of miles she has walked?
Answer
This problem can be modeled by an arithmetic series with  and . We are looking for the total
number of miles walked after 8 weeks, so we know that , and we are looking for . To find , we
can use the explicit formula for an arithmetic sequence.

We can now use the formula for arithmetic series.

She will have walked a total of 11 miles.

328

Try It

Answer

-280

Try It

A man earns $100 in the first week of June. Each week, he earns $12.50 more than the previous week.
After 12 weeks, how much has he earned?
Answer

$2,025

Using the Formula for Geometric Series

Just as the sum of the terms of an arithmetic sequence is called an arithmetic series, the sum of the terms in
a geometric sequence is called a geometric series. Recall that a geometric sequence is a sequence in
which the ratio of any two consecutive terms is the common ratio, . We can write the sum of the first 
terms of a geometric series as

.
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A GENERAL NOTE: FORMULA FOR THE SUM OF THE FIRST N TERMS OF A
GEOMETRIC SERIES

A geometric series is the sum of the terms in a geometric sequence. The formula for the sum of the first 
terms of a geometric sequence is represented as

HOW TO: GIVEN A GEOMETRIC SERIES, FIND THE SUM OF THE FIRST N
TERMS.

1. Identify .
2. Substitute values for , and  into the formula .
3. Simplify to find .

EXAMPLE 4: FINDING THE FIRST N TERMS OF A GEOMETRIC SERIES

Use the formula to find the indicated partial sum of each geometric series.

1.  for the series 
2. 

Answer

1. , and we are given that .We can find  by dividing the second term of the series by the
first.

Substitute values for  into the formula and simplify.

2. Find  by substituting  into the given explicit formula.

We can see from the given explicit formula that . The upper limit of summation is 6, so .

Just as with arithmetic series, we can do some algebraic manipulation to derive a formula for the sum of the
first  terms of a geometric series. We will begin by multiplying both sides of the equation by .

Next, we subtract this equation from the original equation.

Notice that when we subtract, all but the first term of the top equation and the last term of the bottom
equation cancel out. To obtain a formula for , divide both sides by .
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Substitute values for , and  into the formula, and simplify.

An interactive or media element has been excluded from this version of the text. You can view it online
here: https://courses.lumenlearning.com/precalculus/?p=14807

TRY IT

An interactive or media element has been excluded from this version of the text. You can view it online
here: https://courses.lumenlearning.com/precalculus/?p=14807

TRY IT

EXAMPLE 5: SOLVING AN APPLICATION PROBLEM WITH A GEOMETRIC
SERIES

At a new job, an employee’s starting salary is $26,750. He receives a 1.6% annual raise. Find his total
earnings at the end of 5 years.
Answer
The problem can be represented by a geometric series with ; ; and .
Substitute values for , , and  into the formula and simplify to find the total amount earned at the end
of 5 years.

He will have earned a total of $138,099.03 by the end of 5 years.

Use the formula to find the indicated partial sum of each geometric series.

Try It

 for the series 
Answer

Try It

Answer

9,840
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A GENERAL NOTE: DETERMINING WHETHER THE SUM OF AN INFINITE
GEOMETRIC SERIES IS DEFINED

The sum of an infinite series is defined if the series is geometric and .

HOW TO: GIVEN THE FIRST SEVERAL TERMS OF AN INFINITE SERIES,
DETERMINE IF THE SUM OF THE SERIES EXISTS.

1. Find the ratio of the second term to the first term.
2. Find the ratio of the third term to the second term.
3. Continue this process to ensure the ratio of a term to the preceding term is constant throughout. If so,

the series is geometric.
4. If a common ratio, , was found in step 3, check to see if  . If so, the sum is defined. If not,

the sum is not defined.

EXAMPLE 6: DETERMINING WHETHER THE SUM OF AN INFINITE SERIES
IS DEFINED

Try It

At a new job, an employee’s starting salary is $32,100. She receives a 2% annual raise. How much will
she have earned by the end of 8 years?
Answer

$275,513.31

Using the Formula for the Sum of an In�nite Geometric Series

Thus far, we have looked only at finite series. Sometimes, however, we are interested in the sum of the
terms of an infinite sequence rather than the sum of only the first  terms. An infinite series is the sum of
the terms of an infinite sequence. An example of an infinite series is .

This series can also be written in summation notation as , where the upper limit of summation is
infinity. Because the terms are not tending to zero, the sum of the series increases without bound as we add
more terms. Therefore, the sum of this infinite series is not defined. When the sum is not a real number, we
say the series diverges.

Determining Whether the Sum of an In�nite Geometric Series is
De�ned

If the terms of an infinite geometric series approach 0, the sum of an infinite geometric series can be
defined. The terms in this series approach 0:

.

The common ratio . As  gets very large, the values of  get very small and approach 0. Each
successive term affects the sum less than the preceding term. As each succeeding term gets closer to 0, the
sum of the terms approaches a finite value. The terms of any infinite geometric series with 
approach 0; the sum of a geometric series is defined when .
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Determine whether the sum of each infinite series is defined.

1. 
2. .
3. 
4. 

Answer

1. The ratio of the second term to the first is ,
which is not the same as the ratio of the third term to the second, . The series is not geometric.

2. The ratio of the second term to the first is the same as the ratio of the third term to the second. The
series is geometric with a common ratio of  The sum of the infinite series is defined.

3. The given formula is exponential with a base of ; the series is geometric with a common ratio of 
The sum of the infinite series is defined.

4. The given formula is not exponential; the series is not geometric because the terms are increasing,
and so cannot yield a finite sum.

Determine whether the sum of the infinite series is defined.

Try It

.
Answer

The sum is not defined. It is not geometric.

Try It

.
Answer

The sum of the infinite series is defined.

Try It

Answer

The sum of the infinite series is defined.

Finding Sums of In�nite Series

When the sum of an infinite geometric series exists, we can calculate the sum. The formula for the sum of
an infinite series is related to the formula for the sum of the first  terms of a geometric series.

We will examine an infinite series with . What happens to  as  increases?
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A GENERAL NOTE: FORMULA FOR THE SUM OF AN INFINITE GEOMETRIC
SERIES

The formula for the sum of an infinite geometric series with  is

HOW TO: GIVEN AN INFINITE GEOMETRIC SERIES, FIND ITS SUM.

1. Identify  and .
2. Confirm that .
3. Substitute values for  and  into the formula, .
4. Simplify to find .

EXAMPLE 7: FINDING THE SUM OF AN INFINITE GEOMETRIC SERIES

Find the sum, if it exists, for the following:

1. 
2. 
3. 
4. 

Answer

1. There is not a constant ratio; the series is not geometric.
2. There is a constant ratio; the series is geometric.  and , so the sum exists.

Substitute  and  into the formula and simplify to find the sum:

The value of  decreases rapidly. What happens for greater values of 

As  gets very large,  gets very small. We say that, as  increases without bound,  approaches 0. As 
approaches 0,  approaches 1. When this happens, the numerator approaches . This give us a
formula for the sum of an infinite geometric series.
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3. The formula is exponential, so the series is geometric with . Find  by substituting  into
the given explicit formula:

Substitute  and  into the formula, and simplify to find the sum:

4. The formula is exponential, so the series is geometric, but . The sum does not exist.

EXAMPLE 8: FINDING AN EQUIVALENT FRACTION FOR A REPEATING
DECIMAL

Find an equivalent fraction for the repeating decimal 
Answer
We notice the repeating decimal . so we can rewrite the repeating decimal as a sum of
terms.

.
Looking for a pattern, we rewrite the sum, noticing that we see the first term multiplied to 0.1 in the second
term, and the second term multiplied to 0.1 in the third term.

Notice the pattern; we multiply each consecutive term by a common ratio of 0.1 starting with the first term
of 0.3. So, substituting into our formula for an infinite geometric sum, we have

.

Find the sum, if it exists.

Try It

.
Answer

3

Try It

Answer

The series is not geometric.

Try It
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An interactive or media element has been excluded from this version of the text. You can view it online
here: https://courses.lumenlearning.com/precalculus/?p=14807

TRY IT

HOW TO: GIVEN AN INITIAL DEPOSIT AND AN INTEREST RATE, FIND THE
VALUE OF AN ANNUITY.

1. Determine , the value of the initial deposit.
2. Determine , the number of deposits.
3. Determine .

1. Divide the annual interest rate by the number of times per year that interest is compounded.
2. Add 1 to this amount to find .

4. Substitute values for 
into the formula for the sum of the first  terms of a geometric series, .

5. Simplify to find , the value of the annuity after  deposits.

EXAMPLE 9: SOLVING AN ANNUITY PROBLEM

Answer

Solving Annuity Problems

At the beginning of the section, we looked at a problem in which a couple invested a set amount of money
each month into a college fund for six years. An annuity is an investment in which the purchaser makes a
sequence of periodic, equal payments. To find the amount of an annuity, we need to find the sum of all the
payments and the interest earned. In the example, the couple invests $50 each month. This is the value of
the initial deposit. The account paid 6% annual interest, compounded monthly. To find the interest rate per
payment period, we need to divide the 6% annual percentage interest (APR) rate by 12. So the monthly
interest rate is 0.5%. We can multiply the amount in the account each month by 100.5% to find the value of
the account after interest has been added.

We can find the value of the annuity right after the last deposit by using a geometric series with  and 
. After the first deposit, the value of the annuity will be $50. Let us see if we can determine the

amount in the college fund and the interest earned.

We can find the value of the annuity after  deposits using the formula for the sum of the first  terms of a
geometric series. In 6 years, there are 72 months, so . We can substitute 

 into the formula, and simplify to find the value of the annuity after 6 years.

After the last deposit, the couple will have a total of $4,320.44 in the account. Notice, the couple made 72
payments of $50 each for a total of . This means that because of the annuity, the couple
earned $720.44 interest in their college fund.
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annuity

arithmetic series

diverge

A deposit of $100 is placed into a college fund at the beginning of every month for 10 years. The fund
earns 9% annual interest, compounded monthly, and paid at the end of the month. How much is in the
account right after the last deposit?
Answer
The value of the initial deposit is $100, so . A total of 120 monthly deposits are made in the 10
years, so . To find , divide the annual interest rate by 12 to find the monthly interest rate and add
1 to represent the new monthly deposit.

Substitute  into the formula for the sum of the first  terms of a
geometric series, and simplify to find the value of the annuity.

So the account has $19,351.43 after the last deposit is made.

Try It

At the beginning of each month, $200 is deposited into a retirement fund. The fund earns 6% annual
interest, compounded monthly, and paid into the account at the end of the month. How much is in the
account if deposits are made for 10 years?
Answer

$92,408.18

Key Equations

sum of the first 
terms of an arithmetic series

sum of the first 
terms of a geometric series

sum of an infinite geometric series with 

Key Concepts

The sum of the terms in a sequence is called a series.
A common notation for series is called summation notation, which uses the Greek letter sigma to
represent the sum.
The sum of the terms in an arithmetic sequence is called an arithmetic series.
The sum of the first  terms of an arithmetic series can be found using a formula.
The sum of the terms in a geometric sequence is called a geometric series.
The sum of the first  terms of a geometric series can be found using a formula.
The sum of an infinite series exists if the series is geometric with .
If the sum of an infinite series exists, it can be found using a formula.
An annuity is an account into which the investor makes a series of regularly scheduled payments. The
value of an annuity can be found using geometric series.

Glossary

an investment in which the purchaser makes a sequence of periodic, equal payments

the sum of the terms in an arithmetic sequence

a series is said to diverge if the sum is not a real number
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geometric series

index of summation

infinite series

lower limit of summation

nth partial sum

series

summation notation

upper limit of summation

the sum of the terms in a geometric sequence

in summation notation, the variable used in the explicit formula for the terms of a
series and written below the sigma with the lower limit of summation

the sum of the terms in an infinite sequence

the number used in the explicit formula to find the first term in a series

the sum of the first  terms of a sequence

the sum of the terms in a sequence

a notation for series using the Greek letter sigma; it includes an explicit formula and
specifies the first and last terms in the series

the number used in the explicit formula to find the last term in a series
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COUNTING PRINCIPLES

Learning Outcomes

By the end of this section, you will be able to:
Solve counting problems using the Addition Principle.
Solve counting problems using the Multiplication Principle.
Solve counting problems using permutations involving n distinct objects.
Solve counting problems using combinations.
Find the number of subsets of a given set.
Solve counting problems using permutations involving n non-distinct objects.

Using the Addition and Multiplication Principles

The company that sells customizable cases offers cases for tablets and smartphones. There are 3
supported tablet models and 5 supported smartphone models. The Addition Principle tells us that we can
add the number of tablet options to the number of smartphone options to find the total number of options. By
the Addition Principle, there are 8 total options, as we can see in Figure 1.
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A GENERAL NOTE: THE ADDITION PRINCIPLE

According to the Addition Principle, if one event can occur in  ways and a second event with no
common outcomes can occur in  ways, then the first or second event can occur in  ways.

EXAMPLE 1: USING THE ADDITION PRINCIPLE

There are 2 vegetarian entrée options and 5 meat entrée options on a dinner menu. What is the total
number of entrée options?
Answer
We can add the number of vegetarian options to the number of meat options to find the total number of
entrée options.

There are 7 total options.

Figure 1

Try It
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An interactive or media element has been excluded from this version of the text. You can view it online
here: https://courses.lumenlearning.com/precalculus/?p=14826

TRY IT

A student is shopping for a new computer. He is deciding among 3 desktop computers and 4 laptop
computers. What is the total number of computer options?
Answer

7

Using the Multiplication Principle

The Multiplication Principle applies when we are making more than one selection. Suppose we are
choosing an appetizer, an entrée, and a dessert. If there are 2 appetizer options, 3 entrée options, and 2
dessert options on a fixed-price dinner menu, there are a total of 12 possible choices of one each as shown
in the tree diagram in Figure 2.

The possible choices are:

1. soup, chicken, cake
2. soup, chicken, pudding
3. soup, fish, cake
4. soup, fish, pudding
5. soup, steak, cake
6. soup, steak, pudding
7. salad, chicken, cake
8. salad, chicken, pudding
9. salad, fish, cake

10. salad, fish, pudding
11. salad, steak, cake
12. salad, steak, pudding

We can also find the total number of possible dinners by multiplying.

We could also conclude that there are 12 possible dinner choices simply by applying the Multiplication
Principle.
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A GENERAL NOTE: THE MULTIPLICATION PRINCIPLE

According to the Multiplication Principle, if one event can occur in  ways and a second event can
occur in  ways after the first event has occurred, then the two events can occur in  ways. This is
also known as the Fundamental Counting Principle.

EXAMPLE 2: USING THE MULTIPLICATION PRINCIPLE

Diane packed 2 skirts, 4 blouses, and a sweater for her business trip. She will need to choose a skirt and
a blouse for each outfit and decide whether to wear the sweater. Use the Multiplication Principle to find the
total number of possible outfits.
Answer
To find the total number of outfits, find the product of the number of skirt options, the number of blouse
options, and the number of sweater options.

There are 16 possible outfits.

An interactive or media element has been excluded from this version of the text. You can view it online
here: https://courses.lumenlearning.com/precalculus/?p=14826

TRY IT

Try It

A restaurant offers a breakfast special that includes a breakfast sandwich, a side dish, and a beverage.
There are 3 types of breakfast sandwiches, 4 side dish options, and 5 beverage choices. Find the total
number of possible breakfast specials.
Answer

There are 60 possible breakfast specials.

Finding the Number of Permutations of n Distinct Objects

The Multiplication Principle can be used to solve a variety of problem types. One type of problem involves
placing objects in order. We arrange letters into words and digits into numbers, line up for photographs,
decorate rooms, and more. An ordering of objects is called a permutation.

Finding the Number of Permutations of n Distinct Objects Using
the Multiplication Principle

To solve permutation problems, it is often helpful to draw line segments for each option. That enables us to
determine the number of each option so we can multiply. For instance, suppose we have four paintings, and
we want to find the number of ways we can hang three of the paintings in order on the wall. We can draw
three lines to represent the three places on the wall.
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HOW TO: GIVEN  DISTINCT OPTIONS, DETERMINE HOW MANY
PERMUTATIONS THERE ARE.

1. Determine how many options there are for the first situation.
2. Determine how many options are left for the second situation.
3. Continue until all of the spots are filled.
4. Multiply the numbers together.

EXAMPLE 3: FINDING THE NUMBER OF PERMUTATIONS USING THE
MULTIPLICATION PRINCIPLE

At a swimming competition, nine swimmers compete in a race.

1. How many ways can they place first, second, and third?
2. How many ways can they place first, second, and third if a swimmer named Ariel wins first place?

(Assume there is only one contestant named Ariel.)
3. How many ways can all nine swimmers line up for a photo?

Answer

1. Draw lines for each place.

There are 9 options for first place. Once someone has won first place, there are 8 remaining options
for second place. Once first and second place have been won, there are 7 remaining options for third
place.

Multiply to find that there are 504 ways for the swimmers to place.
2. Draw lines for describing each place.

We know Ariel must win first place, so there is only 1 option for first place. There are 8 remaining
options for second place, and then 7 remaining options for third place.

There are four options for the first place, so we write a 4 on the first line.

After the first place has been filled, there are three options for the second place so we write a 3 on the
second line.

After the second place has been filled, there are two options for the third place so we write a 2 on the third
line. Finally, we find the product.

There are 24 possible permutations of the paintings.
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Multiply to find that there are 56 ways for the swimmers to place if Ariel wins first.
3. Draw lines for describing each place in the photo.

There are 9 choices for the first spot, then 8 for the second, 7 for the third, 6 for the fourth, and so on
until only 1 person remains for the last spot.

There are 362,880 possible permutations for the swimmers to line up.

Analysis of the Solution

Note that in part c, we found there were 9! ways for 9 people to line up. The number of permutations of 
distinct objects can always be found by .
A family of five is having portraits taken. Use the Multiplication Principle to find the following.

An interactive or media element has been excluded from this version of the text. You can view it online
here: https://courses.lumenlearning.com/precalculus/?p=14826

TRY IT

Try It \4

A family has 2 parents and 3 children. How many ways can the family line up for the portrait?
Answer
120

Try It

How many ways can the photographer line up 3 of the family members?
Answer
60

Try It

How many ways can the family line up for the portrait if the parents stand on each end?
Answer
12

Finding the Number of Permutations of n Distinct Objects Using
a Formula

For some permutation problems, it is inconvenient to use the Multiplication Principle because there are so
many numbers to multiply. Fortunately, we can solve these problems using a formula. Before we learn the
formula, let’s look at two common notations for permutations. If we have a set of  objects and we want to
choose  objects from the set in order, we write . Another way to write this is , a notation
commonly seen on computers and calculators. To calculate , we begin by finding , the number of
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A GENERAL NOTE: FORMULA FOR PERMUTATIONS OF N DISTINCT
OBJECTS

Given  distinct objects, the number of ways to select  objects from the set in order is

HOW TO: GIVEN A WORD PROBLEM, EVALUATE THE POSSIBLE
PERMUTATIONS.

1. Identify  from the given information.
2. Identify  from the given information.
3. Replace  and  in the formula with the given values.
4. Evaluate.

EXAMPLE 4: FINDING THE NUMBER OF PERMUTATIONS USING THE
FORMULA

A professor is creating an exam of 9 questions from a test bank of 12 questions. How many ways can she
select and arrange the questions?
Answer
Substitute  and  into the permutation formula and simplify.

There are 79,833,600 possible permutations of exam questions.

Analysis of the Solution

ways to line up all  objects. We then divide by  to cancel out the  items that we do not wish
to line up.

Let’s see how this works with a simple example. Imagine a club of six people. They need to elect a
president, a vice president, and a treasurer. Six people can be elected president, any one of the five
remaining people can be elected vice president, and any of the remaining four people could be elected
treasurer. The number of ways this may be done is . Using factorials, we get the same
result.

There are 120 ways to select 3 officers in order from a club with 6 members. We refer to this as a
permutation of 6 taken 3 at a time. The general formula is as follows.

Note that the formula stills works if we are choosing all  objects and placing them in order. In that case we
would be dividing by  or , which we said earlier is equal to 1. So the number of permutations of 
objects taken  at a time is  or just 
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We can also use a calculator to find permutations. For this problem, we would enter 15, press the 
 function, enter 12, and then press the equal sign. The  function may be located under the MATH

menu with probability commands.

Q & A

COULD WE HAVE SOLVED  USING THE MULTIPLICATION PRINCIPLE?

Yes. We could have multiplied  to find the same answer.

An interactive or media element has been excluded from this version of the text. You can view it online
here: https://courses.lumenlearning.com/precalculus/?p=14826

TRY IT

A play has a cast of 7 actors preparing to make their curtain call. Use the permutation formula to find the
following.

Try It

How many ways can the 7 actors line up?
Answer

Try It

How many ways can 5 of the 7 actors be chosen to line up?
Answer

Find the Number of Combinations Using the Formula

So far, we have looked at problems asking us to put objects in order. There are many problems in which we
want to select a few objects from a group of objects, but we do not care about the order. When we are
selecting objects and the order does not matter, we are dealing with combinations. A selection of  objects
from a set of  objects where the order does not matter can be written as . Just as with
permutations,  can also be written as . In this case, the general formula is as follows.

An earlier problem considered choosing 3 of 4 possible paintings to hang on a wall. We found that there
were 24 ways to select 3 of the 4 paintings in order. But what if we did not care about the order? We would
expect a smaller number because selecting paintings 1, 2, 3 would be the same as selecting paintings 2, 3,
1. To find the number of ways to select 3 of the 4 paintings, disregarding the order of the paintings, divide
the number of permutations by the number of ways to order 3 paintings. There are  ways to
order 3 paintings. There are , or 4 ways to select 3 of the 4 paintings. This number makes sense because
every time we are selecting 3 paintings, we are not selecting 1 painting. There are 4 paintings we could
choose not to select, so there are 4 ways to select 3 of the 4 paintings.
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A GENERAL NOTE: FORMULA FOR COMBINATIONS OF N DISTINCT
OBJECTS

Given  distinct objects, the number of ways to select  objects from the set is

HOW TO: GIVEN A NUMBER OF OPTIONS, DETERMINE THE POSSIBLE
NUMBER OF COMBINATIONS.

1. Identify  from the given information.
2. Identify  from the given information.
3. Replace  and  in the formula with the given values.
4. Evaluate.

EXAMPLE 5: FINDING THE NUMBER OF COMBINATIONS USING THE
FORMULA

A fast food restaurant offers five side dish options. Your meal comes with two side dishes.

1. How many ways can you select your side dishes?
2. How many ways can you select 3 side dishes?

Answer

1. We want to choose 2 side dishes from 5 options.

2. We want to choose 3 side dishes from 5 options.

Analysis of the Solution

We can also use a graphing calculator to find combinations. Enter 5, then press , enter 3, and then
press the equal sign. The , function may be located under the MATH menu with probability
commands.

Q & A

IS IT A COINCIDENCE THAT PARTS (A) AND (B) IN EXAMPLE 4 HAVE THE
SAME ANSWERS?

No. When we choose r objects from n objects, we are not choosing  objects. Therefore, 
.

Try It
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A GENERAL NOTE: FORMULA FOR THE NUMBER OF SUBSETS OF A SET

A set containing n distinct objects has  subsets.

EXAMPLE 6: FINDING THE NUMBER OF SUBSETS OF A SET

A restaurant offers butter, cheese, chives, and sour cream as toppings for a baked potato. How many
different ways are there to order a potato?
Answer
We are looking for the number of subsets of a set with 4 objects. Substitute  into the formula.

There are 16 possible ways to order a potato.

An ice cream shop offers 10 flavors of ice cream. How many ways are there to choose 3 flavors for a
banana split?
Answer

Finding the Number of Subsets of a Set

We have looked only at combination problems in which we chose exactly  objects. In some problems, we
want to consider choosing every possible number of objects. Consider, for example, a pizza restaurant that
offers 5 toppings. Any number of toppings can be ordered. How many different pizzas are possible?

To answer this question, we need to consider pizzas with any number of toppings. There is  way
to order a pizza with no toppings. There are  ways to order a pizza with exactly one topping. If
we continue this process, we get

There are 32 possible pizzas. This result is equal to .

We are presented with a sequence of choices. For each of the  objects we have two choices: include it in
the subset or not. So for the whole subset we have made  choices, each with two options. So there are a
total of  possible resulting subsets, all the way from the empty subset, which we obtain when
we say “no” each time, to the original set itself, which we obtain when we say “yes” each time.

Try It

A sundae bar at a wedding has 6 toppings to choose from. Any number of toppings can be chosen. How
many different sundaes are possible?
Answer

64 sundaes

Finding the Number of Permutations of n Non-Distinct Objects

We have studied permutations where all of the objects involved were distinct. What happens if some of the
objects are indistinguishable? For example, suppose there is a sheet of 12 stickers. If all of the stickers were
distinct, there would be  ways to order the stickers. However, 4 of the stickers are identical stars, and 3
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A GENERAL NOTE: FORMULA FOR FINDING THE NUMBER OF
PERMUTATIONS OF N NON-DISTINCT OBJECTS

If there are  elements in a set and  are alike,  are alike,  are alike, and so on through , the
number of permutations can be found by

EXAMPLE 7: FINDING THE NUMBER OF PERMUTATIONS OF N NON-
DISTINCT OBJECTS

Find the number of rearrangements of the letters in the word DISTINCT.
Answer
There are 8 letters. Both I and T are repeated 2 times. Substitute  and  into the
formula.

There are 10,080 arrangements.

An interactive or media element has been excluded from this version of the text. You can view it online
here: https://courses.lumenlearning.com/precalculus/?p=14826

TRY IT

are identical moons. Because all of the objects are not distinct, many of the  permutations we counted
are duplicates. The general formula for this situation is as follows.

In this example, we need to divide by the number of ways to order the 4 stars and the ways to order the 3
moons to find the number of unique permutations of the stickers. There are  ways to order the stars and 
ways to order the moon.

There are 3,326,400 ways to order the sheet of stickers.

Try It

Find the number of rearrangements of the letters in the word CARRIER.
Answer
840

Key Equations
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Addition Principle

combination

Fundamental Counting Principle

Multiplication Principle

permutation

number of permutations of  distinct objects taken  at a time

number of combinations of  distinct objects taken  at a time

number of permutations of  non-distinct objects

Key Concepts

If one event can occur in  ways and a second event with no common outcomes can occur in  ways,
then the first or second event can occur in  ways.
If one event can occur in  ways and a second event can occur in  ways after the first event has
occurred, then the two events can occur in  ways.
A permutation is an ordering of  objects.
If we have a set of  objects and we want to choose  objects from the set in order, we write .
Permutation problems can be solved using the Multiplication Principle or the formula for .
A selection of objects where the order does not matter is a combination.
Given  distinct objects, the number of ways to select  objects from the set is  and can be
found using a formula.
A set containing  distinct objects has  subsets.
For counting problems involving non-distinct objects, we need to divide to avoid counting duplicate
permutations.

Glossary

if one event can occur in  ways and a second event with no common outcomes can
occur in  ways, then the first or second event can occur in  ways

a selection of objects in which order does not matter

if one event can occur in  ways and a second event can occur in 
ways after the first event has occurred, then the two events can occur in  ways; also known as
the Multiplication Principle

if one event can occur in  ways and a second event can occur in  ways after the
first event has occurred, then the two events can occur in  ways; also known as the Fundamental
Counting Principle

a selection of objects in which order matters

 

For the following exercises, assume that there are  ways an event  can happen,  ways an event  can
happen, and that  are non-overlapping.
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A GENERAL NOTE: BINOMIAL COEFFICIENTS

If  and  are integers greater than or equal to 0 with , then the binomial coefficient is

Q & A

IS A BINOMIAL COEFFICIENT ALWAYS A WHOLE NUMBER?

Yes. Just as the number of combinations must always be a whole number, a binomial coefficient will
always be a whole number.

EXAMPLE 1: FINDING BINOMIAL COEFFICIENTS

Find each binomial coefficient.

1. 

2. 

3. 

Answer
Use the formula to calculate each binomial coefficient. You can also use the  function on your
calculator.

Learning Outcomes

By the end of this section, you will be able to:
Use the Binomial Theorem to expand a binomial.
Use the Binomial Theorem to find a specified term of a binomial expansion.

Identifying Binomial Coe�cients

In Counting Principles, we studied combinations. In the shortcut to finding , we will need to use
combinations to find the coefficients that will appear in the expansion of the binomial. In this case, we use

the notation  instead of , but it can be calculated in the same way. So

The combination  is called a binomial coefficient. An example of a binomial coefficient is 

.
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1. 

2. 

3. 

Analysis of the Solution

Notice that we obtained the same result for parts (b) and (c). If you look closely at the solution for these
two parts, you will see that you end up with the same two factorials in the denominator, but the order is
reversed, just as with combinations.

Try It

Find each binomial coefficient.

a. 

b. 

Answer

a. 35
b. 330

Using the Binomial Theorem

When we expand  by multiplying, the result is called a binomial expansion, and it includes
binomial coefficients. If we wanted to expand , we might multiply  by itself fifty-two times.
This could take hours! If we examine some simple binomial expansions, we can find patterns that will lead
us to a shortcut for finding more complicated binomial expansions.

First, let’s examine the exponents. With each successive term, the exponent for  decreases and the
exponent for  increases. The sum of the two exponents is  for each term.

Next, let’s examine the coefficients. Notice that the coefficients increase and then decrease in a symmetrical
pattern. The coefficients follow a pattern:

.

These patterns lead us to the Binomial Theorem, which can be used to expand any binomial.
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Another way to see the coefficients is to examine the expansion of a binomial in general form, , to
successive powers 1, 2, 3, and 4.

Can you guess the next expansion for the binomial 

Figure 1

See Figure 1, which illustrates the following:
There are  terms in the expansion of .
The degree (or sum of the exponents) for each term is .
The powers on  begin with  and decrease to 0.
The powers on  begin with 0 and increase to .
The coefficients are symmetric.

To determine the expansion on , we see , thus, there will be 5+1 = 6 terms. Each term has a
combined degree of 5. In descending order for powers of , the pattern is as follows:

Introduce , and then for each successive term reduce the exponent on  by 1 until  is reached.
Introduce , and then increase the exponent on  by 1 until  is reached.

The next expansion would be
.

701



A GENERAL NOTE: THE BINOMIAL THEOREM

The Binomial Theorem is a formula that can be used to expand any binomial.

HOW TO: GIVEN A BINOMIAL, WRITE IT IN EXPANDED FORM.

1. Determine the value of  according to the exponent.
2. Evaluate the  through  using the Binomial Theorem formula.
3. Simplify.

But where do those coefficients come from? The binomial coefficients are symmetric. We can see these
coefficients in an array known as Pascal’s Triangle, shown in Figure 2.

Figure 2

To generate Pascal’s Triangle, we start by writing a 1. In the row below, row 2, we write two 1’s. In the 3rd

row, flank the ends of the rows with 1’s, and add  to find the middle number, 2. In the  row, flank the
ends of the row with 1’s. Each element in the triangle is the sum of the two elements immediately above it.

To see the connection between Pascal’s Triangle and binomial coefficients, let us revisit the expansion of the
binomials in general form.
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EXAMPLE 2: EXPANDING A BINOMIAL

Write in expanded form.

1. 
2. 

Answer

1. Substitute  into the formula. Evaluate the  through  terms. Simplify.

2. Substitute  into the formula. Evaluate the  through  terms. Notice that  is in the
place that was occupied by  and that  is in the place that was occupied by . So we substitute
them. Simplify.

Analysis of the Solution

Notice the alternating signs in part b. This happens because  raised to odd powers is negative, but 
 raised to even powers is positive. This will occur whenever the binomial contains a subtraction sign.

An interactive or media element has been excluded from this version of the text. You can view it online
here: https://courses.lumenlearning.com/precalculus/?p=14831

TRY IT

Try It

Write in expanded form.

a. 

b. 
Answer

a. 
b. 

Using the Binomial Theorem to Find a Single Term

Expanding a binomial with a high exponent such as  can be a lengthy process.

Sometimes we are interested only in a certain term of a binomial expansion. We do not need to fully expand
a binomial to find a single specific term.
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A GENERAL NOTE: THE (R+1)TH TERM OF A BINOMIAL EXPANSION

The  term of the binomial expansion of  is:

HOW TO: GIVEN A BINOMIAL, WRITE A SPECIFIC TERM WITHOUT FULLY
EXPANDING.

1. Determine the value of  according to the exponent.
2. Determine .
3. Determine .
4. Replace  in the formula for the  term of the binomial expansion.

EXAMPLE 3: WRITING A GIVEN TERM OF A BINOMIAL EXPANSION

Find the tenth term of  without fully expanding the binomial.
Answer
Because we are looking for the tenth term, , we will use  in our calculations.

An interactive or media element has been excluded from this version of the text. You can view it online
here: https://courses.lumenlearning.com/precalculus/?p=14831

TRY IT

Note the pattern of coefficients in the expansion of .

The second term is . The third term is . We can generalize this result.

Try It

Find the sixth term of  without fully expanding the binomial.
Answer
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binomial coefficient

binomial expansion

Binomial Theorem

Key Equations

Binomial Theorem

 term of a binomial expansion

Key Concepts

 is called a binomial coefficient and is equal to .

The Binomial Theorem allows us to expand binomials without multiplying.
We can find a given term of a binomial expansion without fully expanding the binomial.

Glossary

the number of ways to choose r objects from n objects where order does not matter;

equivalent to , denoted 

the result of expanding  by multiplying

a formula that can be used to expand any binomial
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PROBABILITY

Learning Outcomes

By the end of this section, you will be able to:
Compute probabilities of equally likely outcomes.
Compute probabilities of the union of two events.
Use the complement rule to find probabilities.
Compute probability using counting theory.

Constructing Probability Models

Suppose we roll a six-sided number cube. Rolling a number cube is an example of an experiment, or an
activity with an observable result. The numbers on the cube are possible results, or outcomes, of this
experiment. The set of all possible outcomes of an experiment is called the sample space of the
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HOW TO: GIVEN A PROBABILITY EVENT WHERE EACH EVENT IS EQUALLY
LIKELY, CONSTRUCT A PROBABILITY MODEL.

1. Identify every outcome.
2. Determine the total number of possible outcomes.
3. Compare each outcome to the total number of possible outcomes.

EXAMPLE 1: CONSTRUCTING A PROBABILITY MODEL

Construct a probability model for rolling a single, fair die, with the event being the number shown on the
die.
Answer
Begin by making a list of all possible outcomes for the experiment. The possible outcomes are the
numbers that can be rolled: 1, 2, 3, 4, 5, and 6. There are six possible outcomes that make up the sample
space.
Assign probabilities to each outcome in the sample space by determining a ratio of the outcome to the
number of possible outcomes. There is one of each of the six numbers on the cube, and there is no
reason to think that any particular face is more likely to show up than any other one, so the probability of
rolling any number is .

Outcome Roll of 1 Roll of 2 Roll of 3 Roll of 4 Roll of 5 Roll of 6

Probability

Q & A

DO PROBABILITIES ALWAYS HAVE TO BE EXPRESSED AS FRACTIONS?

No. Probabilities can be expressed as fractions, decimals, or percents. Probability must always be a
number between 0 and 1, inclusive of 0 and 1.

experiment. The sample space for this experiment is . An event is any subset of a sample
space.

The likelihood of an event is known as probability. The probability of an event  is a number that always
satisfies , where 0 indicates an impossible event and 1 indicates a certain event. A probability
model is a mathematical description of an experiment listing all possible outcomes and their associated
probabilities. For instance, if there is a 1% chance of winning a raffle and a 99% chance of losing the raffle,
a probability model would look much like the table below.

Outcome Probability

Winning the raffle 1%

Losing the raffle 99%

The sum of the probabilities listed in a probability model must equal 1, or 100%.

Try It

Construct a probability model for tossing a fair coin.
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A GENERAL NOTE: COMPUTING THE PROBABILITY OF AN EVENT WITH
EQUALLY LIKELY OUTCOMES

The probability of an event  in an experiment with sample space  with equally likely outcomes is given
by

 is a subset of , so it is always true that .

EXAMPLE 2: COMPUTING THE PROBABILITY OF AN EVENT WITH
EQUALLY LIKELY OUTCOMES

A number cube is rolled. Find the probability of rolling an odd number.
Answer
The event “rolling an odd number” contains three outcomes. There are 6 equally likely outcomes in the
sample space. Divide to find the probability of the event.

An interactive or media element has been excluded from this version of the text. You can view it online
here: https://courses.lumenlearning.com/precalculus/?p=14837

TRY IT

Answer

Outcome Probability

Heads

Tails

Computing Probabilities of Equally Likely Outcomes

Let  be a sample space for an experiment. When investigating probability, an event is any subset of .
When the outcomes of an experiment are all equally likely, we can find the probability of an event by dividing
the number of outcomes in the event by the total number of outcomes in . Suppose a number cube is
rolled, and we are interested in finding the probability of the event “rolling a number less than or equal to 4.”
There are 4 possible outcomes in the event and 6 possible outcomes in , so the probability of the event is 

.

Try It

A number cube is rolled. Find the probability of rolling a number greater than 2.
Answer
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A GENERAL NOTE: PROBABILITY OF THE UNION OF TWO EVENTS

Computing the Probability of the Union of Two Events

We are often interested in finding the probability that one of multiple events occurs. Suppose we are playing
a card game, and we will win if the next card drawn is either a heart or a king. We would be interested in
finding the probability of the next card being a heart or a king. The union of two events 

, is the event that occurs if either or both events occur.

Computing the Probability of Mutually Exclusive Events

Suppose the spinner in Figure 2 is spun. We want to find the probability of spinning orange or spinning a .

Figure 2

There are a total of 6 sections, and 3 of them are orange. So the probability of spinning orange is .
There are a total of 6 sections, and 2 of them have a . So the probability of spinning a  is . If we
added these two probabilities, we would be counting the sector that is both orange and a  twice. To find the
probability of spinning an orange or a , we need to subtract the probability that the sector is both orange
and has a .

The probability of spinning orange or a  is .
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The probability of the union of two events  and  (written  ) equals the sum of the probability of 
and the probability of  minus the probability of  and  occurring together  which is called the
intersection of  and  and is written as  ).

EXAMPLE 3: COMPUTING THE PROBABILITY OF THE UNION OF TWO
EVENTS

A card is drawn from a standard deck. Find the probability of drawing a heart or a 7.
Answer
A standard deck contains an equal number of hearts, diamonds, clubs, and spades. So the probability of
drawing a heart is . There are four 7s in a standard deck, and there are a total of 52 cards. So the
probability of drawing a 7 is .
The only card in the deck that is both a heart and a 7 is the 7 of hearts, so the probability of drawing both
a heart and a 7 is . Substitute  into the formula.

The probability of drawing a heart or a 7 is .

An interactive or media element has been excluded from this version of the text. You can view it online
here: https://courses.lumenlearning.com/precalculus/?p=14837

TRY IT

Try It

A card is drawn from a standard deck. Find the probability of drawing a red card or an ace.
Answer

Suppose the spinner in Figure 2 is spun again, but this time we are interested in the probability of spinning
an orange or a . There are no sectors that are both orange and contain a , so these two events have no
outcomes in common. Events are said to be mutually exclusive events when they have no outcomes in
common. Because there is no overlap, there is nothing to subtract, so the general formula is

Notice that with mutually exclusive events, the intersection of  and  is the empty set. The probability of
spinning an orange is  and the probability of spinning a  is . We can find the probability of spinning
an orange or a  simply by adding the two probabilities.
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A GENERAL NOTE: PROBABILITY OF THE UNION OF MUTUALLY
EXCLUSIVE EVENTS

The probability of the union of two mutually exclusive events  is given by

HOW TO: GIVEN A SET OF EVENTS, COMPUTE THE PROBABILITY OF THE
UNION OF MUTUALLY EXCLUSIVE EVENTS.

1. Determine the total number of outcomes for the first event.
2. Find the probability of the first event.
3. Determine the total number of outcomes for the second event.
4. Find the probability of the second event.
5. Add the probabilities.

EXAMPLE 4: COMPUTING THE PROBABILITY OF THE UNION OF
MUTUALLY EXCLUSIVE EVENTS

A card is drawn from a standard deck. Find the probability of drawing a heart or a spade.
Answer
The events “drawing a heart” and “drawing a spade” are mutually exclusive because they cannot occur at
the same time. The probability of drawing a heart is , and the probability of drawing a spade is also ,
so the probability of drawing a heart or a spade is

An interactive or media element has been excluded from this version of the text. You can view it online
here: https://courses.lumenlearning.com/precalculus/?p=14837

TRY IT

The probability of spinning an orange or a  is .

Try It

A card is drawn from a standard deck. Find the probability of drawing an ace or a king.
Answer

Using the Complement Rule to Compute Probabilities

We have discussed how to calculate the probability that an event will happen. Sometimes, we are interested
in finding the probability that an event will not happen. The complement of an event , denoted , is the
set of outcomes in the sample space that are not in . For example, suppose we are interested in the
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A GENERAL NOTE: THE COMPLEMENT RULE

The probability that the complement of an event will occur is given by

EXAMPLE 5: USING THE COMPLEMENT RULE TO CALCULATE
PROBABILITIES

Two six-sided number cubes are rolled.

1. Find the probability that the sum of the numbers rolled is less than or equal to 3.
2. Find the probability that the sum of the numbers rolled is greater than 3.

Answer
The first step is to identify the sample space, which consists of all the possible outcomes. There are two
number cubes, and each number cube has six possible outcomes. Using the Multiplication Principle, we
find that there are , or  total possible outcomes. So, for example, 1-1 represents a 1 rolled on
each number cube.

 

1. We need to count the number of ways to roll a sum of 3 or less. These would include the following
outcomes: 1-1, 1-2, and 2-1. So there are only three ways to roll a sum of 3 or less. The probability is

2. Rather than listing all the possibilities, we can use the Complement Rule. Because we have already
found the probability of the complement of this event, we can simply subtract that probability from 1 to
find the probability that the sum of the numbers rolled is greater than 3.

probability that a horse will lose a race. If event  is the horse winning the race, then the complement of
event  is the horse losing the race.

To find the probability that the horse loses the race, we need to use the fact that the sum of all probabilities
in a probability model must be 1.

The probability of the horse winning added to the probability of the horse losing must be equal to 1.
Therefore, if the probability of the horse winning the race is , the probability of the horse losing the race is
simply
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EXAMPLE 6: COMPUTING PROBABILITY USING COUNTING THEORY

A child randomly selects 5 toys from a bin containing 3 bunnies, 5 dogs, and 6 bears.

1. Find the probability that only bears are chosen.
2. Find the probability that 2 bears and 3 dogs are chosen.
3. Find the probability that at least 2 dogs are chosen.

Answer

1. We need to count the number of ways to choose only bears and the total number of possible ways to
select 5 toys. There are 6 bears, so there are  ways to choose 5 bears. There are 14 toys, so
there are  ways to choose any 5 toys.

2. We need to count the number of ways to choose 2 bears and 3 dogs and the total number of possible
ways to select 5 toys. There are 6 bears, so there are  ways to choose 2 bears. There are 5
dogs, so there are  ways to choose 3 dogs. Since we are choosing both bears and dogs at the
same time, we will use the Multiplication Principle. There are  ways to choose 2
bears and 3 dogs. We can use this result to find the probability.

3. It is often easiest to solve “at least” problems using the Complement Rule. We will begin by finding the
probability that fewer than 2 dogs are chosen. If less than 2 dogs are chosen, then either no dogs
could be chosen, or 1 dog could be chosen.When no dogs are chosen, all 5 toys come from the 9
toys that are not dogs. There are  ways to choose toys from the 9 toys that are not dogs.
Since there are 14 toys, there are  ways to choose the 5 toys from all of the toys.

Try It

Two number cubes are rolled. Use the Complement Rule to find the probability that the sum is less than
10.
Answer

Computing Probability Using Counting Theory

Many interesting probability problems involve counting principles, permutations, and combinations. In these
problems, we will use permutations and combinations to find the number of elements in events and sample
spaces. These problems can be complicated, but they can be made easier by breaking them down into
smaller counting problems.

Assume, for example, that a store has 8 cellular phones and that 3 of those are defective. We might want to
find the probability that a couple purchasing 2 phones receives 2 phones that are not defective. To solve this
problem, we need to calculate all of the ways to select 2 phones that are not defective as well as all of the
ways to select 2 phones. There are 5 phones that are not defective, so there are  ways to select 2
phones that are not defective. There are 8 phones, so there are  ways to select 2 phones. The
probability of selecting 2 phones that are not defective is:
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If there is 1 dog chosen, then 4 toys must come from the 9 toys that are not dogs, and 1 must come
from the 5 dogs. Since we are choosing both dogs and other toys at the same time, we will use the
Multiplication Principle. There are  ways to choose 1 dog and 1 other toy.

Because these events would not occur together and are therefore mutually exclusive, we add the
probabilities to find the probability that fewer than 2 dogs are chosen.

We then subtract that probability from 1 to find the probability that at least 2 dogs are chosen.

An interactive or media element has been excluded from this version of the text. You can view it online
here: https://courses.lumenlearning.com/precalculus/?p=14837

TRY IT

Try It

A child randomly selects 3 gumballs from a container holding 4 purple gumballs, 8 yellow gumballs, and 2
green gumballs.

a. Find the probability that all 3 gumballs selected are purple.

b. Find the probability that no yellow gumballs are selected.

c. Find the probability that at least 1 yellow gumball is selected.
Answer

Key Equations

probability of an event with equally likely outcomes

probability of the union of two events

probability of the union of mutually exclusive events

probability of the complement of an event

Key Concepts

Probability is always a number between 0 and 1, where 0 means an event is impossible and 1 means
an event is certain.
The probabilities in a probability model must sum to 1.
When the outcomes of an experiment are all equally likely, we can find the probability of an event by
dividing the number of outcomes in the event by the total number of outcomes in the sample space for
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complement of an event

event

experiment

mutually exclusive events

outcomes

probability

probability model

sample space

union of two events

the experiment.
To find the probability of the union of two events, we add the probabilities of the two events and subtract
the probability that both events occur simultaneously.
To find the probability of the union of two mutually exclusive events, we add the probabilities of each of
the events.
The probability of the complement of an event is the difference between 1 and the probability that the
event occurs.
In some probability problems, we need to use permutations and combinations to find the number of
elements in events and sample spaces.

Glossary

the set of outcomes in the sample space that are not in the event 

any subset of a sample space

an activity with an observable result

events that have no outcomes in common

the possible results of an experiment

a number from 0 to 1 indicating the likelihood of an event

a mathematical description of an experiment listing all possible outcomes and their
associated probabilities

the set of all possible outcomes of an experiment

the event that occurs if either or both events occur
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MODULE 7: TRIGONOMETRIC
FUNCTIONS

INTRODUCTION TO TRIGONOMETRIC
FUNCTIONS

What you’ll learn to do:

Draw angles in standard position.

Convert between degrees and radians.

Find coterminal angles.

Find the length of a circular arc.

Use linear and angular speed to describe motion on a circular
path.

A golfer swings to hit a ball over a sand trap and onto the green. An airline pilot maneuvers a plane toward a
narrow runway. A dress designer creates the latest fashion. What do they all have in common? They all work
with angles, and so do all of us at one time or another. Sometimes we need to measure angles exactly with
instruments. Other times we estimate them or judge them by eye. Either way, the proper angle can make the
difference between success and failure in many undertakings. In this section, we will examine properties of
angles.

ANGLES

LEARNING OUTCOMES
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Draw angles in standard position.
Convert between degrees and radians.
Find coterminal angles.
Find the length of a circular arc.
Find the area of a sector of a circle.
Use linear and angular speed to describe motion on a circular path.

A golfer swings to hit a ball over a sand trap and onto the green. An airline pilot maneuvers a plane toward a
narrow runway. A dress designer creates the latest fashion. What do they all have in common? They all work
with angles, and so do all of us at one time or another. Sometimes we need to measure angles exactly with
instruments. Other times we estimate them or judge them by eye. Either way, the proper angle can make the
difference between success and failure in many undertakings. In this section, we will examine properties of
angles.

Draw angles in standard position

Properly defining an angle first requires that we define a ray. A ray consists of one point on a line and all
points extending in one direction from that point. The first point is called the endpoint of the ray. We can
refer to a specific ray by stating its endpoint and any other point on it. The ray in Figure 1 can be named as
ray EF, or in symbolic form .

Figure 1

An angle is the union of two rays having a common endpoint. The endpoint is called the vertex of the angle,
and the two rays are the sides of the angle. The angle in Figure 2 is formed from and  . Angles can
be named using a point on each ray and the vertex, such as angle , or in symbol form .
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Figure 2

Greek letters are often used as variables for the measure of an angle. The table below is a list of Greek
letters commonly used to represent angles, and a sample angle is shown in Figure 2.

theta phi alpha beta gamma

Figure 3. Angle theta, shown as 
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A YouTube element has been excluded from this version of the text. You can view it online here:
https://courses.lumenlearning.com/precalculus/?p=13962

Figure 4

Angle creation is a dynamic process. We start with two rays lying on top of one another. We leave one fixed
in place, and rotate the other. The fixed ray is the initial side, and the rotated ray is the terminal side. In
order to identify the different sides, we indicate the rotation with a small arc and arrow close to the vertex as
in Figure 4.

The following video provides an illustration of angles in standard position.

As we discussed at the beginning of the section, there are many applications for angles, but in order to use
them correctly, we must be able to measure them. The measure of an angle is the amount of rotation from
the initial side to the terminal side. Probably the most familiar unit of angle measurement is the degree.
One degree is  of a circular rotation, so a complete circular rotation contains 360 degrees. An angle
measured in degrees should always include the unit “degrees” after the number, or include the degree
symbol °. For example, 90 degrees = 90°.
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Figure 5

To formalize our work, we will begin by drawing angles on an x–y coordinate plane. Angles can occur in any
position on the coordinate plane, but for the purpose of comparison, the convention is to illustrate them in
the same position whenever possible. An angle is in standard position if its vertex is located at the origin,
and its initial side extends along the positive x-axis. 

If the angle is measured in a counterclockwise direction from the initial side to the terminal side, the angle is
said to be a positive angle. If the angle is measured in a clockwise direction, the angle is said to be a
negative angle.
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A GENERAL NOTE: QUADRANTAL ANGLES

Quadrantal angles are angles whose terminal side lies on an axis, including 0°, 90°, 180°, 270°, or 360°.

HOW TO: GIVEN AN ANGLE MEASURE IN DEGREES, DRAW THE ANGLE IN
STANDARD POSITION.

Figure 6

Drawing an angle in standard position always starts the same way—draw the initial side along the positive x-
axis. To place the terminal side of the angle, we must calculate the fraction of a full rotation the angle
represents. We do that by dividing the angle measure in degrees by 360°. For example, to draw a 90° angle,
we calculate that . So, the terminal side will be one-fourth of the way around the circle, moving
counterclockwise from the positive x-axis. To draw a 360° angle, we calculate that . So the terminal
side will be 1 complete rotation around the circle, moving counterclockwise from the positive x-axis. In this
case, the initial side and the terminal side overlap.

Since we define an angle in standard position by its terminal side, we have a special type of angle whose
terminal side lies on an axis, a quadrantal angle. This type of angle can have a measure of 0°, 90°, 180°,
270° or 360°.

Figure 7. Quadrantal angles have a terminal side that lies along an axis. Examples are shown.
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1. Express the angle measure as a fraction of 360°.
2. Reduce the fraction to simplest form.
3. Draw an angle that contains that same fraction of the circle, beginning on the positive x-axis and

moving counterclockwise for positive angles and clockwise for negative angles.

EXAMPLE 1: DRAWING AN ANGLE IN STANDARD POSITION MEASURED
IN DEGREES

1. Sketch an angle of 30° in standard position.
2. Sketch an angle of −135° in standard position.

Answer

1. Divide the angle measure by 360°.

To rewrite the fraction in a more familiar fraction, we can recognize that

One-twelfth equals one-third of a quarter, so by dividing a quarter rotation into thirds, we can sketch a
line at 30° as in Figure 8.

Figure 8

 
2. Divide the angle measure by 360°.

721



In this case, we can recognize that

3. Negative three-eighths is one and one-half times a quarter, so we place a line by moving clockwise
one full quarter and one-half of another quarter, as in Figure 9.

Figure 9

TRY IT 1

Show an angle of 240° on a circle in standard position.
Answer
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An interactive or media element has been excluded from this version of the text. You can view it online
here: https://courses.lumenlearning.com/precalculus/?p=13962

TRY IT

A YouTube element has been excluded from this version of the text. You can view it online here:
https://courses.lumenlearning.com/precalculus/?p=13962

Watch this video for more examples of determining angles of rotation.

Converting Between Degrees and Radians

Dividing a circle into 360 parts is an arbitrary choice, although it creates the familiar degree measurement.
We may choose other ways to divide a circle. To find another unit, think of the process of drawing a circle.
Imagine that you stop before the circle is completed. The portion that you drew is referred to as an arc.
An arc may be a portion of a full circle, a full circle, or more than a full circle, represented by more than one
full rotation. The length of the arc around an entire circle is called the circumference of that circle.

The circumference of a circle is . If we divide both sides of this equation by , we create the ratio of
the circumference to the radius, which is always  regardless of the length of the radius. So the
circumference of any circle is  times the length of the radius. That means that if we took a string
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as long as the radius and used it to measure consecutive lengths around the circumference, there would be
room for six full string-lengths and a little more than a quarter of a seventh, as shown in Figure 10.

 

Figure 10

This brings us to our new angle measure. One radian is the measure of a central angle of a circle that
intercepts an arc equal in length to the radius of that circle. A central angle is an angle formed at the center
of a circle by two radii. Because the total circumference equals  times the radius, a full circular rotation is 

 radians. So

Note that when an angle is described without a specific unit, it refers to radian measure. For example, an
angle measure of 3 indicates 3 radians. In fact, radian measure is dimensionless, since it is the quotient of a
length (circumference) divided by a length (radius) and the length units cancel out.
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Figure 11. The angle t sweeps out a measure of one radian. Note that the length of the intercepted arc is the same as the length of the
radius of the circle.

Relating Arc Lengths to Radius

An arc length  is the length of the curve along the arc. Just as the full circumference of a circle always has
a constant ratio to the radius, the arc length produced by any given angle also has a constant relation to the
radius, regardless of the length of the radius.

This ratio, called the radian measure, is the same regardless of the radius of the circle—it depends only on
the angle. This property allows us to define a measure of any angle as the ratio of the arc length  to the
radius .

If , then 
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Figure 12. (a) In an angle of 1 radian, the arc length  equals the radius . (b) An angle of 2 radians has an
arc length . (c) A full revolution is  or about 6.28 radians.

To elaborate on this idea, consider two circles, one with radius 2 and the other with radius 3. Recall the
circumference of a circle is , where  is the radius. The smaller circle then has circumference 

 and the larger has circumference . Now we draw a 45° angle on the two circles, as
in Figure 13.

 

Figure 13. A 45° angle contains one-eighth of the circumference of a circle, regardless of the radius.
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A GENERAL NOTE: RADIANS

One radian is the measure of the central angle of a circle such that the length of the arc between the
initial side and the terminal side is equal to the radius of the circle. A full revolution (360°) equals 
radians. A half revolution (180°) is equivalent to  radians.
The radian measure of an angle is the ratio of the length of the arc subtended by the angle to the radius
of the circle. In other words, if  is the length of an arc of a circle, and  is the radius of the circle, then the
central angle containing that arc measures  radians. In a circle of radius 1, the radian measure
corresponds to the length of the arc.

Q & A

A MEASURE OF 1 RADIAN LOOKS TO BE ABOUT 60°. IS THAT CORRECT?

Yes. It is approximately 57.3°. Because  radians equals 360°,  radian equals .

Notice what happens if we find the ratio of the arc length divided by the radius of the circle.

Since both ratios are , the angle measures of both circles are the same, even though the arc length and
radius differ.

Using Radians

Because radian measure is the ratio of two lengths, it is a unitless measure. For example, in Figure 12,
suppose the radius were 2 inches and the distance along the arc were also 2 inches. When we calculate the
radian measure of the angle, the “inches” cancel, and we have a result without units. Therefore, it is not
necessary to write the label “radians” after a radian measure, and if we see an angle that is not labeled with
“degrees” or the degree symbol, we can assume that it is a radian measure.

Considering the most basic case, the unit circle (a circle with radius 1), we know that 1 rotation equals 360
degrees, 360°. We can also track one rotation around a circle by finding the circumference, , and
for the unit circle . These two different ways to rotate around a circle give us a way to convert from
degrees to radians.

Identifying Special Angles Measured in Radians

In addition to knowing the measurements in degrees and radians of a quarter revolution, a half revolution,
and a full revolution, there are other frequently encountered angles in one revolution of a circle with which
we should be familiar. It is common to encounter multiples of 30, 45, 60, and 90 degrees. These values are
shown in Figure 14. Memorizing these angles will be very useful as we study the properties associated with
angles.
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Figure 14. Commonly encountered angles measured in degrees

Now, we can list the corresponding radian values for the common measures of a circle corresponding to
those listed in Figure 14, which are shown in Figure 15. Be sure you can verify each of these measures.
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EXAMPLE 2: FINDING A RADIAN MEASURE

Find the radian measure of one-third of a full rotation.
Answer
For any circle, the arc length along such a rotation would be one-third of the circumference. We know that

So,

The radian measure would be the arc length divided by the radius.

Figure 15. Commonly encountered angles measured in radians
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EXAMPLE 3: CONVERTING RADIANS TO DEGREES

Convert each radian measure to degrees.
a. 
b. 3

Answer
Because we are given radians and we want degrees, we should set up a proportion and solve it.

a. We use the proportion, substituting the given information.

b. We use the proportion, substituting the given information.

TRY IT 3

Find the radian measure of three-fourths of a full rotation.
Answer

Converting between Radians and Degrees

Because degrees and radians both measure angles, we need to be able to convert between them. We can
easily do so using a proportion.

This proportion shows that the measure of angle  in degrees divided by 180 equals the measure of angle 
in radians divided by  Or, phrased another way, degrees is to 180 as radians is to .

Converting between Radians and Degrees

To convert between degrees and radians, use the proportion
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An interactive or media element has been excluded from this version of the text. You can view it online
here: https://courses.lumenlearning.com/precalculus/?p=13962

TRY IT

EXAMPLE 4: CONVERTING DEGREES TO RADIANS

Convert  degrees to radians.
Answer
In this example, we start with degrees and want radians, so we again set up a proportion and solve it, but
we substitute the given information into a different part of the proportion.

Analysis of the Solution

Another way to think about this problem is by remembering that .
Because , we can find that  is .

TRY IT 4

Convert  radians to degrees.
Answer

−135°

TRY IT 6

Convert 126° to radians.
Answer

Watch the following video for an explanation of radian measure and examples of converting between radians
and degrees.
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An interactive or media element has been excluded from this version of the text. You can view it online
here: https://courses.lumenlearning.com/precalculus/?p=13962

TRY IT

A YouTube element has been excluded from this version of the text. You can view it online here:
https://courses.lumenlearning.com/precalculus/?p=13962

Finding Coterminal Angles

Converting between degrees and radians can make working with angles easier in some applications. For
other applications, we may need another type of conversion. Negative angles and angles greater than a full
revolution are more awkward to work with than those in the range of 0° to 360°, or 0 to . It would be
convenient to replace those out-of-range angles with a corresponding angle within the range of a single
revolution.

It is possible for more than one angle to have the same terminal side. Look at Figure 16. The angle of 140°
is a positive angle, measured counterclockwise. The angle of –220° is a negative angle, measured
clockwise. But both angles have the same terminal side. If two angles in standard position have the same
terminal side, they are coterminal angles. Every angle greater than 360° or less than 0° is coterminal with
an angle between 0° and 360°, and it is often more convenient to find the coterminal angle within the range
of 0° to 360° than to work with an angle that is outside that range.
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A YouTube element has been excluded from this version of the text. You can view it online here:
https://courses.lumenlearning.com/precalculus/?p=13962

Figure 16. An angle of 140° and an angle of –220° are coterminal angles.

This video shows examples of how to determine if two angles are coterminal.

Any angle has infinitely many coterminal angles because each time we add 360° to that angle—or subtract
360° from it—the resulting value has a terminal side in the same location. For example, 100° and 460° are
coterminal for this reason, as is −260°. Recognizing that any angle has infinitely many coterminal angles
explains the repetitive shape in the graphs of trigonometric functions.
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A GENERAL NOTE: COTERMINAL AND REFERENCE ANGLES

Coterminal angles are two angles in standard position that have the same terminal side.
An angle’s reference angle is the size of the smallest acute angle, , formed by the terminal side of the
angle  and the horizontal axis.

HOW TO: GIVEN AN ANGLE GREATER THAN 360°, FIND A COTERMINAL
ANGLE BETWEEN 0° AND 360°.

1. Subtract 360° from the given angle.
2. If the result is still greater than 360°, subtract 360° again till the result is between 0° and 360°.
3. The resulting angle is coterminal with the original angle.

EXAMPLE 5: FINDING AN ANGLE COTERMINAL WITH AN ANGLE OF
MEASURE GREATER THAN 360°

Find the least positive angle  that is coterminal with an angle measuring 800°, where .
Answer
An angle with measure 800° is coterminal with an angle with measure 800 − 360 = 440°, but 440° is still
greater than 360°, so we subtract 360° again to find another coterminal angle: 440 − 360 = 80°.
The angle  is coterminal with 800°. To put it another way, 800° equals 80° plus two full rotations,
as shown in Figure 18.

An angle’s reference angle is the measure of the smallest, positive, acute angle  formed by the terminal
side of the angle  and the horizontal axis. Thus positive reference angles have terminal sides that lie in the
first quadrant and can be used as models for angles in other quadrants. See Figure 17 for examples of
reference angles for angles in different quadrants. 

Figure 17
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Figure 18

HOW TO: GIVEN AN ANGLE WITH MEASURE LESS THAN 0°, FIND A
COTERMINAL ANGLE HAVING A MEASURE BETWEEN 0° AND 360°.

1. Add 360° to the given angle.
2. If the result is still less than 0°, add 360° again until the result is between 0° and 360°.
3. The resulting angle is coterminal with the original angle.

EXAMPLE 6: FINDING AN ANGLE COTERMINAL WITH AN ANGLE
MEASURING LESS THAN 0°

TRY IT 8

Find an angle  that is coterminal with an angle measuring 870°, where .
Answer
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Show the angle with measure −45° on a circle and find a positive coterminal angle  such that 0° ≤ α <
360°.
Answer
Since 45° is half of 90°, we can start at the positive horizontal axis and measure clockwise half of a 90°
angle.
Because we can find coterminal angles by adding or subtracting a full rotation of 360°, we can find a
positive coterminal angle here by adding 360°:

We can then show the angle on a circle, as in Figure 19.

Figure 19

Watch this video for another example of how to determine positive and negative coterminal angles.
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A YouTube element has been excluded from this version of the text. You can view it online here:
https://courses.lumenlearning.com/precalculus/?p=13962

An interactive or media element has been excluded from this version of the text. You can view it online
here: https://courses.lumenlearning.com/precalculus/?p=13962

TRY IT

EXAMPLE 7: FINDING COTERMINAL ANGLES USING RADIANS

Find an angle  that is coterminal with , where .
Answer
When working in degrees, we found coterminal angles by adding or subtracting 360 degrees, a full
rotation. Likewise, in radians, we can find coterminal angles by adding or subtracting full rotations of 
radians:

TRY IT 9

Find an angle  that is coterminal with an angle measuring −300° such that .
Answer

Finding Coterminal Angles Measured in Radians

We can find coterminal angles measured in radians in much the same way as we have found them using
degrees. In both cases, we find coterminal angles by adding or subtracting one or more full rotations.

Given an angle greater than , find a coterminal angle between 0 and .

1. Subtract  from the given angle.
2. If the result is still greater than , subtract  again until the result is between  and .
3. The resulting angle is coterminal with the original angle.
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The angle  is coterminal, but not less than , so we subtract another rotation:

The angle  is coterminal with , as shown in Figure 20.

Figure 20

An interactive or media element has been excluded from this version of the text. You can view it online
here: https://courses.lumenlearning.com/precalculus/?p=13962

TRY IT

TRY IT 11

Find an angle of measure  that is coterminal with an angle of measure  where .
Answer

Determining the Length of an Arc

738



A GENERAL NOTE: ARC LENGTH ON A CIRCLE

In a circle of radius r, the length of an arc  subtended by an angle with measure  in radians, shown in
Figure 20, is

Figure 20

HOW TO: GIVEN A CIRCLE OF RADIUS , CALCULATE THE LENGTH  OF
THE ARC SUBTENDED BY A GIVEN ANGLE OF MEASURE .

Recall that the radian measure  of an angle was defined as the ratio of the arc length  of a circular arc to
the radius  of the circle, . From this relationship, we can find arc length along a circle, given an angle.
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1. If necessary, convert  to radians.
2. Multiply the radius  by the radian measure of .

EXAMPLE 8: FINDING THE LENGTH OF AN ARC

Assume the orbit of Mercury around the sun is a perfect circle. Mercury is approximately 36 million miles
from the sun.

1. In one Earth day, Mercury completes 0.0114 of its total revolution. How many miles does it travel in
one day?

2. Use your answer from part (a) to determine the radian measure for Mercury’s movement in one Earth
day.

Answer

1. Let’s begin by finding the circumference of Mercury’s orbit.

Since Mercury completes 0.0114 of its total revolution in one Earth day, we can now find the distance
traveled:

2. Now, we convert to radians:

TRY IT

Find the arc length along a circle of radius 10 units subtended by an angle of 215°.
Answer

An interactive or media element has been excluded from this version of the text. You can view it online
here: https://courses.lumenlearning.com/precalculus/?p=13962

TRY IT

Finding the Area of a Sector of a Circle
In addition to arc length, we can also use angles to find the area of a sector of a circle. A sector is a region
of a circle bounded by two radii and the intercepted arc, like a slice of pizza or pie. Recall that the area of a
circle with radius  can be found using the formula . If the two radii form an angle of , measured in
radians, then  is the ratio of the angle measure to the measure of a full rotation and is also, therefore, the
ratio of the area of the sector to the area of the circle. Thus, the area of a sector is the fraction  multiplied
by the entire area. (Always remember that this formula only applies if  is in radians.)
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A GENERAL NOTE: AREA OF A SECTOR

The area of a sector of a circle with radius  subtended by an angle , measured in radians, is

Figure 21. The area of the sector equals half the square of the radius times the central angle measured in radians.

HOW TO: GIVEN A CIRCLE OF RADIUS , FIND THE AREA OF A SECTOR
DEFINED BY A GIVEN ANGLE .

1. If necessary, convert  to radians.
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2. Multiply half the radian measure of  by the square of the radius .

EXAMPLE 9: FINDING THE AREA OF A SECTOR

An automatic lawn sprinkler sprays a distance of 20 feet while rotating 30 degrees, as shown in Figure 22.
What is the area of the sector of grass the sprinkler waters?

Figure 22. The sprinkler sprays 20 ft within an arc of 30°.

Answer
First, we need to convert the angle measure into radians. Because 30 degrees is one of our special
angles, we already know the equivalent radian measure, but we can also convert:

The area of the sector is then

So the area is about .

Try It

In central pivot irrigation, a large irrigation pipe on wheels rotates around a center point. A farmer has a
central pivot system with a radius of 400 meters. If water restrictions only allow her to water 150 thousand
square meters a day, what angle should she set the system to cover? Write the answer in radian measure
to two decimal places.
Answer

1.88

In the following video you will see how to calculate arc length and area of a sector of a circle.

Use Linear and Angular Speed to Describe Motion on a Circular
Path

In addition to finding the area of a sector, we can use angles to describe the speed of a moving object. An
object traveling in a circular path has two types of speed. Linear speed is speed along a straight path and
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A YouTube element has been excluded from this version of the text. You can view it online here:
https://courses.lumenlearning.com/precalculus/?p=13962

A GENERAL NOTE: ANGULAR AND LINEAR SPEED

As a point moves along a circle of radius , its angular speed, , is the angular rotation  per unit time, .

The linear speed. , of the point can be found as the distance traveled, arc length , per unit time, .

When the angular speed is measured in radians per unit time, linear speed and angular speed are related
by the equation

can be determined by the distance it moves along (its displacement) in a given time interval. For instance, if
a wheel with radius 5 inches rotates once a second, a point on the edge of the wheel moves a distance
equal to the circumference, or  inches, every second. So the linear speed of the point is  in./s. The
equation for linear speed is as follows where  is linear speed,  is displacement, and 
is time.

Angular speed results from circular motion and can be determined by the angle through which a point
rotates in a given time interval. In other words, angular speed is angular rotation per unit time. So, for
instance, if a gear makes a full rotation every 4 seconds, we can calculate its angular speed as 
90 degrees per second. Angular speed can be given in radians per second, rotations per minute, or degrees
per hour for example. The equation for angular speed is as follows, where  (read as omega) is angular
speed,  is the angle traversed, and  is time.

Combining the definition of angular speed with the arc length equation, , we can find a relationship
between angular and linear speeds. The angular speed equation can be solved for , giving .
Substituting this into the arc length equation gives:

Substituting this into the linear speed equation gives:
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This equation states that the angular speed in radians, , representing the amount of rotation occurring in
a unit of time, can be multiplied by the radius  to calculate the total arc length traveled in a unit of time,
which is the definition of linear speed.

HOW TO: GIVEN THE AMOUNT OF ANGLE ROTATION AND THE TIME
ELAPSED, CALCULATE THE ANGULAR SPEED.

1. If necessary, convert the angle measure to radians.
2. Divide the angle in radians by the number of time units elapsed: .
3. The resulting speed will be in radians per time unit.

EXAMPLE 10: FINDING ANGULAR SPEED

A water wheel, shown in Figure 23, completes 1 rotation every 5 seconds. Find the angular speed in
radians per second.

Figure 23

Answer
The wheel completes 1 rotation, or passes through an angle of  radians in 5 seconds, so the angular
speed would be  radians per second.
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An interactive or media element has been excluded from this version of the text. You can view it online
here: https://courses.lumenlearning.com/precalculus/?p=13962

TRY IT

HOW TO: GIVEN THE RADIUS OF A CIRCLE, AN ANGLE OF ROTATION,
AND A LENGTH OF ELAPSED TIME, DETERMINE THE LINEAR SPEED.

1. Convert the total rotation to radians if necessary.
2. Divide the total rotation in radians by the elapsed time to find the angular speed: apply .
3. Multiply the angular speed by the length of the radius to find the linear speed, expressed in terms of

the length unit used for the radius and the time unit used for the elapsed time: apply .

A YouTube element has been excluded from this version of the text. You can view it online here:
https://courses.lumenlearning.com/precalculus/?p=13962

EXAMPLE 11: FINDING A LINEAR SPEED

A bicycle has wheels 28 inches in diameter. A tachometer determines the wheels are rotating at 180 RPM
(revolutions per minute). Find the speed the bicycle is traveling down the road.
Answer
Here, we have an angular speed and need to find the corresponding linear speed, since the linear speed
of the outside of the tires is the speed at which the bicycle travels down the road.
We begin by converting from rotations per minute to radians per minute. It can be helpful to utilize the
units to make this conversion:

Try It

An old vinyl record is played on a turntable rotating clockwise at a rate of 45 rotations per minute. Find the
angular speed in radians per second.
Answer

 rad/s
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Using the formula from above along with the radius of the wheels, we can find the linear speed:

Remember that radians are a unitless measure, so it is not necessary to include them.
Finally, we may wish to convert this linear speed into a more familiar measurement, like miles per hour.

Try It

A satellite is rotating around Earth at 0.25 radians per hour at an altitude of 242 km above Earth. If the
radius of Earth is 6378 kilometers, find the linear speed of the satellite in kilometers per hour.
Answer

1655 kilometers per hour

Key Equations

arc length

area of a sector

angular speed

linear speed

linear speed related to angular speed

Key Concepts

An angle is formed from the union of two rays, by keeping the initial side fixed and rotating the terminal
side. The amount of rotation determines the measure of the angle.
An angle is in standard position if its vertex is at the origin and its initial side lies along the positive x-
axis. A positive angle is measured counterclockwise from the initial side and a negative angle is
measured clockwise.
To draw an angle in standard position, draw the initial side along the positive x-axis and then place the
terminal side according to the fraction of a full rotation the angle represents.
In addition to degrees, the measure of an angle can be described in radians.
To convert between degrees and radians, use the proportion .
Two angles that have the same terminal side are called coterminal angles.
We can find coterminal angles by adding or subtracting 360° or .
Coterminal angles can be found using radians just as they are for degrees.
The length of a circular arc is a fraction of the circumference of the entire circle.
The area of sector is a fraction of the area of the entire circle.
An object moving in a circular path has both linear and angular speed.
The angular speed of an object traveling in a circular path is the measure of the angle through which it
turns in a unit of time.
The linear speed of an object traveling along a circular path is the distance it travels in a unit of time.
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angle

angular speed

arc length

area of a sector

coterminal angles

degree

initial side

linear speed

measure of an angle

negative angle

positive angle

quadrantal angle

radian measure

radian

ray

reference angle

standard position

terminal side

vertex

Glossary

the union of two rays having a common endpoint

the angle through which a rotating object travels in a unit of time

the length of the curve formed by an arc

area of a portion of a circle bordered by two radii and the intercepted arc; the fraction 
multiplied by the area of the entire circle

description of positive and negative angles in standard position sharing the same
terminal side

a unit of measure describing the size of an angle as one-360th of a full revolution of a circle

the side of an angle from which rotation begins

the distance along a straight path a rotating object travels in a unit of time; determined by the
arc length

the amount of rotation from the initial side to the terminal side

description of an angle measured clockwise from the positive x-axis

description of an angle measured counterclockwise from the positive x-axis

an angle whose terminal side lies on an axis

the ratio of the arc length formed by an angle divided by the radius of the circle

the measure of a central angle of a circle that intercepts an arc equal in length to the radius of that
circle

one point on a line and all points extending in one direction from that point; one side of an angle

the measure of the acute angle formed by the terminal side of the angle and the horizontal
axis

the position of an angle having the vertex at the origin and the initial side along the
positive x-axis

the side of an angle at which rotation ends

the common endpoint of two rays that form an angle
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UNIT CIRCLE: SINE AND COSINE FUNCTIONS
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LEARNING OUTCOMES

Find function values for the sine and cosine of the special angles.
Identify the domain and range of sine and cosine functions.
Use reference angles to evaluate trigonometric functions.
Evaluate sine and cosine values using a calculator.

To define our trigonometric functions, we begin by drawing a unit circle, a circle centered at the origin with
radius 1, as shown in Figure 2. The angle (in radians) that  intercepts forms an arc of length . Using the
formula , and knowing that , we see that for a unit circle, .

Recall that the x- and y-axes divide the coordinate plane into four quarters called quadrants. We label these
quadrants to mimic the direction a positive angle would sweep. The four quadrants are labeled I, II, III, and
IV.

For any angle , we can label the intersection of the terminal side and the unit circle as by its coordinates, 
. The coordinates  and  will be the outputs of the trigonometric functions  and 

, respectively. This means  and .

Figure 2. Unit circle where the central angle is  radians
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A GENERAL NOTE: UNIT CIRCLE

A unit circle has a center at  and radius  . In a unit circle, the length of the intercepted arc is equal
to the radian measure of the central angle .
Let  be the endpoint on the unit circle of an arc of arc length . The  coordinates of this point
can be described as functions of the angle.

A GENERAL NOTE: SINE AND COSINE FUNCTIONS

If  is a real number and a point  on the unit circle corresponds to an angle of , then

De�ning Sine and Cosine Functions

Now that we have our unit circle labeled, we can learn how the  coordinates relate to the arc length
and angle. The sine function relates a real number  to the y-coordinate of the point where the
corresponding angle intercepts the unit circle. More precisely, the sine of an angle  equals the y-value of the
endpoint on the unit circle of an arc of length . In Figure 2, the sine is equal to . Like all functions, the sine
function has an input and an output. Its input is the measure of the angle; its output is the y-coordinate of the
corresponding point on the unit circle.

The cosine function of an angle  equals the x-value of the endpoint on the unit circle of an arc of length .
In Figure 3, the cosine is equal to .

Figure 3

 

Because it is understood that sine and cosine are functions, we do not always need to write them with
parentheses:  is the same as  and  is the same as . Likewise,  is a commonly used
shorthand notation for . Be aware that many calculators and computers do not recognize the
shorthand notation. When in doubt, use the extra parentheses when entering calculations into a calculator or
computer.
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HOW TO: GIVEN A POINT P  ON THE UNIT CIRCLE
CORRESPONDING TO AN ANGLE OF , FIND THE SINE AND COSINE.

1. The sine of  is equal to the y-coordinate of point .
2. The cosine of  is equal to the x-coordinate of point .

EXAMPLE 1: FINDING FUNCTION VALUES FOR SINE AND COSINE

Point  is a point on the unit circle corresponding to an angle of , as shown in Figure 4. Find  and 
.

Figure 4

Answer
We know that  is the x-coordinate of the corresponding point on the unit circle and  is the y-
coordinate of the corresponding point on the unit circle. So:
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EXAMPLE 2: CALCULATING SINES AND COSINES ALONG AN AXIS

Find  and .
Answer
Moving  counterclockwise around the unit circle from the positive x-axis brings us to the top of the
circle, where the  coordinates are (0, 1), as shown in Figure 6.

Try It

A certain angle  corresponds to a point on the unit circle at  as shown in Figure 5. Find 
 and .

Figure 5

Answer

Finding Sines and Cosines of Angles on an Axis

For quadrantral angles, the corresponding point on the unit circle falls on the x- or y-axis. In that case, we
can easily calculate cosine and sine from the values of  and .
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Figure 6

 
Using our definitions of cosine and sine,

The cosine of 90° is 0; the sine of 90° is 1.

Try It

Find cosine and sine of the angle .
Answer

, 

The Pythagorean Identity
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A GENERAL NOTE: PYTHAGOREAN IDENTITY

The Pythagorean Identity states that, for any real number ,

HOW TO: GIVEN THE SINE OF SOME ANGLE  AND ITS QUADRANT
LOCATION, FIND THE COSINE OF .

1. Substitute the known value of  into the Pythagorean Identity.
2. Solve for .
3. Choose the solution with the appropriate sign for the x-values in the quadrant where  is located.

EXAMPLE 3: FINDING A COSINE FROM A SINE OR A SINE FROM A COSINE

If  and  is in the second quadrant, find .
Answer
If we drop a vertical line from the point on the unit circle corresponding to , we create a right triangle, from
which we can see that the Pythagorean Identity is simply one case of the Pythagorean Theorem. 

Figure 7

Now that we can define sine and cosine, we will learn how they relate to each other and the unit circle.
Recall that the equation for the unit circle is . Because  and , we can
substitute for  and  to get . This equation, , is known as the
Pythagorean Identity.

We can use the Pythagorean Identity to find the cosine of an angle if we know the sine, or vice versa.
However, because the equation yields two solutions, we need additional knowledge of the angle to choose
the solution with the correct sign. If we know the quadrant where the angle is, we can easily choose the
correct solution.
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Figure 8

 
Substituting the known value for sine into the Pythagorean Identity,

Because the angle is in the second quadrant, we know the x-value is a negative real number, so the
cosine is also negative. So

Try It

If  and  is in the fourth quadrant, find .
Answer
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An interactive or media element has been excluded from this version of the text. You can view it online
here: https://courses.lumenlearning.com/precalculus/?p=14012

TRY IT

Finding Sines and Cosines of Special Angles

We have already learned some properties of the special angles, such as the conversion from radians to
degrees. We can also calculate sines and cosines of the special angles using the Pythagorean Identity and
our knowledge of triangles.

Finding Sines and Cosines of 45° Angles

First, we will look at angles of  or , as shown in Figure 9. A  triangle is an isosceles
triangle, so the x- and y-coordinates of the corresponding point on the circle are the same. Because the x-
and y-values are the same, the sine and cosine values will also be equal.

Figure 9

 

At  , which is 45 degrees, the radius of the unit circle bisects the first quadrantal angle. This means
the radius lies along the line . A unit circle has a radius equal to 1. So, the right triangle formed below
the line  has sides  and , and a radius = 1.
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Figure 10

 

From the Pythagorean Theorem we get

Substituting , we get

Combining like terms we get

And solving for , we get

In quadrant I, .

At  or 45 degrees,
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If we then rationalize the denominators, we get

Therefore, the  coordinates of a point on a circle of radius  at an angle of  are .

Finding Sines and Cosines of 30° and 60° Angles

Next, we will find the cosine and sine at an angle of , or  . First, we will draw a triangle inside a circle
with one side at an angle of , and another at an angle of , as shown in Figure 11. If the resulting two
right triangles are combined into one large triangle, notice that all three angles of this larger triangle will be 

, as shown in Figure 12.

Figure 11
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Figure 12

Because all the angles are equal, the sides are also equal. The vertical line has length , and since the
sides are all equal, we can also conclude that  or . Since  ,

And since  in our unit circle,

Using the Pythagorean Identity, we can find the cosine value.

The  coordinates for the point on a circle of radius  at an angle of  are . At  (60°),
the radius of the unit circle, 1, serves as the hypotenuse of a 30-60-90 degree right triangle, , as
shown in Figure 13 below. Angle  has measure . At point , we draw an angle  with measure of 

. We know the angles in a triangle sum to , so the measure of angle  is also . Now we have an
equilateral triangle. Because each side of the equilateral triangle  is the same length, and we know one
side is the radius of the unit circle, all sides must be of length 1.
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Figure 13

The measure of angle  is 30°. So, if double, angle  is 60°.  is the perpendicular bisector of 
, so it cuts  in half. This means that  is  the radius, or . Notice that  is the x-coordinate of point

, which is at the intersection of the 60° angle and the unit circle. This gives us a triangle  with
hypotenuse of 1 and side  of length .

From the Pythagorean Theorem, we get

Substituting , we get

Solving for , we get

Since  has the terminal side in quadrant I where the y-coordinate is positive, we choose 
y=\frac{\sqrt{3}}{2 , the positive value.
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At  (60°), the  coordinates for the point on a circle of radius  at an angle of  are 
\left(\frac{1}{2},\frac{\sqrt{3}}{2}\right , so we can find the sine and cosine.

We have now found the cosine and sine values for all of the most commonly encountered angles in the first
quadrant of the unit circle. The table below summarizes these values.

Angle 0 , or 30° , or 45° , or 60° , or 90°

Cosine 1 0

Sine 0 1

Figure 14 shows the common angles in the first quadrant of the unit circle.
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HOW TO: GIVEN AN ANGLE IN RADIANS, USE A GRAPHING CALCULATOR
TO FIND THE COSINE.

1. If the calculator has degree mode and radian mode, set it to radian mode.
2. Press the COS key.
3. Enter the radian value of the angle and press the close-parentheses key “)”.
4. Press ENTER.

Figure 14

 

Using a Calculator to Find Sine and Cosine

To find the cosine and sine of angles other than the special angles, we turn to a computer or calculator. Be
aware: Most calculators can be set into “degree” or “radian” mode, which tells the calculator the units for the
input value. When we evaluate  on our calculator, it will evaluate it as the cosine of 30 degrees if the
calculator is in degree mode, or the cosine of 30 radians if the calculator is in radian mode.
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EXAMPLE 4: USING A GRAPHING CALCULATOR TO FIND SINE AND
COSINE

Evaluate  using a graphing calculator or computer.
Answer
Enter the following keystrokes:
COS (5 × π ÷ 3 ) ENTER

Analysis of the Solution

We can find the cosine or sine of an angle in degrees directly on a calculator with degree mode. For
calculators or software that use only radian mode, we can find the sign of , for example, by including
the conversion factor to radians as part of the input:

SIN( 20 × π ÷ 180 ) ENTER

A YouTube element has been excluded from this version of the text. You can view it online here:
https://courses.lumenlearning.com/precalculus/?p=14012

Try It

Evaluate .
Answer

approximately 0.866025403

Identifying the Domain and Range of Sine and Cosine Functions

Now that we can find the sine and cosine of an angle, we need to discuss their domains and ranges. What
are the domains of the sine and cosine functions? That is, what are the smallest and largest numbers that
can be inputs of the functions? Because angles smaller than 0 and angles larger than  can still be
graphed on the unit circle and have real values of , and , there is no lower or upper limit to the angles
that can be inputs to the sine and cosine functions. The input to the sine and cosine functions is the rotation
from the positive x-axis, and that may be any real number.
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What are the ranges of the sine and cosine functions? What are the least and greatest possible values for
their output? We can see the answers by examining the unit circle, as shown in Figure 15. The bounds of
the x-coordinate are . The bounds of the y-coordinate are also . Therefore, the range of both
the sine and cosine functions is .

Figure 15

We have discussed finding the sine and cosine for angles in the first quadrant, but what if our angle is in
another quadrant? For any given angle in the first quadrant, there is an angle in the second quadrant with
the same sine value. Because the sine value is the y-coordinate on the unit circle, the other angle with the
same sine will share the same y-value, but have the opposite x-value. Therefore, its cosine value will be the
opposite of the first angle’s cosine value.

Likewise, there will be an angle in the fourth quadrant with the same cosine as the original angle. The angle
with the same cosine will share the same x-value but will have the opposite y-value. Therefore, its sine value
will be the opposite of the original angle’s sine value.

As shown in Figure 16, angle  has the same sine value as angle ; the cosine values are opposites. Angle 
has the same cosine value as angle ; the sine values are opposites.

and

and
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HOW TO: GIVEN AN ANGLE BETWEEN  AND , FIND ITS REFERENCE
ANGLE.

1. An angle in the first quadrant is its own reference angle.
2. For an angle in the second or third quadrant, the reference angle is  or .
3. For an angle in the fourth quadrant, the reference angle is  or .
4. If an angle is less than  or greater than , add or subtract  as many times as needed to find an

equivalent angle between  and .

EXAMPLE 5: FINDING A REFERENCE ANGLE

Find the reference angle of  as shown in Figure 18.

Figure 16

Recall that an angle’s reference angle is the acute angle, , formed by the terminal side of the angle  and
the horizontal axis. A reference angle is always an angle between  and , or  and  radians. As we can
see from Figure 17, for any angle in quadrants II, III, or IV, there is a reference angle in quadrant I.

Figure 17
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Figure 18

Answer
Because  is in the third quadrant, the reference angle is

Try It

Find the reference angle of .
Answer

Using Reference Angles

Now let’s take a moment to reconsider the Ferris wheel introduced at the beginning of this section. Suppose
a rider snaps a photograph while stopped twenty feet above ground level. The rider then rotates three-
quarters of the way around the circle. What is the rider’s new elevation? To answer questions such as this
one, we need to evaluate the sine or cosine functions at angles that are greater than 90 degrees or at a
negative angle. Reference angles make it possible to evaluate trigonometric functions for angles outside
the first quadrant. They can also be used to find  coordinates for those angles. We will use the
reference angle of the angle of rotation combined with the quadrant in which the terminal side of the angle
lies.
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A GENERAL NOTE: USING REFERENCE ANGLES TO FIND COSINE AND
SINE

Angles have cosines and sines with the same absolute value as their reference angles. The sign (positive
or negative) can be determined from the quadrant of the angle.

HOW TO: GIVEN AN ANGLE IN STANDARD POSITION, FIND THE
REFERENCE ANGLE, AND THE COSINE AND SINE OF THE ORIGINAL

ANGLE.

1. Measure the angle between the terminal side of the given angle and the horizontal axis. This is the
reference angle.

2. Determine the values of the cosine and sine of the reference angle.
3. Give the cosine the same sign as the x-values in the quadrant of the original angle.
4. Give the sine the same sign as the y-values in the quadrant of the original angle.

EXAMPLE 6: USING REFERENCE ANGLES TO FIND SINE AND COSINE

1. Using a reference angle, find the exact value of  and .
2. Using the reference angle, find  and .

Answer

1. 150° is located in the second quadrant. The angle it makes with the x-axis is 180° − 150° = 30°, so
the reference angle is 30°.This tells us that 150° has the same sine and cosine values as 30°, except
for the sign. We know that

.
Since 150° is in the second quadrant, the x-coordinate of the point on the circle is negative, so the
cosine value is negative. The y-coordinate is positive, so the sine value is positive.

2.  is in the third quadrant. Its reference angle is . The cosine and sine of  are both .
In the third quadrant, both  and  are negative, so:

Using Reference Angles to Evaluate Trigonometric Functions

We can find the cosine and sine of any angle in any quadrant if we know the cosine or sine of its reference
angle. The absolute values of the cosine and sine of an angle are the same as those of the reference angle.
The sign depends on the quadrant of the original angle. The cosine will be positive or negative depending on
the sign of the x-values in that quadrant. The sine will be positive or negative depending on the sign of the y-
values in that quadrant.

Try It

a. Use the reference angle of  to find  and .

b. Use the reference angle of  to find  and .

766



An interactive or media element has been excluded from this version of the text. You can view it online
here: https://courses.lumenlearning.com/precalculus/?p=14012

TRY IT

Answer

a. 
b. 

Using Reference Angles to Find Coordinates

Now that we have learned how to find the cosine and sine values for special angles in the first quadrant, we
can use symmetry and reference angles to fill in cosine and sine values for the rest of the special angles on
the unit circle. They are shown in Figure 19. Take time to learn the  coordinates of all of the major
angles in the first quadrant.

In addition to learning the values for special angles, we can use reference angles to find  coordinates
of any point on the unit circle, using what we know of reference angles along with the identities
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HOW TO: GIVEN THE ANGLE OF A POINT ON A CIRCLE AND THE RADIUS
OF THE CIRCLE, FIND THE  COORDINATES OF THE POINT.

1. Find the reference angle by measuring the smallest angle to the x-axis.
2. Find the cosine and sine of the reference angle.
3. Determine the appropriate signs for  and 

in the given quadrant.

EXAMPLE 7: USING THE UNIT CIRCLE TO FIND COORDINATES

Find the coordinates of the point on the unit circle at an angle of .
Answer
We know that the angle  is in the third quadrant.
First, let’s find the reference angle by measuring the angle to the x-axis. To find the reference angle of an
angle whose terminal side is in quadrant III, we find the difference of the angle and .

Next, we find the cosine and sine of the reference angle:

We must determine the appropriate signs for x and y in the given quadrant. Because our original angle is
in the third quadrant, where both  and  are negative, both cosine and sine are negative.

Now we can calculate the  coordinates using the identities  and .

The coordinates of the point are  on the unit circle.

First we find the reference angle corresponding to the given angle. Then we take the sine and cosine values
of the reference angle, and give them the signs corresponding to the y– and x-values of the quadrant.

Try It

Find the coordinates of the point on the unit circle at an angle of .
Answer

Key Equations

Cosine

Sine

Pythagorean Identity
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cosine function

Pythagorean Identity

sine function

unit circle

Key Concepts

Finding the function values for the sine and cosine begins with drawing a unit circle, which is centered at
the origin and has a radius of 1 unit.
Using the unit circle, the sine of an angle  equals the y-value of the endpoint on the unit circle of an arc
of length  whereas the cosine of an angle  equals the x-value of the endpoint.
The sine and cosine values are most directly determined when the corresponding point on the unit circle
falls on an axis.
When the sine or cosine is known, we can use the Pythagorean Identity to find the other. The
Pythagorean Identity is also useful for determining the sines and cosines of special angles.
Calculators and graphing software are helpful for finding sines and cosines if the proper procedure for
entering information is known.
The domain of the sine and cosine functions is all real numbers.
The range of both the sine and cosine functions is .
The sine and cosine of an angle have the same absolute value as the sine and cosine of its reference
angle.
The signs of the sine and cosine are determined from the x– and y-values in the quadrant of the original
angle.
An angle’s reference angle is the size angle, ,
formed by the terminal side of the angle  and the horizontal axis.
Reference angles can be used to find the sine and cosine of the original angle.
Reference angles can also be used to find the coordinates of a point on a circle.

Glossary

the x-value of the point on a unit circle corresponding to a given angle

a corollary of the Pythagorean Theorem stating that the square of the cosine of a
given angle plus the square of the sine of that angle equals 1

the y-value of the point on a unit circle corresponding to a given angle

a circle with a center at 
and radius
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THE OTHER TRIGONOMETRIC FUNCTIONS

LEARNING OUTCOMES

Find exact values of the trigonometric functions secant, cosecant, tangent, and cotangent of  30°
(π/6),   45° (π/4), and 60° (π/3).
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A GENERAL NOTE: TANGENT, SECANT, COSECANT, AND COTANGENT
FUNCTIONS

If  is a real number and  is a point where the terminal side of an angle of  radians intercepts the
unit circle, then

Use reference angles to evaluate the trigonometric functions secant, cosecant, tangent, and
cotangent.
Use properties of even and odd trigonometric functions.
Recognize and use fundamental identities.
Evaluate trigonometric functions with a calculator.

Find exact values of the trigonometric functions secant,
cosecant, tangent, and cotangent

To define the remaining functions, we will once again draw a unit circle with a point  corresponding to
an angle of , as shown in Figure 1. As with the sine and cosine, we can use the  coordinates to find
the other functions.

Figure 1

The first function we will define is the tangent. The tangent of an angle is the ratio of the y-value to the x-
value of the corresponding point on the unit circle. In Figure 1, the tangent of angle  is equal to .
Because the y-value is equal to the sine of , and the x-value is equal to the cosine of , the tangent of angle 
 can also be defined as . The tangent function is abbreviated as . The remaining three

functions can all be expressed as reciprocals of functions we have already defined.
The secant function is the reciprocal of the cosine function. In Figure 1, the secant of angle  is equal to

. The secant function is abbreviated as .
The cotangent function is the reciprocal of the tangent function. In Figure 1, the cotangent of angle  is
equal to . The cotangent function is abbreviated as .
The cosecant function is the reciprocal of the sine function. In Figure 1, the cosecant of angle  is equal
to . The cosecant function is abbreviated as .
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EXAMPLE 1: FINDING TRIGONOMETRIC FUNCTIONS FROM A POINT ON
THE UNIT CIRCLE

The point  is on the unit circle, as shown in Figure 2. Find , and 
.

Figure 2

Answer
Because we know the  coordinates of the point on the unit circle indicated by angle , we can use
those coordinates to find the six functions:
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EXAMPLE 2: FINDING THE TRIGONOMETRIC FUNCTIONS OF AN ANGLE

Find , and  when .
Answer
We have previously used the properties of equilateral triangles to demonstrate that  and 

. We can use these values and the definitions of tangent, secant, cosecant, and cotangent as
functions of sine and cosine to find the remaining function values.

Try It

The point  is on the unit circle, as shown in Figure 3. Find , and 
.

Figure 3

Answer
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An interactive or media element has been excluded from this version of the text. You can view it online
here: https://courses.lumenlearning.com/precalculus/?p=14027

TRY IT

Try It

Find , and  when .
Answer

Because we know the sine and cosine values for the common first-quadrant angles, we can find the other
function values for those angles as well by setting  equal to the cosine and  equal to the sine and then
using the definitions of tangent, secant, cosecant, and cotangent. The results are shown in the table below.

Angle

Cosine 1 0

Sine 0 1

Tangent 0 1 Undefined

Secant 1 2 Undefined

Cosecant Undefined 2 1

Cotangent Undefined 1 0

Using Reference Angles to Evaluate Tangent, Secant, Cosecant,
and Cotangent
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HOW TO: GIVEN AN ANGLE NOT IN THE FIRST QUADRANT, USE
REFERENCE ANGLES TO FIND ALL SIX TRIGONOMETRIC FUNCTIONS.

1. Measure the angle formed by the terminal side of the given angle and the horizontal axis. This is the
reference angle.

2. Evaluate the function at the reference angle.
3. Observe the quadrant where the terminal side of the original angle is located. Based on the quadrant,

determine whether the output is positive or negative.

We can evaluate trigonometric functions of angles outside the first quadrant using reference angles as we
have already done with the sine and cosine functions. The procedure is the same: Find the reference angle
formed by the terminal side of the given angle with the horizontal axis. The trigonometric function values for
the original angle will be the same as those for the reference angle, except for the positive or negative sign,
which is determined by x– and y-values in the original quadrant. Figure 4 shows which functions are positive
in which quadrant.

To help us remember which of the six trigonometric functions are positive in each quadrant, we can use the
mnemonic phrase “A Smart Trig Class.” Each of the four words in the phrase corresponds to one of the four
quadrants, starting with quadrant I and rotating counterclockwise. In quadrant I, which is “A,” all of the six
trigonometric functions are positive. In quadrant II, “Smart,” only sine and its reciprocal function, cosecant,
are positive. In quadrant III, “Trig,” only tangent and its reciprocal function, cotangent, are positive. Finally, in
quadrant IV, “Class,” only cosine and its reciprocal function, secant, are positive.

Figure 4
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EXAMPLE 3: USING REFERENCE ANGLES TO FIND TRIGONOMETRIC
FUNCTIONS

Use reference angles to find all six trigonometric functions of .
Answer
The angle between this angle’s terminal side and the x-axis is , so that is the reference angle. Since 
is in the third quadrant, where both  and  are negative, cosine, sine, secant, and cosecant will be
negative, while tangent and cotangent will be positive.

An interactive or media element has been excluded from this version of the text. You can view it online
here: https://courses.lumenlearning.com/precalculus/?p=14027

TRY IT

Try It

Use reference angles to find all six trigonometric functions of .
Answer

,

Using Even and Odd Trigonometric Functions

To be able to use our six trigonometric functions freely with both positive and negative angle inputs, we
should examine how each function treats a negative input. As it turns out, there is an important difference
among the functions in this regard.

Consider the function , shown in Figure 5. The graph of the function is symmetrical about the y-
axis. All along the curve, any two points with opposite x-values have the same function value. This matches
the result of calculation: , , and so on. So  is an even function, a
function such that two inputs that are opposites have the same output. That means .
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Figure 5. The function  is an even function.

Now consider the function , shown in Figure 6. The graph is not symmetrical about the y-axis. All
along the graph, any two points with opposite x-values also have opposite y-values. So  is an odd
function, one such that two inputs that are opposites have outputs that are also opposites. That means 

.

Figure 6. The function  is an odd function.

We can test whether a trigonometric function is even or odd by drawing a unit circle with a positive and a
negative angle, as in Figure 7. The sine of the positive angle is . The sine of the negative angle is −y. The

776



A GENERAL NOTE: EVEN AND ODD TRIGONOMETRIC FUNCTIONS

An even function is one in which .
An odd function is one in which .
Cosine and secant are even:

sine function, then, is an odd function. We can test each of the six trigonometric functions in this fashion.
The results are shown in in the table below.

Figure 7
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Sine, tangent, cosecant, and cotangent are odd:

EXAMPLE 4: USING EVEN AND ODD PROPERTIES OF TRIGONOMETRIC
FUNCTIONS

If the , what is the ?
Answer
Secant is an even function. The secant of an angle is the same as the secant of its opposite. So if the
secant of angle t is 2, the secant of  is also 2.

A YouTube element has been excluded from this version of the text. You can view it online here:
https://courses.lumenlearning.com/precalculus/?p=14027

A GENERAL NOTE: FUNDAMENTAL IDENTITIES

Try It

If the , what is ?
Answer

Recognize and Use Fundamental Identities

We have explored a number of properties of trigonometric functions. Now, we can take the relationships a
step further, and derive some fundamental identities. Identities are statements that are true for all values of
the input on which they are defined. Usually, identities can be derived from definitions and relationships we
already know. For example, the Pythagorean Identity we learned earlier was derived from the Pythagorean
Theorem and the definitions of sine and cosine.
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We can derive some useful identities from the six trigonometric functions. The other four trigonometric
functions can be related back to the sine and cosine functions using these basic relationships:

EXAMPLE 5: USING IDENTITIES TO EVALUATE TRIGONOMETRIC
FUNCTIONS

1. Given , evaluate .
2. Given , evaluate .

Answer
Because we know the sine and cosine values for these angles, we can use identities to evaluate the other
functions.

1. 

2. 

EXAMPLE 6: USING IDENTITIES TO SIMPLIFY TRIGONOMETRIC
EXPRESSIONS

Simplify .
Answer
We can simplify this by rewriting both functions in terms of sine and cosine.

By showing that  can be simplified to , we have, in fact, established a new identity.

Try It

Evaluate .
Answer
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A GENERAL NOTE: ALTERNATE FORMS OF THE PYTHAGOREAN IDENTITY

EXAMPLE 7: USING IDENTITIES TO RELATE TRIGONOMETRIC FUNCTIONS

If  and  is in quadrant IV, as shown in Figure 8, find the values of the other five trigonometric
functions.

Try It

Simplify .
Answer

Alternate Forms of the Pythagorean Identity

We can use these fundamental identities to derive alternative forms of the Pythagorean Identity, 
. One form is obtained by dividing both sides by 

The other form is obtained by dividing both sides by 
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Figure 8

Answer
We can find the sine using the Pythagorean Identity, , and the remaining functions by
relating them to sine and cosine.

The sign of the sine depends on the y-values in the quadrant where the angle is located. Since the angle
is in quadrant IV, where the y-values are negative, its sine is negative, .
The remaining functions can be calculated using identities relating them to sine and cosine.
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An interactive or media element has been excluded from this version of the text. You can view it online
here: https://courses.lumenlearning.com/precalculus/?p=14027

TRY IT

A GENERAL NOTE: PERIOD OF A FUNCTION

The period  of a repeating function  is the number representing the interval such that 
for any value of .
The period of the cosine, sine, secant, and cosecant functions is .
The period of the tangent and cotangent functions is .

EXAMPLE 8: FINDING THE VALUES OF TRIGONOMETRIC FUNCTIONS

Find the values of the six trigonometric functions of angle  based on Figure 9.

Try It

If  and , find the values of the other five functions.
Answer

As we discussed in the chapter opening, a function that repeats its values in regular intervals is known as a
periodic function. The trigonometric functions are periodic. For the four trigonometric functions, sine,
cosine, cosecant and secant, a revolution of one circle, or , will result in the same outputs for these
functions. And for tangent and cotangent, only a half a revolution will result in the same outputs.

Other functions can also be periodic. For example, the lengths of months repeat every four years. If 
represents the length time, measured in years, and  represents the number of days in February, then 

. This pattern repeats over and over through time. In other words, every four years,
February is guaranteed to have the same number of days as it did 4 years earlier. The positive number 4 is
the smallest positive number that satisfies this condition and is called the period. A period is the shortest
interval over which a function completes one full cycle—in this example, the period is 4 and represents the
time it takes for us to be certain February has the same number of days.
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Figure 9

Answer

Try It

Find the values of the six trigonometric functions of angle  based on Figure 10.
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EXAMPLE 9: FINDING THE VALUE OF TRIGONOMETRIC FUNCTIONS

If  and , find .
Answer

Figure 10

Answer
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A YouTube element has been excluded from this version of the text. You can view it online here:
https://courses.lumenlearning.com/precalculus/?p=14027

Try It

If  and , find .
Answer

Evaluating Trigonometric Functions with a Calculator

We have learned how to evaluate the six trigonometric functions for the common first-quadrant angles and to
use them as reference angles for angles in other quadrants. To evaluate trigonometric functions of other
angles, we use a scientific or graphing calculator or computer software. If the calculator has a degree mode
and a radian mode, confirm the correct mode is chosen before making a calculation.

Evaluating a tangent function with a scientific calculator as opposed to a graphing calculator or computer
algebra system is like evaluating a sine or cosine: Enter the value and press the TAN key. For the reciprocal
functions, there may not be any dedicated keys that say CSC, SEC, or COT. In that case, the function must
be evaluated as the reciprocal of a sine, cosine, or tangent.

If we need to work with degrees and our calculator or software does not have a degree mode, we can enter
the degrees multiplied by the conversion factor  to convert the degrees to radians. To find the secant of 

, we could press

or
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HOW TO: GIVEN AN ANGLE MEASURE IN RADIANS, USE A SCIENTIFIC
CALCULATOR TO FIND THE COSECANT.

1. If the calculator has degree mode and radian mode, set it to radian mode.
2. Enter: 
3. Enter the value of the angle inside parentheses.
4. Press the SIN key.
5. Press the = key.

HOW TO: GIVEN AN ANGLE MEASURE IN RADIANS, USE A GRAPHING
UTILITY/CALCULATOR TO FIND THE COSECANT.

1. If the graphing utility has degree mode and radian mode, set it to radian mode.
2. Enter: 
3. Press the SIN key.
4. Enter the value of the angle inside parentheses.
5. Press the ENTER key.

EXAMPLE 10: EVALUATING THE SECANT USING TECHNOLOGY

Evaluate the cosecant of .
Answer
For a scientific calculator, enter information as follows:

An interactive or media element has been excluded from this version of the text. You can view it online
here: https://courses.lumenlearning.com/precalculus/?p=14027

TRY IT

Try It

Evaluate the cotangent of .
Answer

Key Equations
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cosecant

cotangent

A YouTube element has been excluded from this version of the text. You can view it online here:
https://courses.lumenlearning.com/precalculus/?p=14027

Tangent function

Secant function

Cosecant function

Cotangent function

Key Concepts

The tangent of an angle is the ratio of the y-value to the x-value of the corresponding point on the unit
circle.
The secant, cotangent, and cosecant are all reciprocals of other functions. The secant is the reciprocal
of the cosine function, the cotangent is the reciprocal of the tangent function, and the cosecant is the
reciprocal of the sine function.
The six trigonometric functions can be found from a point on the unit circle.
Trigonometric functions can also be found from an angle.
Trigonometric functions of angles outside the first quadrant can be determined using reference angles.
A function is said to be even if  and odd if .
Cosine and secant are even; sine, tangent, cosecant, and cotangent are odd.
Even and odd properties can be used to evaluate trigonometric functions.
The Pythagorean Identity makes it possible to find a cosine from a sine or a sine from a cosine.
Identities can be used to evaluate trigonometric functions.
Fundamental identities such as the Pythagorean Identity can be manipulated algebraically to produce
new identities.
The trigonometric functions repeat at regular intervals.
The period  of a repeating function  is the smallest interval such that  for any value
of .
The values of trigonometric functions of special angles can be found by mathematical analysis.
To evaluate trigonometric functions of other angles, we can use a calculator or computer software.

Glossary

the reciprocal of the sine function: on the unit circle, 

the reciprocal of the tangent function: on the unit circle, 

787



identities

period

secant

tangent

statements that are true for all values of the input on which they are defined

the smallest interval 
of a repeating function  such that 

the reciprocal of the cosine function: on the unit circle, 

the quotient of the sine and cosine: on the unit circle, 
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RIGHT TRIANGLE TRIGONOMETRY

LEARNING OUTCOMES

Use right triangles to evaluate trigonometric functions.
Find function values for 30° (π/6),   45° (π/4), and 60° (π/3).
Use cofunctions of complementary angles.
Use the definitions of trigonometric functions of any angle.
Use right triangle trigonometry to solve applied problems.

Using Right Triangles to Evaluate Trigonometric Functions

In earlier sections, we used a unit circle to define the trigonometric functions. In this section, we will
extend those definitions so that we can apply them to right triangles. The value of the sine or cosine function
of  is its value at  radians. First, we need to create our right triangle. Figure 1 shows a point on a unit
circle of radius 1. If we drop a vertical line segment from the point  to the x-axis, we have a right

triangle whose vertical side has length  and whose horizontal side has length . We can use this right
triangle to redefine sine, cosine, and the other trigonometric functions as ratios of the sides of a right
triangle.
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Figure 1

 

We know

Likewise, we know

These ratios still apply to the sides of a right triangle when no unit circle is involved and when the triangle is
not in standard position and is not being graphed using  coordinates. To be able to use these ratios
freely, we will give the sides more general names: Instead of , we will call the side between the given angle
and the right angle the adjacent side to angle . (Adjacent means “next to.”) Instead of , we will call the
side most distant from the given angle the opposite side from angle . And instead of , we will call the side
of a right triangle opposite the right angle the hypotenuse. These sides are labeled in Figure 2.

Figure 2. The sides of a right triangle in relation to angle .

Understanding Right Triangle Relationships

Given a right triangle with an acute angle of ,

A common mnemonic for remembering these relationships is SohCahToa, formed from the first letters of
“Sine is opposite over hypotenuse, Cosine is adjacent over hypotenuse, Tangent is opposite over adjacent.”
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HOW TO: GIVEN THE SIDE LENGTHS OF A RIGHT TRIANGLE AND ONE OF
THE ACUTE ANGLES, FIND THE SINE, COSINE, AND TANGENT OF THAT

ANGLE.

1. Find the sine as the ratio of the opposite side to the hypotenuse.
2. Find the cosine as the ratio of the adjacent side to the hypotenuse.
3. Find the tangent is the ratio of the opposite side to the adjacent side.

EXAMPLE 1: EVALUATING A TRIGONOMETRIC FUNCTION OF A RIGHT
TRIANGLE

Given the triangle shown in Figure 3, find the value of .

Figure 3

Answer
The side adjacent to the angle is 15, and the hypotenuse of the triangle is 17, so:

Try It

Given the triangle shown in Figure 4, find the value of .
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HOW TO: GIVEN THE SIDE LENGTHS OF A RIGHT TRIANGLE, EVALUATE
THE SIX TRIGONOMETRIC FUNCTIONS OF ONE OF THE ACUTE ANGLES.

1. If needed, draw the right triangle and label the angle provided.
2. Identify the angle, the adjacent side, the side opposite the angle, and the hypotenuse of the right

triangle.

Figure 4

Answer

Relating Angles and Their Functions

When working with right triangles, the same rules apply regardless of the orientation of the triangle. In fact,
we can evaluate the six trigonometric functions of either of the two acute angles in the triangle in Figure 5.
The side opposite one acute angle is the side adjacent to the other acute angle, and vice versa.

Figure 5. The side adjacent to one angle is opposite the other.

We will be asked to find all six trigonometric functions for a given angle in a triangle. Our strategy is to find
the sine, cosine, and tangent of the angles first. Then, we can find the other trigonometric functions easily
because we know that the reciprocal of sine is cosecant, the reciprocal of cosine is secant, and the
reciprocal of tangent is cotangent.
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3. Find the required function:
sine as the ratio of the opposite side to the hypotenuse
cosine as the ratio of the adjacent side to the hypotenuse
tangent as the ratio of the opposite side to the adjacent side
secant as the ratio of the hypotenuse to the adjacent side
cosecant as the ratio of the hypotenuse to the opposite side
cotangent as the ratio of the adjacent side to the opposite side

EXAMPLE 2: EVALUATING TRIGONOMETRIC FUNCTIONS OF ANGLES
NOT IN STANDARD POSITION

Using the triangle shown in Figure 6, evaluate , , , , , and .

Figure 6

Answer

Try It

Using the triangle shown in Figure 7, evaluate , , , , , and .
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An interactive or media element has been excluded from this version of the text. You can view it online
here: https://courses.lumenlearning.com/precalculus/?p=14057

TRY IT

Figure 7

Answer

Finding Trigonometric Functions of Special Angles Using Side
Lengths

We have already discussed the trigonometric functions as they relate to the special angles on the unit
circle. Now, we can use those relationships to evaluate triangles that contain those special angles. We do
this because when we evaluate the special angles in trigonometric functions, they have relatively friendly
values, values that contain either no or just one square root in the ratio. Therefore, these are the angles
often used in math and science problems. We will use multiples of , , and , however, remember
that when dealing with right triangles, we are limited to angles between .

Suppose we have a  triangle, which can also be described as a  triangle. The sides
have lengths in the relation . The sides of a  triangle, which can also be described as
a  triangle, have lengths in the relation . These relations are shown in Figure 8.
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HOW TO: GIVEN TRIGONOMETRIC FUNCTIONS OF A SPECIAL ANGLE,
EVALUATE USING SIDE LENGTHS.

1. Use the side lengths shown in Figure 8 for the special angle you wish to evaluate.
2. Use the ratio of side lengths appropriate to the function you wish to evaluate.

EXAMPLE 3: EVALUATING TRIGONOMETRIC FUNCTIONS OF SPECIAL
ANGLES USING SIDE LENGTHS

Find the exact value of the trigonometric functions of , using side lengths.
Answer

Figure 8. Side lengths of special triangles

We can then use the ratios of the side lengths to evaluate trigonometric functions of special angles.

Try It

Find the exact value of the trigonometric functions of , using side lengths.
Answer
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A YouTube element has been excluded from this version of the text. You can view it online here:
https://courses.lumenlearning.com/precalculus/?p=14057

,

Using Equal Cofunction of Complements

If we look more closely at the relationship between the sine and cosine of the special angles relative to the
unit circle, we will notice a pattern. In a right triangle with angles of  and , we see that the sine of ,
namely , is also the cosine of , while the sine of , namely , is also the cosine of .

Figure 9. The sine of  equals the cosine of  and vice versa.

This result should not be surprising because, as we see from Figure 9, the side opposite the angle of  is
also the side adjacent to , so  and  are exactly the same ratio of the same two sides, 
and . Similarly,  and  are also the same ratio using the same two sides,  and .
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A GENERAL NOTE: COFUNCTION IDENTITIES

The cofunction identities in radians are listed in the table below.

HOW TO: GIVEN THE SINE AND COSINE OF AN ANGLE, FIND THE SINE
OR COSINE OF ITS COMPLEMENT.

1. To find the sine of the complementary angle, find the cosine of the original angle.
2. To find the cosine of the complementary angle, find the sine of the original angle.

EXAMPLE 4: USING COFUNCTION IDENTITIES

If , find .
Answer
According to the cofunction identities for sine and cosine,

.

The interrelationship between the sines and cosines of  and  also holds for the two acute angles in any
right triangle, since in every case, the ratio of the same two sides would constitute the sine of one angle and
the cosine of the other. Since the three angles of a triangle add to , and the right angle is , the remaining
two angles must also add up to . That means that a right triangle can be formed with any two angles that
add to  —in other words, any two complementary angles. So we may state a cofunction identity: If any two
angles are complementary, the sine of one is the cosine of the other, and vice versa. This identity is
illustrated in Figure 10.

Figure 10. Cofunction identity of sine and cosine of complementary angles

Using this identity, we can state without calculating, for instance, that the sine of  equals the cosine of ,
and that the sine of  equals the cosine of . We can also state that if, for a certain angle , ,
then  as well.
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So
.

A YouTube element has been excluded from this version of the text. You can view it online here:
https://courses.lumenlearning.com/precalculus/?p=14057

HOW TO: GIVEN A RIGHT TRIANGLE, THE LENGTH OF ONE SIDE, AND
THE MEASURE OF ONE ACUTE ANGLE, FIND THE REMAINING SIDES.

1. For each side, select the trigonometric function that has the unknown side as either the numerator or
the denominator. The known side will in turn be the denominator or the numerator.

2. Write an equation setting the function value of the known angle equal to the ratio of the corresponding
sides.

3. Using the value of the trigonometric function and the known side length, solve for the missing side
length.

EXAMPLE 5: FINDING MISSING SIDE LENGTHS USING TRIGONOMETRIC
RATIOS

Find the unknown sides of the triangle in Figure 11.

Try It

If , find .
Answer

2

Using Trigonometric Functions

In previous examples, we evaluated the sine and cosine in triangles where we knew all three sides. But the
real power of right-triangle trigonometry emerges when we look at triangles in which we know an angle but
do not know all the sides.
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Figure 11

Answer
We know the angle and the opposite side, so we can use the tangent to find the adjacent side.

We rearrange to solve for .

We can use the sine to find the hypotenuse.

Again, we rearrange to solve for .

An interactive or media element has been excluded from this version of the text. You can view it online
here: https://courses.lumenlearning.com/precalculus/?p=14057

TRY IT

Try It

A right triangle has one angle of  and a hypotenuse of 20. Find the unknown sides and angle of the
triangle.
Answer

;  ; missing angle is 

Right-triangle trigonometry has many practical applications. For example, the ability to compute the lengths
of sides of a triangle makes it possible to find the height of a tall object without climbing to the top or having
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HOW TO: GIVEN A TALL OBJECT, MEASURE ITS HEIGHT INDIRECTLY.

1. Make a sketch of the problem situation to keep track of known and unknown information.
2. Lay out a measured distance from the base of the object to a point where the top of the object is

clearly visible.
3. At the other end of the measured distance, look up to the top of the object. Measure the angle the line

of sight makes with the horizontal.
4. Write an equation relating the unknown height, the measured distance, and the tangent of the angle

of the line of sight.
5. Solve the equation for the unknown height.

EXAMPLE 6: MEASURING A DISTANCE INDIRECTLY

To find the height of a tree, a person walks to a point 30 feet from the base of the tree. She measures an
angle of  between a line of sight to the top of the tree and the ground, as shown in Figure 13. Find the
height of the tree.

to extend a tape measure along its height. We do so by measuring a distance from the base of the object to
a point on the ground some distance away, where we can look up to the top of the tall object at an angle.
The angle of elevation of an object above an observer relative to the observer is the angle between the
horizontal and the line from the object to the observer’s eye. The right triangle this position creates has sides
that represent the unknown height, the measured distance from the base, and the angled line of sight from
the ground to the top of the object. Knowing the measured distance to the base of the object and the angle
of the line of sight, we can use trigonometric functions to calculate the unknown height. Similarly, we can
form a triangle from the top of a tall object by looking downward. The angle of depression of an object below
an observer relative to the observer is the angle between the horizontal and the line from the object to the
observer’s eye.

Figure 12
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Figure 13

Answer
We know that the angle of elevation is  and the adjacent side is 30 ft long. The opposite side is the
unknown height.
The trigonometric function relating the side opposite to an angle and the side adjacent to the angle is the
tangent. So we will state our information in terms of the tangent of , letting  be the unknown height.

The tree is approximately 46 feet tall.

An interactive or media element has been excluded from this version of the text. You can view it online
here: https://courses.lumenlearning.com/precalculus/?p=14057

TRY IT

Try It

How long a ladder is needed to reach a windowsill 50 feet above the ground if the ladder rests against the
building making an angle of  with the ground? Round to the nearest foot.
Answer

About 52 ft

Key Equations

800



adjacent side

angle of depression

A YouTube element has been excluded from this version of the text. You can view it online here:
https://courses.lumenlearning.com/precalculus/?p=14057

Cofunction
Identities

Key Concepts

We can define trigonometric functions as ratios of the side lengths of a right triangle.
The same side lengths can be used to evaluate the trigonometric functions of either acute angle in a
right triangle.
We can evaluate the trigonometric functions of special angles, knowing the side lengths of the triangles
in which they occur.
Any two complementary angles could be the two acute angles of a right triangle.
If two angles are complementary, the cofunction identities state that the sine of one equals the cosine of
the other and vice versa.
We can use trigonometric functions of an angle to find unknown side lengths.
Select the trigonometric function representing the ratio of the unknown side to the known side.
Right-triangle trigonometry permits the measurement of inaccessible heights and distances.
The unknown height or distance can be found by creating a right triangle in which the unknown height or
distance is one of the sides, and another side and angle are known.

Glossary

in a right triangle, the side between a given angle and the right angle

the angle between the horizontal and the line from the object to the observer’s eye,
assuming the object is positioned lower than the observer
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angle of elevation

opposite side

hypotenuse

the angle between the horizontal and the line from the object to the observer’s eye,
assuming the object is positioned higher than the observer

in a right triangle, the side most distant from a given angle

the side of a right triangle opposite the right angle
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MODULE 8: PERIODIC FUNCTIONS

GRAPHS OF THE SINE AND COSINE
FUNCTION

LEARNING OUTCOMES

Determine amplitude, period, phase shift, and vertical shift of a sine or cosine graph from its equation.
Graph variations of y=cos x and y=sin x .
Determine a function formula that would have a given sinusoidal graph.
Determine functions that model circular and periodic motion.

Graph variations of  y=sin( x )  and  y=cos( x )

Recall that the sine and cosine functions relate real number values to the x– and y-coordinates of a point on
the unit circle. So what do they look like on a graph on a coordinate plane? Let’s start with the sine
function. We can create a table of values and use them to sketch a graph. The table below lists some of the
values for the sine function on a unit circle.

x 0

0 1 0

Plotting the points from the table and continuing along the x-axis gives the shape of the sine function. See
Figure 2.
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Figure 2. The sine function

Notice how the sine values are positive between 0 and π, which correspond to the values of the sine function
in quadrants I and II on the unit circle, and the sine values are negative between π and 2π, which correspond
to the values of the sine function in quadrants III and IV on the unit circle. See Figure 3.

Figure 3. Plotting values of the sine function

Now let’s take a similar look at the cosine function. Again, we can create a table of values and use them to
sketch a graph. The table below lists some of the values for the cosine function on a unit circle.

x 0

1 0 −1

As with the sine function, we can plots points to create a graph of the cosine function as in Figure 4.
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Figure 4. The cosine function

Because we can evaluate the sine and cosine of any real number, both of these functions are defined for all
real numbers. By thinking of the sine and cosine values as coordinates of points on a unit circle, it becomes
clear that the range of both functions must be the interval [−1,1].

In both graphs, the shape of the graph repeats after 2π,which means the functions are periodic with a period
of . A periodic function is a function for which a specific horizontal shift, P, results in a function equal to
the original function:  for all values of x in the domain of f. When this occurs, we call the
smallest such horizontal shift with  the period of the function. Figure 5 shows several periods of the
sine and cosine functions.
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Figure 5

Looking again at the sine and cosine functions on a domain centered at the y-axis helps reveal symmetries.
As we can see in Figure 6, the sine function is symmetric about the origin. Recall from The Other
Trigonometric Functions that we determined from the unit circle that the sine function is an odd function
because . Now we can clearly see this property from the graph.
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A GENERAL NOTE: CHARACTERISTICS OF SINE AND COSINE FUNCTIONS

The sine and cosine functions have several distinct characteristics:
They are periodic functions with a period of 2π.
The domain of each function is   and the range is .
The graph of  is symmetric about the origin, because it is an odd function.
The graph of  is symmetric about the y-axis, because it is an even function.

Figure 6. Odd symmetry of the sine function

Figure 7 shows that the cosine function is symmetric about the y-axis. Again, we determined that the cosine
function is an even function. Now we can see from the graph that .

Figure 7. Even symmetry of the cosine function

Investigating Sinusoidal Functions

As we can see, sine and cosine functions have a regular period and range. If we watch ocean waves or
ripples on a pond, we will see that they resemble the sine or cosine functions. However, they are not
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A GENERAL NOTE: PERIOD OF SINUSOIDAL FUNCTIONS

If we let C = 0 and D = 0 in the general form equations of the sine and cosine functions, we obtain the
forms

The period is .

necessarily identical. Some are taller or longer than others. A function that has the same general shape as a
sine or cosine function is known as a sinusoidal function. The general forms of sinusoidal functions are

and

Determining the Period of Sinusoidal Functions

Looking at the forms of sinusoidal functions, we can see that they are transformations of the sine and cosine
functions. We can use what we know about transformations to determine the period.

In the general formula, B is related to the period by . If , then the period is less than  and
the function undergoes a horizontal compression, whereas if , then the period is greater than  and
the function undergoes a horizontal stretch. For example, , so the period is , which
we knew. If , then , so the period is  and the graph is compressed. If ,
then , so the period is  and the graph is stretched. Notice in Figure 8 how the period is indirectly
related to .

Figure 8
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EXAMPLE 1: IDENTIFYING THE PERIOD OF A SINE OR COSINE FUNCTION

Determine the period of the function .
Answer
Let’s begin by comparing the equation to the general form .
In the given equation, , so the period will be

Figure 9

A GENERAL NOTE: AMPLITUDE OF SINUSOIDAL FUNCTIONS

Try It

Determine the period of the function .
Answer

Determining Amplitude

Returning to the general formula for a sinusoidal function, we have analyzed how the variable B relates to
the period. Now let’s turn to the variable A so we can analyze how it is related to the amplitude, or greatest
distance from rest. A represents the vertical stretch factor, and its absolute value |A| is the amplitude. The
local maxima will be a distance |A| above the vertical midline of the graph, which is the line x = D; because
D = 0 in this case, the midline is the x-axis. The local minima will be the same distance below the midline. If
|A| > 1, the function is stretched. For example, the amplitude of  is twice the amplitude of

If [latex]|A| < 1[/latex], the function is compressed. Figure 9 compares several sine functions with different
amplitudes.
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If we let C = 0 and D = 0 in the general form equations of the sine and cosine functions, we obtain the
forms

 and 
The amplitude is A, and the vertical height from the midline is |A|. In addition, notice in the example that

EXAMPLE 2: IDENTIFYING THE AMPLITUDE OF A SINE OR COSINE
FUNCTION

What is the amplitude of the sinusoidal function  ? Is the function stretched or
compressed vertically?
Answer
Let’s begin by comparing the function to the simplified form .
In the given function, A = −4, so the amplitude is |A|=|−4| = 4. The function is stretched.

Analysis of the Solution

The negative value of A results in a reflection across the x-axis of the sine function, as shown in Figure
10.

Figure 10

Try It

What is the amplitude of the sinusoidal function ? Is the function stretched or
compressed vertically?
Answer
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Analyzing Graphs of Variations of y = sin x and y = cos x

Now that we understand how A and B relate to the general form equation for the sine and cosine functions,
we will explore the variables C and D. Recall the general form:

 and 
or

 and 

The value  for a sinusoidal function is called the phase shift, or the horizontal displacement of the basic
sine or cosine function. If C > 0, the graph shifts to the right. If C < 0,the graph shifts to the left. The greater
the value of |C|, the more the graph is shifted. Figure 11 shows that the graph of  shifts to
the right by π units, which is more than we see in the graph of , which shifts to the right by

units.

Figure 11

While C relates to the horizontal shift, D indicates the vertical shift from the midline in the general formula for
a sinusoidal function. The function  has its midline at .
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A GENERAL NOTE: VARIATIONS OF SINE AND COSINE FUNCTIONS

Given an equation in the form  or , is the
phase shift and D is the vertical shift.

EXAMPLE 3: IDENTIFYING THE PHASE SHIFT OF A FUNCTION

Figure 12

Any value of D other than zero shifts the graph up or down. Figure 13 compares  with 
, which is shifted 2 units up on a graph.

Figure 13
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Determine the direction and magnitude of the phase shift for .
Answer
Let’s begin by comparing the equation to the general form .
In the given equation, notice that B = 1 and . So the phase shift is

or  units to the left.

Analysis of the Solution

We must pay attention to the sign in the equation for the general form of a sinusoidal function. The
equation shows a minus sign before C. Therefore  can be rewritten as 

. If the value of C is negative, the shift is to the left.

EXAMPLE 4: IDENTIFYING THE VERTICAL SHIFT OF A FUNCTION

Determine the direction and magnitude of the vertical shift for .
Answer
Let’s begin by comparing the equation to the general form . In the given
equation, , so the shift is 3 units downward.

HOW TO: GIVEN A SINUSOIDAL FUNCTION IN THE FORM 
, IDENTIFY THE MIDLINE, AMPLITUDE,

PERIOD, AND PHASE SHIFT.

1. Determine the amplitude as |A|.
2. Determine the period as .
3. Determine the phase shift as .
4. Determine the midline as y = D.

Try It

Determine the direction and magnitude of the phase shift for .
Answer

; right

Try It

Determine the direction and magnitude of the vertical shift for .
Answer

2 units up
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EXAMPLE 5: IDENTIFYING THE VARIATIONS OF A SINUSOIDAL FUNCTION
FROM AN EQUATION

Determine the midline, amplitude, period, and phase shift of the function .
Answer
Let’s begin by comparing the equation to the general form . A = 3, so the
amplitude is |A| = 3.
Next, B = 2, so the period is .

There is no added constant inside the parentheses, so C = 0 and the phase shift is .
Finally, D = 1, so the midline is y = 1.

Analysis of the Solution

Inspecting the graph, we can determine that the period is π, the midline is y = 1,and the amplitude is 3.
See Figure 14.

Figure 14

TRY IT

Try It

Determine the midline, amplitude, period, and phase shift of the function .
Answer

midline: ; amplitude: |A|= ; period: P= ; phase shift:
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An interactive or media element has been excluded from this version of the text. You can view it online
here: https://courses.lumenlearning.com/precalculus/?p=14093

EXAMPLE 6: IDENTIFYING THE EQUATION FOR A SINUSOIDAL FUNCTION
FROM A GRAPH

Determine the formula for the cosine function in Figure 15.

Figure 15

Answer
To determine the equation, we need to identify each value in the general form of a sinusoidal function.

The graph could represent either a sine or a cosine function that is shifted and/or reflected. When ,
the graph has an extreme point, . Since the cosine function has an extreme point for , let us
write our equation in terms of a cosine function.
Let’s start with the midline. We can see that the graph rises and falls an equal distance above and below 

. This value, which is the midline, is D in the equation, so D=0.5.
The greatest distance above and below the midline is the amplitude. The maxima are 0.5 units above the
midline and the minima are 0.5 units below the midline. So |A|=0.5. Another way we could have
determined the amplitude is by recognizing that the difference between the height of local maxima and
minima is 1, so |A|= . Also, the graph is reflected about the x-axis so that A=0.5.
The graph is not horizontally stretched or compressed, so B=0 and the graph is not shifted horizontally,
so C=0.
Putting this all together,

Try It

Determine the formula for the sine function in Figure 16.

815



An interactive or media element has been excluded from this version of the text. You can view it online
here: https://courses.lumenlearning.com/precalculus/?p=14093

TRY IT

EXAMPLE 7: IDENTIFYING THE EQUATION FOR A SINUSOIDAL FUNCTION
FROM A GRAPH

Determine the equation for the sinusoidal function in Figure 17.

Figure 16

Answer
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Figure 17

Answer
With the highest value at 1 and the lowest value at−5, the midline will be halfway between at −2. So D =
−2.The distance from the midline to the highest or lowest value gives an amplitude of |A|=3.
The period of the graph is 6, which can be measured from the peak at x = 1 to the next peak at x =
7, or from the distance between the lowest points. Therefore, . Using the positive value for B,
we find that

So far, our equation is either  or . For the shape and shift,
we have more than one option. We could write this as any one of the following:

a cosine shifted to the right
a negative cosine shifted to the left
a sine shifted to the left
a negative sine shifted to the right

While any of these would be correct, the cosine shifts are easier to work with than the sine shifts in this
case because they involve integer values. So our function becomes

 or 
Again, these functions are equivalent, so both yield the same graph.

Try It

Write a formula for the function graphed in Figure 18.
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An interactive or media element has been excluded from this version of the text. You can view it online
here: https://courses.lumenlearning.com/precalculus/?p=14093

TRY IT

HOW TO: GIVEN THE FUNCTION , SKETCH ITS GRAPH.

1. Identify the amplitude,|A|.
2. Identify the period, .
3. Start at the origin, with the function increasing to the right if A is positive or decreasing if A is negative.
4. At  there is a local maximum for A > 0 or a minimum for A < 0, with y = A.

Figure 18

Answer

two possibilities are:  or 

Graphing Variations of y = sin x and y = cos x
Throughout this section, we have learned about types of variations of sine and cosine functions and used
that information to write equations from graphs. Now we can use the same information to create graphs from
equations.

Instead of focusing on the general form equations
 and ,

we will let C = 0 and D = 0 and work with a simplified form of the equations in the following examples.
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5. The curve returns to the x-axis at .
6. There is a local minimum for A > 0 (maximum for A < 0) at  with y = –A.
7. The curve returns again to the x-axis at .

EXAMPLE 8: GRAPHING A FUNCTION AND IDENTIFYING THE AMPLITUDE
AND PERIOD

Sketch a graph of .
Answer
Let’s begin by comparing the equation to the form .
Step 1. We can see from the equation that A=−2,so the amplitude is 2.
|A| = 2
Step 2. The equation shows that , so the period is

Step 3. Because A is negative, the graph descends as we move to the right of the origin.
Step 4–7. The x-intercepts are at the beginning of one period, x = 0, the horizontal midpoints are at x = 2
and at the end of one period at x = 4.
The quarter points include the minimum at x = 1 and the maximum at x = 3. A local minimum will occur 2
units below the midline, at x = 1, and a local maximum will occur at 2 units above the midline, at x = 3.
Figure 19 shows the graph of the function.

Figure 19

Try It

Sketch a graph of . Determine the midline, amplitude, period, and phase shift.
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HOW TO: GIVEN A SINUSOIDAL FUNCTION WITH A PHASE SHIFT AND A
VERTICAL SHIFT, SKETCH ITS GRAPH.

1. Express the function in the general form  or .
2. Identify the amplitude, |A|.
3. Identify the period, .
4. Identify the phase shift, .
5. Draw the graph of  shifted to the right or left by  and up or down by D.

EXAMPLE 9: GRAPHING A TRANSFORMED SINUSOID

Sketch a graph of .
Answer
Step 1. The function is already written in general form: . This graph will have the
shape of a sine function, starting at the midline and increasing to the right.
Step 2. |A|=|3|=3. The amplitude is 3.
Step 3. Since , we determine the period as follows.

The period is 8.
Step 4. Since , the phase shift is

.

The phase shift is 1 unit.
Step 5. Figure 20 shows the graph of the function.

Answer

midline: y=0; amplitude: |A|=0.8; period: P= ; phase shift:  or none
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Figure 20. A horizontally compressed, vertically stretched, and horizontally shifted sinusoid

An interactive or media element has been excluded from this version of the text. You can view it online
here: https://courses.lumenlearning.com/precalculus/?p=14093

TRY IT

EXAMPLE 10: IDENTIFYING THE PROPERTIES OF A SINUSOIDAL
FUNCTION

 Try It

Draw a graph of . Determine the midline, amplitude, period, and phase shift.
Answer
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Given , determine the amplitude, period, phase shift, and horizontal shift. Then
graph the function.
Answer
Begin by comparing the equation to the general form and use the steps outlined in Example 9.

Step 1. The function is already written in general form.
Step 2. Since A = −2, the amplitude is|A| = 2.
Step 3.  , so the period is . The period is 4.

Step 4.  , so we calculate the phase shift as . The phase shift is −2.

Step 5. D = 3, so the midline is y = 3, and the vertical shift is up 3.
Since A is negative, the graph of the cosine function has been reflected about the x-axis.
Figure 21 shows one cycle of the graph of the function.

Figure 21

Using Transformations of Sine and Cosine Functions

We can use the transformations of sine and cosine functions in numerous applications. As mentioned at the
beginning of the chapter, circular motion can be modeled using either the sine or cosine function.
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A YouTube element has been excluded from this version of the text. You can view it online here:
https://courses.lumenlearning.com/precalculus/?p=14093

A YouTube element has been excluded from this version of the text. You can view it online here:
https://courses.lumenlearning.com/precalculus/?p=14093

EXAMPLE 11: FINDING THE VERTICAL COMPONENT OF CIRCULAR
MOTION

A point rotates around a circle of radius 3 centered at the origin. Sketch a graph of the y-coordinate of the
point as a function of the angle of rotation.
Answer
Recall that, for a point on a circle of radius r, the y-coordinate of the point is , so in this case,
we get the equation . The constant 3 causes a vertical stretch of the y-values of the
function by a factor of 3, which we can see in the graph in Figure 22.
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Figure 22

Analysis of the Solution

Notice that the period of the function is still 2π; as we travel around the circle, we return to the point (3,0)
for  Because the outputs of the graph will now oscillate between –3 and 3, the
amplitude of the sine wave is 3.

Try It

What is the amplitude of the function ? Sketch a graph of this function.
Answer
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EXAMPLE 12: FINDING THE VERTICAL COMPONENT OF CIRCULAR
MOTION

A circle with radius 3 ft is mounted with its center 4 ft off the ground. The point closest to the ground is
labeled P, as shown in Figure 23. Sketch a graph of the height above the ground of the point P as the
circle is rotated; then find a function that gives the height in terms of the angle of rotation.

7
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Figure 23

Answer
Sketching the height, we note that it will start 1 ft above the ground, then increase up to 7 ft above the
ground, and continue to oscillate 3 ft above and below the center value of 4 ft, as shown in Figure 24.
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Figure 24

Although we could use a transformation of either the sine or cosine function, we start by looking for
characteristics that would make one function easier to use than the other. Let’s use a cosine function
because it starts at the highest or lowest value, while a sine function starts at the middle value. A
standard cosine starts at the highest value, and this graph starts at the lowest value, so we need to
incorporate a vertical reflection.
Second, we see that the graph oscillates 3 above and below the center, while a basic cosine has an
amplitude of 1, so this graph has been vertically stretched by 3, as in the last example.
Finally, to move the center of the circle up to a height of 4, the graph has been vertically shifted up by 4.
Putting these transformations together, we find that

Try It
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A weight is attached to a spring that is then hung from a board, as shown in Figure 25. As the spring
oscillates up and down, the position y of the weight relative to the board ranges from –1 in. (at time x = 0)
to –7in. (at time x = π) below the board. Assume the position of y is given as a sinusoidal function of x.
Sketch a graph of the function, and then find a cosine function that gives the position y in terms of x.

Figure 25

Answer
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EXAMPLE 13: DETERMINING A RIDER’S HEIGHT ON A FERRIS WHEEL

The London Eye is a huge Ferris wheel with a diameter of 135 meters (443 feet). It completes one rotation
every 30 minutes. Riders board from a platform 2 meters above the ground. Express a rider’s height
above ground as a function of time in minutes.
Answer
With a diameter of 135 m, the wheel has a radius of 67.5 m. The height will oscillate with amplitude 67.5 m
above and below the center.
Passengers board 2 m above ground level, so the center of the wheel must be located 67.5 + 2 = 69.5 m
above ground level. The midline of the oscillation will be at 69.5 m.
The wheel takes 30 minutes to complete 1 revolution, so the height will oscillate with a period of 30
minutes.
Lastly, because the rider boards at the lowest point, the height will start at the smallest value and increase,
following the shape of a vertically reflected cosine curve.

Amplitude: 67.5, so A = 67.5
Midline: 69.5, so D = 69.5
Period: 30, so 
Shape: −cos(t)

An equation for the rider’s height would be

where t is in minutes and y is measured in meters.

TRY IT
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amplitude

midline

periodic function

phase shift

sinusoidal function

An interactive or media element has been excluded from this version of the text. You can view it online
here: https://courses.lumenlearning.com/precalculus/?p=14093

Key Equations

Sinusoidal functions

Key Concepts
Periodic functions repeat after a given value. The smallest such value is the period. The basic sine and
cosine functions have a period of 2π.
The function sin x is odd, so its graph is symmetric about the origin. The function cos x is even, so its
graph is symmetric about the y-axis.
The graph of a sinusoidal function has the same general shape as a sine or cosine function.
In the general formula for a sinusoidal function, the period is .
In the general formula for a sinusoidal function, |A|represents amplitude. If |A| > 1, the function is
stretched, whereas if|A| < 1, the function is compressed.
The value  in the general formula for a sinusoidal function indicates the phase shift.
The value D in the general formula for a sinusoidal function indicates the vertical shift from the midline.
Combinations of variations of sinusoidal functions can be detected from an equation.
The equation for a sinusoidal function can be determined from a graph.
A function can be graphed by identifying its amplitude and period.
A function can also be graphed by identifying its amplitude, period, phase shift, and horizontal shift.
Sinusoidal functions can be used to solve real-world problems.

Glossary

the vertical height of a function; the constant A appearing in the definition of a sinusoidal function

the horizontal line y = D, where D appears in the general form of a sinusoidal function

a function f(x) that satisfies  for a specific constant P and any value of x

the horizontal displacement of the basic sine or cosine function; the constant 

any function that can be expressed in the form  or 
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GRAPHS OF THE OTHER TRIGONOMETRIC
FUNCTIONS
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LEARNING OUTCOMES

Analyze the graph of  y=tan x and y=cot x.
Graph variations of  y=tan x and y=cot x.
Determine a function formula from a tangent or cotangent graph.
Analyze the graphs of  y=sec x  and  y=csc x.
Graph variations of  y=sec x  and  y=csc x.
Determine a function formula from a secant or cosecant graph.

Analyzing the Graph of y = tan x and Its Variations

We will begin with the graph of the tangent function, plotting points as we did for the sine and cosine
functions. Recall that

The period of the tangent function is π because the graph repeats itself on intervals of kπ where k is a
constant. If we graph the tangent function on , we can see the behavior of the graph on one
complete cycle. If we look at any larger interval, we will see that the characteristics of the graph repeat.

We can determine whether tangent is an odd or even function by using the definition of tangent.

Therefore, tangent is an odd function. We can further analyze the graphical behavior of the tangent function
by looking at values for some of the special angles, as listed in the table below.

x 0

tan
(x) undefined –1 0 1 undefine

These points will help us draw our graph, but we need to determine how the graph behaves where it is
undefined. If we look more closely at values when , we can use a table to look for a trend.
Because  and , we will evaluate x at radian measures 1.05 < x < 1.57 as shown in the
table below.

x 1.3 1.5 1.55 1.56

tan x 3.6 14.1 48.1 92.6

As x approaches , the outputs of the function get larger and larger. Because  is an odd function,
we see the corresponding table of negative values in the table below.
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A GENERAL NOTE: FEATURES OF THE GRAPH OF Y = ATAN(BX)

The stretching factor is |A| .

x −1.3 −1.5 −1.55 −1.56

tan x −3.6 −14.1 −48.1 −92.6

We can see that, as x approaches , the outputs get smaller and smaller. Remember that there are some
values of x for which cos x = 0. For example,  and . At these values, the tangent
function is undefined, so the graph of  has discontinuities at  and . At these values, the
graph of the tangent has vertical asymptotes. Figure 1 represents the graph of . The tangent is
positive from 0 to  and from π to , corresponding to quadrants I and III of the unit circle.

Figure 1. Graph of the tangent function

Graphing Variations of y = tan x
As with the sine and cosine functions, the tangent function can be described by a general equation.

We can identify horizontal and vertical stretches and compressions using values of A and B. The horizontal
stretch can typically be determined from the period of the graph. With tangent graphs, it is often necessary
to determine a vertical stretch using a point on the graph.

Because there are no maximum or minimum values of a tangent function, the term amplitude cannot be
interpreted as it is for the sine and cosine functions. Instead, we will use the phrase stretching/compressing
factor when referring to the constant A.
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The period is .
The domain is all real numbers x, where  such that k is an integer.
The range is .
The asymptotes occur at , where k is an integer.

 is an odd function.

HOW TO: GIVEN THE FUNCTION , GRAPH ONE
PERIOD.

1. Identify the stretching factor, |A|.
2. Identify B and determine the period, .

3. Draw vertical asymptotes at    and .
4. For A > 0 , the graph approaches the left asymptote at negative output values and the right asymptote

at positive output values (reverse for A < 0 ).
5. Plot reference points at  (0, 0), and ( ,− A), and draw the graph through these points.

EXAMPLE 1: SKETCHING A COMPRESSED TANGENT

Sketch a graph of one period of the function .
Answer
First, we identify A and B.

Graphing One Period of a Stretched or Compressed Tangent
Function

We can use what we know about the properties of the tangent function to quickly sketch a graph of any
stretched and/or compressed tangent function of the form . We focus on a single period
of the function including the origin, because the periodic property enables us to extend the graph to the rest
of the function’s domain if we wish. Our limited domain is then the interval  and the graph has
vertical asymptotes at  where . On , the graph will come up from the left asymptote at 

, cross through the origin, and continue to increase as it approaches the right asymptote at .
To make the function approach the asymptotes at the correct rate, we also need to set the vertical scale by
actually evaluating the function for at least one point that the graph will pass through. For example, we can
use

because   .
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Figure 2

Because  and , we can find the stretching/compressing factor and period. The period is 
, so the asymptotes are at . At a quarter period from the origin, we have

This means the curve must pass through the points(0.5,0.5),(0,0),and(−0.5,−0.5).The only inflection point
is at the origin. Figure shows the graph of one period of the function.

Figure 3

Try It

Sketch a graph of .
Answer
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An interactive or media element has been excluded from this version of the text. You can view it online
here: https://courses.lumenlearning.com/precalculus/?p=14153

TRY IT

A GENERAL NOTE: FEATURES OF THE GRAPH OF 

The stretching factor is |A|.
The period is .
The domain is , where k is an integer.
The range is (−∞,−|A|] ∪ [|A|, ∞).
The vertical asymptotes occur at , where k is an odd integer.
There is no amplitude.

 is an odd function because it is the quotient of odd and even functions (sine and
cosine respectively).

HOW TO: GIVEN THE FUNCTION , SKETCH THE
GRAPH OF ONE PERIOD.

1. Express the function given in the form .
2. Identify the stretching/compressing factor, |A|.
3. Identify B and determine the period, .
4. Identify C and determine the phase shift, .

Graphing One Period of a Shifted Tangent Function

Now that we can graph a tangent function that is stretched or compressed, we will add a vertical and/or
horizontal (or phase) shift. In this case, we add C and D to the general form of the tangent function.

The graph of a transformed tangent function is different from the basic tangent function tan x in several
ways:
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5. Draw the graph of  shifted to the right by  and up by D.
6. Sketch the vertical asymptotes, which occur at , where k is an odd integer.
7. Plot any three reference points and draw the graph through these points.

EXAMPLE 2: GRAPHING ONE PERIOD OF A SHIFTED TANGENT
FUNCTION

Graph one period of the function .
Answer
Step 1. The function is already written in the form .
Step 2.  , so the stretching factor is .
Step 3.  , so the period is .

Step 4.  , so the phase shift is .

Step 5–7. The asymptotes are at  and  and the three recommended reference points are
(−1.25, 1), (−1,−1), and (−0.75, −3). The graph is shown in Figure 4.

Figure 4

Analysis of the Solution

Note that this is a decreasing function because A < 0.

HOW TO: GIVEN THE GRAPH OF A TANGENT FUNCTION, IDENTIFY
HORIZONTAL AND VERTICAL STRETCHES.

Try It

How would the graph in Example 2 look different if we made A = 2 instead of −2?
Answer

It would be reflected across the line , becoming an increasing function.
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1. Find the period P from the spacing between successive vertical asymptotes or x-intercepts.
2. Write .
3. Determine a convenient point (x, f(x)) on the given graph and use it to determine A.

EXAMPLE 3: IDENTIFYING THE GRAPH OF A STRETCHED TANGENT

Find a formula for the function graphed in Figure 5.

Figure 5

Answer
The graph has the shape of a tangent function.
Step 1. One cycle extends from –4 to 4, so the period is . Since , we have .

Step 2. The equation must have the .
Step 3. To find the vertical stretch A, we can use the point (2,2).

Because , A = 2.
This function would have a formula .

Try It

Find a formula for the function in Figure 6.
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An interactive or media element has been excluded from this version of the text. You can view it online
here: https://courses.lumenlearning.com/precalculus/?p=14153

TRY IT

EXAMPLE 4: USING TRIGONOMETRIC FUNCTIONS TO SOLVE REAL-
WORLD SCENARIOS

Suppose the function  marks the distance in the movement of a light beam from the top of a
police car across a wall where t is the time in seconds and y is the distance in feet from a point on the wall

Figure 6

Answer

Using the Graphs of Trigonometric Functions to Solve Real-
World Problems

Many real-world scenarios represent periodic functions and may be modeled by trigonometric functions. As
an example, let’s return to the scenario from the section opener. Have you ever observed the beam formed
by the rotating light on a police car and wondered about the movement of the light beam itself across the
wall? The periodic behavior of the distance the light shines as a function of time is obvious, but how do we
determine the distance? We can use the tangent function .
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directly across from the police car.

1. Find and interpret the stretching factor and period.
2. Graph on the interval [0, 5].
3. Evaluate f(1) and discuss the function’s value at that input.

Answer

1. We know from the general form of     that |A| is the stretching factor and π B is the

period.

Figure 7

We see that the stretching factor is 5. This means that the beam of light will have moved 5 ft after half
the period.
The period is . This means that every 4 seconds, the beam of light sweeps the wall.
The distance from the spot across from the police car grows larger as the police car approaches.

2. To graph the function, we draw an asymptote at  and use the stretching factor and period. See
Figure 8.

Figure 8

3. period: ; after 1 second, the beam of has moved 5 ft from the spot
across from the police car.
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A YouTube element has been excluded from this version of the text. You can view it online here:
https://courses.lumenlearning.com/precalculus/?p=14153

Analyzing the Graphs of y = sec x and y = cscx and Their
Variations

The secant was defined by the reciprocal identity  . Notice that the function is undefined when
the cosine is 0, leading to vertical asymptotes at . Because the cosine is never more than 1 in
absolute value, the secant, being the reciprocal, will never be less than 1 in absolute value.

We can graph  by observing the graph of the cosine function because these two functions are
reciprocals of one another. See Figure 9. The graph of the cosine is shown as a dashed orange wave so we
can see the relationship. Where the graph of the cosine function decreases, the graph of the secant
function increases. Where the graph of the cosine function increases, the graph of the secant function
decreases. When the cosine function is zero, the secant is undefined.

The secant graph has vertical asymptotes at each value of x where the cosine graph crosses the x-axis; we
show these in the graph below with dashed vertical lines, but will not show all the asymptotes explicitly on all
later graphs involving the secant and cosecant.

Note that, because cosine is an even function, secant is also an even function. That is, .

Figure 9. Graph of the secant function, 
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A GENERAL NOTE: FEATURES OF THE GRAPH OF Y = ASEC(BX)

The stretching factor is |A|.
The period is .
The domain is , where k is an odd integer.
The range is (−∞, −|A|] ∪ [|A|, ∞).
The vertical asymptotes occur at , where k is an odd integer.
There is no amplitude.

 is an even function because cosine is an even function.

A GENERAL NOTE: FEATURES OF THE GRAPH OF [LATEX]Y=A\CSC(BX)

The stretching factor is |A|.
The period is .
The domain is , where k is an integer.

As we did for the tangent function, we will again refer to the constant |A| as the stretching factor, not the
amplitude.

Similar to the secant, the cosecant is defined by the reciprocal identity . Notice that the
function is undefined when the sine is 0, leading to a vertical asymptote in the graph at 0, π, etc. Since the
sine is never more than 1 in absolute value, the cosecant, being the reciprocal, will never be less than 1 in
absolute value.

We can graph  by observing the graph of the sine function because these two functions are
reciprocals of one another. See Figure 10. The graph of sine is shown as a dashed orange wave so we can
see the relationship. Where the graph of the sine function decreases, the graph of the cosecant function
increases. Where the graph of the sine function increases, the graph of the cosecant function decreases.

The cosecant graph has vertical asymptotes at each value of x where the sine graph crosses the x-axis; we
show these in the graph below with dashed vertical lines.

Note that, since sine is an odd function, the cosecant function is also an odd function. That is, 
.

The graph of cosecant, which is shown in Figure 10, is similar to the graph of secant.

Figure 10. The graph of the cosecant function, [latex]f(x)=\csc x=\frac{1}{\sin x}/latex]
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The range is ( −∞, −|A|] ∪ [|A|, ∞).
The asymptotes occur at , where k is an integer.

 is an odd function because sine is an odd function.

A GENERAL NOTE: FEATURES OF THE GRAPH OF 

The stretching factor is |A|.
The period is .
The domain is , where k is an odd integer.
The range is (−∞, −|A|] ∪ [|A|, ∞).
The vertical asymptotes occur at , where k is an odd integer.
There is no amplitude.

 is an even function because cosine is an even function.

A GENERAL NOTE: FEATURES OF THE GRAPH OF 

The stretching factor is |A|.
The period is .
The domain is , where k is an integer.
The range is (−∞, −|A|] ∪ [|A|, ∞).
The vertical asymptotes occur at , where k is an integer.
There is no amplitude.

 is an odd function because sine is an odd function.

HOW TO: GIVEN A FUNCTION OF THE FORM , GRAPH
ONE PERIOD.

1. Express the function given in the form .
2. Identify the stretching/compressing factor, |A|.
3. Identify B and determine the period, .
4. Sketch the graph of .

Graphing Variations of y = sec x and y = csc x
For shifted, compressed, and/or stretched versions of the secant and cosecant functions, we can follow
similar methods to those we used for tangent and cotangent. That is, we locate the vertical asymptotes and
also evaluate the functions for a few points (specifically the local extrema). If we want to graph only a single
period, we can choose the interval for the period in more than one way. The procedure for secant is very
similar, because the cofunction identity means that the secant graph is the same as the cosecant graph
shifted half a period to the left. Vertical and phase shifts may be applied to the cosecant function in the
same way as for the secant and other functions. The equations become the following.

842



5. Use the reciprocal relationship between  and  to draw the graph of .
6. Sketch the asymptotes.
7. Plot any two reference points and draw the graph through these points.

EXAMPLE 6: GRAPHING A VARIATION OF THE SECANT FUNCTION

Graph one period of .
Answer
Step 1. The given function is already written in the general form, .
Step 2.   so the stretching factor is 2.5.
Step 3.  , so . The period is 5π units.
Step 4. Sketch the graph of the function .
Step 5. Use the reciprocal relationship of the cosine and secant functions to draw the cosecant function.
Steps 6–7. Sketch two asymptotes at  and . We can use two reference points, the
local minimum at (0, 2.5) and the local maximum at (2.5π, −2.5). Figure 11 shows the graph.
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Figure 11

Try It

Graph one period of .
Answer
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Q & A

DO THE VERTICAL SHIFT AND STRETCH/COMPRESSION AFFECT THE
SECANT’S RANGE?

Yes. The range of   is ( −∞, −|A| + D] ∪ [|A| + D, ∞).

HOW TO: GIVEN A FUNCTION OF THE FORM 
, GRAPH ONE PERIOD.

1. Express the function given in the form .
2. Identify the stretching/compressing factor, |A|.
3. Identify B and determine the period, .
4. Identify C and determine the phase shift, .
5. Draw the graph of . but shift it to the right by  and up by D.
6. Sketch the vertical asymptotes, which occur at , where k is an odd integer.

EXAMPLE 7: GRAPHING A VARIATION OF THE SECANT FUNCTION

This is a vertical reflection of the preceding graph because A is negative.
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Graph one period of .
Answer
Step 1. Express the function given in the form .
Step 2. The stretching/compressing factor is |A| = 4.
Step 3. The period is

Step 4. The phase shift is

Step 5. Draw the graph of ,but shift it to the right by  and up by D = 6.
Step 6. Sketch the vertical asymptotes, which occur at x = 0, x = 3, and x = 6. There is a local minimum at
(1.5, 5) and a local maximum at (4.5, −3). Figure 12 shows the graph.

Figure 12

Try It

Graph one period of .
Answer
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An interactive or media element has been excluded from this version of the text. You can view it online
here: https://courses.lumenlearning.com/precalculus/?p=14153

TRY IT

Q & A

The domain of  was given to be all x such that  for any integer k. Would
the domain of   be ?

Yes. The excluded points of the domain follow the vertical asymptotes. Their locations show the horizontal
shift and compression or expansion implied by the transformation to the original function’s input.

HOW TO: GIVEN A FUNCTION OF THE FORM , GRAPH
ONE PERIOD.

1. Express the function given in the form .
2. |A|.
3. Identify B and determine the period, .
4. Draw the graph of .
5. Use the reciprocal relationship between  and  to draw the graph of .
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6. Sketch the asymptotes.
7. Plot any two reference points and draw the graph through these points.

EXAMPLE 8: GRAPHING A VARIATION OF THE COSECANT FUNCTION

Graph one period of .
Answer
Step 1. The given function is already written in the general form, .
Step 2. , so the stretching factor is 3.
Step 3. .The period is  units.
Step 4. Sketch the graph of the function .
Step 5. Use the reciprocal relationship of the sine and cosecant functions to draw the cosecant function.
Steps 6–7. Sketch three asymptotes at .We can use two reference points, the
local maximum at  and the local minimum at . Figure 13 shows the graph.
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Figure 13
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HOW TO: GIVEN A FUNCTION OF THE FORM 
, GRAPH ONE PERIOD.

1. Express the function given in the form .
2. Identify the stretching/compressing factor, |A|.
3. Identify B and determine the period, .
4. Identify C and determine the phase shift, .
5. Draw the graph of  but shift it to the right by and up by D.
6. Sketch the vertical asymptotes, which occur at , where k is an integer.

EXAMPLE 9: GRAPHING A VERTICALLY STRETCHED, HORIZONTALLY
COMPRESSED, AND VERTICALLY SHIFTED COSECANT

Sketch a graph of . What are the domain and range of this function?
Answer
Step 1. Express the function given in the form .
Step 2. Identify the stretching/compressing factor, .
Step 3. The period is .

Try It

Graph one period of .
Answer
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Step 4. The phase shift is .

Step 5. Draw the graph of  but shift it up .
Step 6. Sketch the vertical asymptotes, which occur at x = 0, x = 2, x = 4.
The graph for this function is shown in Figure 14.

Figure 14

Analysis of the Solution

The vertical asymptotes shown on the graph mark off one period of the function, and the local extrema in
this interval are shown by dots. Notice how the graph of the transformed cosecant relates to the graph of 

, shown as the orange dashed wave.

Try It

Given the graph of  shown in Figure 15, sketch the graph of 
on the same axes.
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Figure 15

Answer

Analyzing the Graph of y = cot x and Its Variations

The last trigonometric function we need to explore is cotangent. The cotangent is defined by the reciprocal
identity . Notice that the function is undefined when the tangent function is 0, leading to a
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A GENERAL NOTE: FEATURES OF THE GRAPH OF Y = ACOT(BX)

The stretching factor is |A|.
The period is .

vertical asymptote in the graph at 0, π, etc. Since the output of the tangent function is all real numbers, the
output of the cotangent function is also all real numbers.

We can graph  by observing the graph of the tangent function because these two functions are
reciprocals of one another. See Figure 16. Where the graph of the tangent function decreases, the graph of
the cotangent function increases. Where the graph of the tangent function increases, the graph of the
cotangent function decreases.

The cotangent graph has vertical asymptotes at each value of x where ; we show these in the
graph below with dashed lines. Since the cotangent is the reciprocal of the tangent,  has vertical
asymptotes at all values of x where  , and  at all values of x where tan x has its vertical
asymptotes.

Figure 16. The cotangent function
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The domain is , where k is an integer.
The range is (−∞, ∞).
The asymptotes occur at , where k is an integer.

 is an odd function.

A GENERAL NOTE: PROPERTIES OF THE GRAPH OF Y = ACOT(BX−C)+D

The stretching factor is |A|.
The period is .
The domain is , where k is an integer.
The range is (−∞, −|A|] ∪ [|A|, ∞).
The vertical asymptotes occur at , where k is an integer.
There is no amplitude.

 is an odd function because it is the quotient of even and odd functions (cosine and
sine, respectively)

HOW TO: GIVEN A MODIFIED COTANGENT FUNCTION OF THE FORM 
, GRAPH ONE PERIOD.

1. Express the function in the form .
2. Identify the stretching factor, |A|.
3. Identify the period, .
4. Draw the graph of .
5. Plot any two reference points.
6. Use the reciprocal relationship between tangent and cotangent to draw the graph of .
7. Sketch the asymptotes.

EXAMPLE 10: GRAPHING VARIATIONS OF THE COTANGENT FUNCTION

Determine the stretching factor, period, and phase shift of , and then sketch a graph.
Answer
Step 1. Expressing the function in the form  gives .
Step 2. The stretching factor is .
Step 3. The period is .
Step 4. Sketch the graph of .
Step 5. Plot two reference points. Two such points are  and .
Step 6. Use the reciprocal relationship to draw .
Step 7. Sketch the asymptotes, , .

Graphing Variations of y = cot x
We can transform the graph of the cotangent in much the same way as we did for the tangent. The equation
becomes the following.
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The orange graph in Figure 17 shows  and the blue graph shows .

Figure 17

HOW TO: GIVEN A MODIFIED COTANGENT FUNCTION OF THE FORM 
, GRAPH ONE PERIOD.
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1. Express the function in the form .
2. Identify the stretching factor, |A|.
3. Identify the period, .
4. Identify the phase shift, .
5. Draw the graph of  shifted to the right by  and up by D.
6. Sketch the asymptotes , where k is an integer.
7. Plot any three reference points and draw the graph through these points.

EXAMPLE 11: GRAPHING A MODIFIED COTANGENT

Sketch a graph of one period of the function .
Answer
Step 1. The function is already written in the general form .
Step 2.  , so the stretching factor is 4.
Step 3.  , so the period is .

Step 4.  , so the phase shift is .

Step 5. We draw .
Step 6-7. Three points we can use to guide the graph are (6,2), (8,−2), and (10,−6). We use the reciprocal
relationship of tangent and cotangent to draw .
Step 8. The vertical asymptotes are  and .
The graph is shown in Figure 18.

Figure 18. One period of a modified cotangent function.
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Key Equations

Shifted, compressed, and/or stretched tangent function

Shifted, compressed, and/or stretched secant function

Shifted, compressed, and/or stretched cosecant

Shifted, compressed, and/or stretched cotangent function

Key Concepts

The tangent function has period π.
 is a tangent with vertical and/or horizontal stretch/compression and shift.

The secant and cosecant are both periodic functions with a period of2π. 
gives a shifted, compressed, and/or stretched secant function graph.

 gives a shifted, compressed, and/or stretched cosecant function graph.
The cotangent function has period π and vertical asymptotes at 0, ±π,±2π,….
The range of cotangent is (−∞,∞),and the function is decreasing at each point in its range.
The cotangent is zero at ,….

 is a cotangent with vertical and/or horizontal stretch/compression and shift.
Real-world scenarios can be solved using graphs of trigonometric functions.

Licensing & Attributions

CC licensed content, Speci�c attribution

Precalculus. Authored by: OpenStax College. Provided by: OpenStax. Project: http://cnx.org/contents/fd53eae1-fa23-47c7-bb1b-972349835c3c@5.175:1/Preface. License: CC BY: Attribution

All rights reserved content

Animation: Graphing the Tangent Function Using the Unit Circle. Authored by: Mathispower4u. Located at: https://youtu.be/ssjG9kE25OY. License: All Rights Reserved. License Terms: Standard YouTube License

INVERSE TRIGONOMETRIC FUNCTIONS

LEARNING OUTCOMES

Understand and use the inverse sine, cosine, and tangent functions.
Find the exact value of expressions involving the inverse sine, cosine, and tangent functions.
Use a calculator to evaluate inverse trigonometric functions.
Use inverse trigonometric functions to solve right triangles.
Find exact values of composite functions with inverse trigonometric functions.

Understanding and Using the Inverse Sine, Cosine, and Tangent
Functions

In order to use inverse trigonometric functions, we need to understand that an inverse trigonometric function
“undoes” what the original trigonometric function “does,” as is the case with any other function and its
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inverse. In other words, the domain of the inverse function is the range of the original function, and vice
versa, as summarized in Figure 1.

Figure 1

For example, if , then we would write  . Be aware that  does not mean 
. The following examples illustrate the inverse trigonometric functions:

Since , then .
Since , then .
Since , then .

In previous sections, we evaluated the trigonometric functions at various angles, but at times we need to
know what angle would yield a specific sine, cosine, or tangent value. For this, we need inverse functions.
Recall that, for a one-to-one function, if , then an inverse function would satisfy .

Bear in mind that the sine, cosine, and tangent functions are not one-to-one functions. The graph of each
function would fail the horizontal line test. In fact, no periodic function can be one-to-one because each
output in its range corresponds to at least one input in every period, and there are an infinite number of
periods. As with other functions that are not one-to-one, we will need to restrict the domain of each function
to yield a new function that is one-to-one. We choose a domain for each function that includes the number 0.
Figure 2 shows the graph of the sine function limited to  and the graph of the cosine function limited
to [0, π].

Figure 2. (a) Sine function on a restricted domain of ; (b) Cosine function on a restricted domain of
[0, π]

Figure 3 shows the graph of the tangent function limited to .
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Figure 3. Tangent function on a restricted domain of 

These conventional choices for the restricted domain are somewhat arbitrary, but they have important,
helpful characteristics. Each domain includes the origin and some positive values, and most importantly,
each results in a one-to-one function that is invertible. The conventional choice for the restricted domain of
the tangent function also has the useful property that it extends from one vertical asymptote to the next
instead of being divided into two parts by an asymptote.

On these restricted domains, we can define the inverse trigonometric functions.
The inverse sine function   means . The inverse sine function is sometimes called
the arcsine function, and notated arcsin x.

 has domain [−1, 1] and range 
The inverse cosine function   means . The inverse cosine function is sometimes
called the arccosine function, and notated arccos x.

 has domain [−1, 1] and range [0, π]
The inverse tangent function   means . The inverse tangent function is
sometimes called the arctangent function, and notated arctan x.

 has domain (−∞, ∞) and range 

The graphs of the inverse functions are shown in Figure 4, Figure 5, and Figure 6. Notice that the output of
each of these inverse functions is a number, an angle in radian measure. We see that  has domain
[−1, 1] and range ,  has domain [−1, 1] and range [0, π], and  has domain of all real
numbers and range . To find the domain and range of inverse trigonometric functions, switch the
domain and range of the original functions. Each graph of the inverse trigonometric function is a reflection of
the graph of the original function about the line .
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Figure 4. The sine function and inverse sine (or arcsine) function

Figure 5. The cosine function and inverse cosine (or arccosine) function
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A GENERAL NOTE: RELATIONS FOR INVERSE SINE, COSINE, AND
TANGENT FUNCTIONS

For angles in the interval , if , then .
For angles in the interval [0, π], if , then .
For angles in the interval , if , then .

EXAMPLE 1: WRITING A RELATION FOR AN INVERSE FUNCTION

Given , write a relation involving the inverse sine.
Answer
Use the relation for the inverse sine. If , then .

Figure 6. The tangent function and inverse tangent (or arctangent) function
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In this problem, , and .

HOW TO: GIVEN A “SPECIAL” INPUT VALUE, EVALUATE AN INVERSE
TRIGONOMETRIC FUNCTION.

1. Find angle x for which the original trigonometric function has an output equal to the given input for the
inverse trigonometric function.

2. If x is not in the defined range of the inverse, find another angle y that is in the defined range and has
the same sine, cosine, or tangent as x, depending on which corresponds to the given inverse function.

EXAMPLE 2: EVALUATING INVERSE TRIGONOMETRIC FUNCTIONS FOR
SPECIAL INPUT VALUES

Evaluate each of the following.
a. 

b. 

c. 

d. 
Answer

a. Evaluating  is the same as determining the angle that would have a sine value of . In
other words, what angle x would satisfy ? There are multiple values that would satisfy
this relationship, such as  and , but we know we need the angle in the interval , so the
answer will be . Remember that the inverse is a function, so for each input, we will
get exactly one output.
b. To evaluate , we know that  and  both have a sine value of , but neither
is in the interval . For that, we need the negative angle coterminal with 

.

Try It

Given , write a relation involving the inverse cosine.
Answer

Finding the Exact Value of Expressions Involving the Inverse
Sine, Cosine, and Tangent Functions

Now that we can identify inverse functions, we will learn to evaluate them. For most values in their domains,
we must evaluate the inverse trigonometric functions by using a calculator, interpolating from a table, or
using some other numerical technique. Just as we did with the original trigonometric functions, we can give
exact values for the inverse functions when we are using the special angles, specifically 

, and their reflections into other quadrants.
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c. To evaluate , we are looking for an angle in the interval [0,π] with a cosine value of 

. The angle that satisfies this is .

d. Evaluating , we are looking for an angle in the interval  with a tangent value of
1. The correct angle is .

An interactive or media element has been excluded from this version of the text. You can view it online
here: https://courses.lumenlearning.com/precalculus/?p=14188

TRY IT

EXAMPLE 3: EVALUATING THE INVERSE SINE ON A CALCULATOR

Evaluate  using a calculator.
Answer
Because the output of the inverse function is an angle, the calculator will give us a degree value if in
degree mode and a radian value if in radian mode. Calculators also use the same domain restrictions on

Try It

Evaluate each of the following.

1. 
2. 
3. 
4. 

Answer

1. ;

2. 

3. 

4. 

Using a Calculator to Evaluate Inverse Trigonometric Functions

To evaluate inverse trigonometric functions that do not involve the special angles discussed previously,
we will need to use a calculator or other type of technology. Most scientific calculators and calculator-
emulating applications have specific keys or buttons for the inverse sine, cosine, and tangent functions.
These may be labeled, for example, SIN-1, ARCSIN, or ASIN.

In the previous chapter, we worked with trigonometry on a right triangle to solve for the sides of a triangle
given one side and an additional angle. Using the inverse trigonometric functions, we can solve for the
angles of a right triangle given two sides, and we can use a calculator to find the values to several decimal
places.

In these examples and exercises, the answers will be interpreted as angles and we will use θ as the
independent variable. The value displayed on the calculator may be in degrees or radians, so be sure to set
the mode appropriate to the application.
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the angles as we are using.
In radian mode, . In degree mode, . Note that in calculus and
beyond we will use radians in almost all cases.

An interactive or media element has been excluded from this version of the text. You can view it online
here: https://courses.lumenlearning.com/precalculus/?p=14188

TRY IT

HOW TO: GIVEN TWO SIDES OF A RIGHT TRIANGLE LIKE THE ONE
SHOWN IN FIGURE 7, FIND AN ANGLE.

Figure 7

1. If one given side is the hypotenuse of length h and the side of length a adjacent to the desired angle
is given, use the equation .

2. If one given side is the hypotenuse of length h and the side of length p opposite to the desired angle
is given, use the equation .

3. If the two legs (the sides adjacent to the right angle) are given, then use the equation .

EXAMPLE 4: APPLYING THE INVERSE COSINE TO A RIGHT TRIANGLE

Try It

Evaluate  using a calculator.
Answer

1.9823 or 113.578°
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Solve the triangle in Figure 8 for the angle θ.

Figure 8

Answer
Because we know the hypotenuse and the side adjacent to the angle, it makes sense for us to use the
cosine function.

An interactive or media element has been excluded from this version of the text. You can view it online
here: https://courses.lumenlearning.com/precalculus/?p=14188

TRY IT

Try It

Solve the triangle in Figure 9 for the angle θ.

Figure 9

Answer

 radians
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A GENERAL NOTE: COMPOSITIONS OF A TRIGONOMETRIC FUNCTION
AND ITS INVERSE

Q & A

IS IT CORRECT THAT ?

No. This equation is correct if x belongs to the restricted domain , but sine is defined for all real
input values, and for x outside the restricted interval, the equation is not correct because its inverse
always returns a value in [latex]\left[−\frac{\pi}{2},\frac{\pi}{2}\right][\latex]. The situation is similar for cosine
and tangent and their inverses. For example, .

HOW TO:

Given an expression of the form  where , evaluate.

1. If θ is in the restricted domain of f, then .
2. If not, then find an angle ϕ within the restricted domain of f such that . Then 

.

EXAMPLE 5: USING INVERSE TRIGONOMETRIC FUNCTIONS

Finding Exact Values of Composite Functions with Inverse
Trigonometric Functions

There are times when we need to compose a trigonometric function with an inverse trigonometric function.
In these cases, we can usually find exact values for the resulting expressions without resorting to a
calculator. Even when the input to the composite function is a variable or an expression, we can often find
an expression for the output. To help sort out different cases, let f(x) and g(x) be two different trigonometric
functions belonging to the set {sin(x), cos(x), tan(x)} and let  and  be their inverses.

Evaluating Compositions of the Form  and 

For any trigonometric function,  for all y in the proper domain for the given function. This
follows from the definition of the inverse and from the fact that the range of f was defined to be identical to
the domain of . However, we have to be a little more careful with expressions of the form .
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Evaluate the following:

1. 
2. 
3. 
4. 

Answer

1.  is in , so .
2.  is not in , but , so .
3.  is in [0,π], so .
4.  is not in [0,π], but  because cosine is an even function.

Try It

Evaluate  and .
Answer

Evaluating Compositions of the Form 

Now that we can compose a trigonometric function with its inverse, we can explore how to evaluate a
composition of a trigonometric function and the inverse of another trigonometric function. We will begin with
compositions of the form . For special values of x, we can exactly evaluate the inner function and
then the outer, inverse function. However, we can find a more general approach by considering the relation
between the two acute angles of a right triangle where one is θ, making the other . Consider the sine
and cosine of each angle of the right triangle in Figure 10.

Figure 10. Right triangle illustrating the cofunction relationships

Because , we have . If θ is not in this domain,
then we need to find another angle that has the same cosine as θ and does belong to the restricted domain;
we then subtract this angle from . Similarly, , so 

. These are just the function-cofunction relationships presented in
another way.
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HOW TO: GIVEN FUNCTIONS OF THE FORM 
, EVALUATE THEM.

1. If x is in [0,π], then .
2. If x is not in [0,π], then find another angle y in [0,π] such that .

3. If x is in , then .
4. If x is not in , then find another angle y in  such that .

EXAMPLE 6: EVALUATING THE COMPOSITION OF AN INVERSE SINE WITH
A COSINE

Evaluate 

1. by direct evaluation.
2. by the method described previously.

Answer

1. Here, we can directly evaluate the inside of the composition.

Now, we can evaluate the inverse function as we did earlier.

2. We have , , and

An interactive or media element has been excluded from this version of the text. You can view it online
here: https://courses.lumenlearning.com/precalculus/?p=14188

TRY IT

Try It

Evaluate .
Answer
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EXAMPLE 7: EVALUATING THE COMPOSITION OF A SINE WITH AN
INVERSE COSINE

Find an exact value for .
Answer
Beginning with the inside, we can say there is some angle such that , which means 

, and we are looking for . We can use the Pythagorean identity to do this.

Since  is in quadrant I,  must be positive, so the solution is . See Figure 11.

Figure 11. Right triangle illustrating that if , then 
We know that the inverse cosine always gives an angle on the interval [0, π], so we know that the sine of
that angle must be positive; therefore .

EXAMPLE 8: EVALUATING THE COMPOSITION OF A SINE WITH AN
INVERSE TANGENT

Find an exact value for .

Evaluating Compositions of the Form 

To evaluate compositions of the form , where f and g are any two of the functions sine, cosine, or
tangent and x is any input in the domain of , we have exact formulas, such as .
When we need to use them, we can derive these formulas by using the trigonometric relations between the
angles and sides of a right triangle, together with the use of Pythagoras’s relation between the lengths of the
sides. We can use the Pythagorean identity, , to solve for one when given the other. We
can also use the inverse trigonometric functions to find compositions involving algebraic expressions.

Try It

Evaluate .
Answer
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Answer
While we could use a similar technique as in Example 6, we will demonstrate a different technique here.
From the inside, we know there is an angle such that . We can envision this as the opposite and
adjacent sides on a right triangle, as shown in Figure 12.

Figure 12. A right triangle with two sides known

Using the Pythagorean Theorem, we can find the hypotenuse of this triangle.

An interactive or media element has been excluded from this version of the text. You can view it online
here: https://courses.lumenlearning.com/precalculus/?p=14188

TRY IT

EXAMPLE 9: FINDING THE COSINE OF THE INVERSE SINE OF AN
ALGEBRAIC EXPRESSION

Find a simplified expression for  for .
Answer
We know there is an angle θ such that 

Try It

Evaluate .
Answer
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arccosine

Because we know that the inverse sine must give an angle on the interval , we can deduce that
the cosine of that angle must be positive.

An interactive or media element has been excluded from this version of the text. You can view it online
here: https://courses.lumenlearning.com/precalculus/?p=14188

TRY IT

Try It

Find a simplified expression for  for .

Answer

Key Concepts

An inverse function is one that “undoes” another function. The domain of an inverse function is the
range of the original function and the range of an inverse function is the domain of the original function.
Because the trigonometric functions are not one-to-one on their natural domains, inverse trigonometric
functions are defined for restricted domains.
For any trigonometric function , if , then . However,  only implies 

 if x is in the restricted domain of f.
Special angles are the outputs of inverse trigonometric functions for special input values; for example, 

.
A calculator will return an angle within the restricted domain of the original trigonometric function.
Inverse functions allow us to find an angle when given two sides of a right triangle.
In function composition, if the inside function is an inverse trigonometric function, then there are exact
expressions; for example, .
If the inside function is a trigonometric function, then the only possible combinations are 

 if  and  if .
When evaluating the composition of a trigonometric function with an inverse trigonometric function, draw
a reference triangle to assist in determining the ratio of sides that represents the output of the
trigonometric function.
When evaluating the composition of a trigonometric function with an inverse trigonometric function, you
may use trig identities to assist in determining the ratio of sides.

Glossary

another name for the inverse cosine; 
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arcsine

arctangent

inverse cosine function

inverse sine function

inverse tangent function

another name for the inverse sine; 

another name for the inverse tangent; 

the function , which is the inverse of the cosine function and the angle that
has a cosine equal to a given number

the function , which is the inverse of the sine function and the angle that has a
sine equal to a given number

the function , which is the inverse of the tangent function and the angle
that has a tangent equal to a given number
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MODULE 9: TRIGONOMETRIC
IDENTITIES AND EQUATIONS

SOLVING TRIGONOMETRIC EQUATIONS WITH
IDENTITIES

LEARNING OUTCOMES

Verify the fundamental trigonometric identities.
Simplify trigonometric expressions using algebra and the identities.

Verify the fundamental trigonometric identities

Identities enable us to simplify complicated expressions. They are the basic tools of trigonometry used in
solving trigonometric equations, just as factoring, finding common denominators, and using special formulas
are the basic tools of solving algebraic equations. In fact, we use algebraic techniques constantly to simplify
trigonometric expressions. Basic properties and formulas of algebra, such as the difference of squares
formula and the perfect squares formula, will simplify the work involved with trigonometric expressions and
equations. We already know that all of the trigonometric functions are related because they all are defined in
terms of the unit circle. Consequently, any trigonometric identity can be written in many ways.

To verify the trigonometric identities, we usually start with the more complicated side of the equation and
essentially rewrite the expression until it has been transformed into the same expression as the other side of
the equation. Sometimes we have to factor expressions, expand expressions, find common denominators,
or use other algebraic strategies to obtain the desired result. In this first section, we will work with the
fundamental identities: the Pythagorean identities, the even-odd identities, the reciprocal identities, and the
quotient identities.

We will begin with the Pythagorean identities, which are equations involving trigonometric functions based
on the properties of a right triangle. We have already seen and used the first of these identifies, but now we
will also use additional identities.

Pythagorean Identities

The second and third identities can be obtained by manipulating the first. The identity
is found by rewriting the left side of the equation in terms of sine and cosine.
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Prove: [latex]1+{\cot }^{2}\theta ={\csc }^{2}\theta /latex]

Similarly,  can be obtained by rewriting the left side of this identity in terms of sine and
cosine. This gives

The next set of fundamental identities is the set of even-odd identities. The even-odd identities relate the
value of a trigonometric function at a given angle to the value of the function at the opposite angle and
determine whether the identity is odd or even.

Even-Odd Identities

Recall that an odd function is one in which  for all  in the domain of . The sine function
is an odd function because . The graph of an odd function is symmetric about the origin.
For example, consider corresponding inputs of  and . The output of  is opposite the output of 

. Thus,
 and 

This is shown in Figure 2.

Figure 2. Graph of 
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Recall that an even function is one in which
 for all x in the domain of f.

The graph of an even function is symmetric about the y-axis. The cosine function is an even function
because .
For example, consider corresponding inputs  and . The output of  is the same as the output of 

. Thus,

See Figure 3.

Figure 3. Graph of 

For all  in the domain of the sine and cosine functions, respectively, we can state the following:
Since , sine is an odd function.
Since, , cosine is an even function.

The other even-odd identities follow from the even and odd nature of the sine and cosine functions. For
example, consider the tangent identity, . We can interpret the tangent of a negative angle
as . Tangent is therefore an odd function, which means that 

 for all  in the domain of the tangent function.

The cotangent identity, , also follows from the sine and cosine identities. We can interpret
the cotangent of a negative angle as . Cotangent is therefore an odd
function, which means that  for all  in the domain of the cotangent function.

The cosecant function is the reciprocal of the sine function, which means that the cosecant of a negative
angle will be interpreted as . The cosecant function is therefore odd.

Finally, the secant function is the reciprocal of the cosine function, and the secant of a negative angle is
interpreted as . The secant function is therefore even.

To sum up, only two of the trigonometric functions, cosine and secant, are even. The other four functions are
odd, verifying the even-odd identities.

The next set of fundamental identities is the set of reciprocal identities, which, as their name implies, relate
trigonometric functions that are reciprocals of each other.

Reciprocal Identities
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A GENERAL NOTE: SUMMARIZING TRIGONOMETRIC IDENTITIES

The Pythagorean identities are based on the properties of a right triangle.

The even-odd identities relate the value of a trigonometric function at a given angle to the value of the
function at the opposite angle.

The reciprocal identities define reciprocals of the trigonometric functions.

The quotient identities define the relationship among the trigonometric functions.

EXAMPLE 1: GRAPHING THE EQUATIONS OF AN IDENTITY

Graph both sides of the identity . In other words, on the graphing calculator, graph 
and .
Answer

The final set of identities is the set of quotient identities, which define relationships among certain
trigonometric functions and can be very helpful in verifying other identities.

Quotient Identities

The reciprocal and quotient identities are derived from the definitions of the basic trigonometric functions.

876



 

Analysis of the Solution

We see only one graph because both expressions generate the same image. One is on top of the other.
This is a good way to prove any identity. If both expressions give the same graph, then they must be
identities.

HOW TO: GIVEN A TRIGONOMETRIC IDENTITY, VERIFY THAT IT IS TRUE.

1. Work on one side of the equation. It is usually better to start with the more complex side, as it is easier
to simplify than to build.

2. Look for opportunities to factor expressions, square a binomial, or add fractions.
3. Noting which functions are in the final expression, look for opportunities to use the identities and make

the proper substitutions.
4. If these steps do not yield the desired result, try converting all terms to sines and cosines.

EXAMPLE 2: VERIFYING A TRIGONOMETRIC IDENTITY

Verify .
Answer
We will start on the left side, as it is the more complicated side:

Analysis of the Solution

This identity was fairly simple to verify, as it only required writing  in terms of  and .

877



EXAMPLE 3: VERIFYING THE EQUIVALENCY USING THE EVEN-ODD
IDENTITIES

Verify the following equivalency using the even-odd identities:

Answer
Working on the left side of the equation, we have

EXAMPLE 4: VERIFYING A TRIGONOMETRIC IDENTITY INVOLVING SEC2Θ

Verify the identity 
Answer
As the left side is more complicated, let’s begin there.

There is more than one way to verify an identity. Here is another possibility. Again, we can start with the
left side.

Try It

Verify the identity .
Answer
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EXAMPLE 5: CREATING AND VERIFYING AN IDENTITY

Create an identity for the expression  by rewriting strictly in terms of sine.
Answer
There are a number of ways to begin, but here we will use the quotient and reciprocal identities to rewrite
the expression:

Thus,

EXAMPLE 6: VERIFYING AN IDENTITY USING ALGEBRA AND EVEN/ODD
IDENTITIES

Verify the identity:

Answer
Let’s start with the left side and simplify:

Analysis

In the first method, we used the identity  and continued to simplify. In the second method,

we split the fraction, putting both terms in the numerator over the common denominator. This problem
illustrates that there are multiple ways we can verify an identity. Employing some creativity can sometimes
simplify a procedure. As long as the substitutions are correct, the answer will be the same.

Try It

Show that .
Answer
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EXAMPLE 7: VERIFYING AN IDENTITY INVOLVING COSINES AND
COTANGENTS

Verify the identity: .
Answer
We will work on the left side of the equation.

Try It

Verify the identity .
Answer

Simplify trigonometric expressions using algebra and the
identities

We have seen that algebra is very important in verifying trigonometric identities, but it is just as critical in
simplifying trigonometric expressions before solving. Being familiar with the basic properties and formulas of
algebra, such as the difference of squares formula, the perfect square formula, or substitution, will simplify
the work involved with trigonometric expressions and equations.
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EXAMPLE 8: WRITING THE TRIGONOMETRIC EXPRESSION AS AN
ALGEBRAIC EXPRESSION

Write the following trigonometric expression as an algebraic expression: .
Answer
Notice that the pattern displayed has the same form as a standard quadratic expression, .
Letting , we can rewrite the expression as follows:

This expression can be factored as . If it were set equal to zero and we wanted to solve
the equation, we would use the zero factor property and solve each factor for . At this point, we would
replace  with  and solve for .

EXAMPLE 9: REWRITING A TRIGONOMETRIC EXPRESSION USING THE
DIFFERENCE OF SQUARES

Rewrite the trigonometric expression: .
Answer
Notice that both the coefficient and the trigonometric expression in the first term are squared, and the
square of the number 1 is 1. This is the difference of squares. Thus,

EXAMPLE 10: SIMPLIFY BY REWRITING AND USING SUBSTITUTION

Simplify the expression by rewriting and using identities:

For example, the equation  resembles the equation , which
uses the factored form of the difference of squares. Using algebra makes finding a solution straightforward
and familiar. We can set each factor equal to zero and solve. This is one example of recognizing algebraic
patterns in trigonometric expressions or equations.

Another example is the difference of squares formula, , which is widely used in
many areas other than mathematics, such as engineering, architecture, and physics. We can also create our
own identities by continually expanding an expression and making the appropriate substitutions. Using
algebraic properties and formulas makes many trigonometric equations easier to understand and solve.

Analysis

If this expression were written in the form of an equation set equal to zero, we could solve each factor using
the zero factor property. We could also use substitution like we did in the previous problem and let ,
rewrite the expression as , and factor . Then replace  with  and solve for the
angle.

Try It

Rewrite the trigonometric expression: .
Answer

This is a difference of squares formula: .
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Answer
We can start with the Pythagorean identity.

Now we can simplify by substituting  for . We have

An interactive or media element has been excluded from this version of the text. You can view it online
here: https://courses.lumenlearning.com/precalculus/?p=14195

TRY IT

Try It

Use algebraic techniques to verify the identity: .

(Hint: Multiply the numerator and denominator on the left side by ).
Answer

Key Equations
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Pythagorean identities

Even-odd identities

Reciprocal identities

Quotient identities

Key Concepts

There are multiple ways to represent a trigonometric expression. Verifying the identities illustrates how
expressions can be rewritten to simplify a problem.
Graphing both sides of an identity will verify it.
Simplifying one side of the equation to equal the other side is another method for verifying an identity.
The approach to verifying an identity depends on the nature of the identity. It is often useful to begin on
the more complex side of the equation.
We can create an identity by simplifying an expression and then verifying it.
Verifying an identity may involve algebra with the fundamental identities.
Algebraic techniques can be used to simplify trigonometric expressions. We use algebraic techniques
throughout this text, as they consist of the fundamental rules of mathematics.

Glossary

even-odd identities

set of equations involving trigonometric functions such that if , the identity is odd, and if
, the identity is even

Pythagorean identities

set of equations involving trigonometric functions based on the right triangle properties

quotient identities
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pair of identities based on the fact that tangent is the ratio of sine and cosine, and cotangent is the ratio
of cosine and sine

reciprocal identities

set of equations involving the reciprocals of basic trigonometric definitions
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SUM AND DIFFERENCE IDENTITIES

LEARNING OUTCOMES

Use sum and difference formulas for cosine.
Use sum and difference formulas for sine.
Use sum and difference formulas for tangent.
Use sum and difference formulas for cofunctions.
Use sum and difference formulas to verify identities.

Use sum and di�erence formulas for cosine

Finding the exact value of the sine, cosine, or tangent of an angle is often easier if we can rewrite the given
angle in terms of two angles that have known trigonometric values. We can use the special angles, which
we can review in the unit circle shown in Figure 2.
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Figure 2. The Unit Circle

We will begin with the sum and difference formulas for cosine, so that we can find the cosine of a given
angle if we can break it up into the sum or difference of two of the special angles.

Sum formula for cosine

Difference formula for cosine

First, we will prove the difference formula for cosines. Let’s consider two points on the unit circle. Point  is
at an angle  from the positive x-axis with coordinates  and point  is at an angle of  from the
positive x-axis with coordinates . Note the measure of angle  is .

Label two more points:  at an angle of  from the positive x-axis with coordinates 
; and point  with coordinates . Triangle  is a rotation of triangle 

and thus the distance from  to  is the same as the distance from  to .
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A GENERAL NOTE: SUM AND DIFFERENCE FORMULAS FOR COSINE

These formulas can be used to calculate the cosine of sums and differences of angles.

Figure 3. We can find the distance from  to  using the distance formula.

Then we apply the Pythagorean identity and simplify.

Similarly, using the distance formula we can find the distance from  to .

Applying the Pythagorean identity and simplifying we get:

Because the two distances are the same, we set them equal to each other and simplify.

Finally we subtract  from both sides and divide both sides by .

Thus, we have the difference formula for cosine. We can use similar methods to derive the cosine of the
sum of two angles.
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HOW TO: GIVEN TWO ANGLES, FIND THE COSINE OF THE DIFFERENCE
BETWEEN THE ANGLES.

1. Write the difference formula for cosine.
2. Substitute the values of the given angles into the formula.
3. Simplify.

EXAMPLE 1: FINDING THE EXACT VALUE USING THE FORMULA FOR THE
COSINE OF THE DIFFERENCE OF TWO ANGLES

Using the formula for the cosine of the difference of two angles, find the exact value of .
Answer
Use the formula for the cosine of the difference of two angles. We have

EXAMPLE 2: FINDING THE EXACT VALUE USING THE FORMULA FOR THE
SUM OF TWO ANGLES FOR COSINE

Find the exact value of .
Answer
As , we can evaluate  as . Thus,

Try It

Find the exact value of .
Answer
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An interactive or media element has been excluded from this version of the text. You can view it online
here: https://courses.lumenlearning.com/precalculus/?p=14204

TRY IT

A GENERAL NOTE: SUM AND DIFFERENCE FORMULAS FOR SINE

These formulas can be used to calculate the sines of sums and differences of angles.

HOW TO: GIVEN TWO ANGLES, FIND THE SINE OF THE DIFFERENCE
BETWEEN THE ANGLES.

1. Write the difference formula for sine.
2. Substitute the given angles into the formula.
3. Simplify.

EXAMPLE 3: USING SUM AND DIFFERENCE IDENTITIES TO EVALUATE
THE DIFFERENCE OF ANGLES

Use the sum and difference identities to evaluate the difference of the angles and show that part a equals
part b.

1. 
2. 

Answer

1. Let’s begin by writing the formula and substitute the given angles.

Next, we need to find the values of the trigonometric expressions.

Try It

Find the exact value of .
Answer

Use sum and di�erence formulas for sine

The sum and difference formulas for sine can be derived in the same manner as those for cosine, and
they resemble the cosine formulas.
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Now we can substitute these values into the equation and simplify.

2. Again, we write the formula and substitute the given angles.

Next, we find the values of the trigonometric expressions.

Now we can substitute these values into the equation and simplify.

EXAMPLE 4: FINDING THE EXACT VALUE OF AN EXPRESSION INVOLVING
AN INVERSE TRIGONOMETRIC FUNCTION

Find the exact value of .
Answer
The pattern displayed in this problem is . Let  and . Then we can write

We will use the Pythagorean identities to find  and .

Using the sum formula for sine,
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An interactive or media element has been excluded from this version of the text. You can view it online
here: https://courses.lumenlearning.com/precalculus/?p=14204

TRY IT

A GENERAL NOTE: SUM AND DIFFERENCE FORMULAS FOR TANGENT

The sum and difference formulas for tangent are:

Use sum and di�erence formulas for tangent

Finding exact values for the tangent of the sum or difference of two angles is a little more complicated, but
again, it is a matter of recognizing the pattern.

Finding the sum of two angles formula for tangent involves taking quotient of the sum formulas for sine and
cosine and simplifying. Recall, .

Let’s derive the sum formula for tangent.

We can derive the difference formula for tangent in a similar way.
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HOW TO: GIVEN TWO ANGLES, FIND THE TANGENT OF THE SUM OF THE
ANGLES.

1. Write the sum formula for tangent.
2. Substitute the given angles into the formula.
3. Simplify.

EXAMPLE 5: FINDING THE EXACT VALUE OF AN EXPRESSION INVOLVING
TANGENT

Find the exact value of .
Answer
Let’s first write the sum formula for tangent and substitute the given angles into the formula.

Next, we determine the individual tangents within the formula:

So we have

An interactive or media element has been excluded from this version of the text. You can view it online
here: https://courses.lumenlearning.com/precalculus/?p=14204

TRY IT

Try It

Find the exact value of .
Answer
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EXAMPLE 6: FINDING MULTIPLE SUMS AND DIFFERENCES OF ANGLES

Given , find

1. 
2. 
3. 
4. 

Answer
We can use the sum and difference formulas to identify the sum or difference of angles when the ratio of
sine, cosine, or tangent is provided for each of the individual angles. To do so, we construct what is called
a reference triangle to help find each component of the sum and difference formulas.

1. To find , we begin with  and . The side opposite  has length 3, the
hypotenuse has length 5, and  is in the first quadrant. Using the Pythagorean Theorem, we can find
the length of side 

Figure 4

Since  and , the side adjacent to  is , the hypotenuse is 13, and  is in
the third quadrant. Again, using the Pythagorean Theorem, we have

2. 

Since  is in the third quadrant, .
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Figure 5

The next step is finding the cosine of  and the sine of . The cosine of  is the adjacent side over
the hypotenuse. We can find it from the triangle in Figure 5:  . We can also find the sine of 
from the triangle in Figure 5, as opposite side over the hypotenuse: . Now we are ready
to evaluate .
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3. We can find  in a similar manner. We substitute the values according to the formula.

4. For , if  and , then

If  and ,
then

Then,

5. To find , we have the values we need. We can substitute them in and evaluate.

Analysis of the Solution

A common mistake when addressing problems such as this one is that we may be tempted to think that 
and  are angles in the same triangle, which of course, they are not. Also note that
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A GENERAL NOTE: COFUNCTION IDENTITIES

The cofunction identities are summarized in the table below.

Use sum and difference formulas for cofunctions

Now that we can find the sine, cosine, and tangent functions for the sums and differences of angles, we can
use them to do the same for their cofunctions. You may recall that if the sum of two positive angles is ,
those two angles are complements, and the sum of the two acute angles in a right triangle is , so they are
also complements. In Figure 6, notice that if one of the acute angles is labeled as , then the other acute
angle must be labeled .

Figure 6. From these relationships, the cofunction identities are formed.

Notice also that  opposite over hypotenuse. Thus, when two angles are complimentary,
we can say that the sine of  equals the cofunction of the complement of . Similarly, tangent and
cotangent are cofunctions, and secant and cosecant are cofunctions.

Notice that the formulas in the table may also justified algebraically using the sum and difference formulas.
For example, using

,

we can write
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EXAMPLE 7: FINDING A COFUNCTION WITH THE SAME VALUE AS THE
GIVEN EXPRESSION

Write  in terms of its cofunction.
Answer
The cofunction of . Thus,

An interactive or media element has been excluded from this version of the text. You can view it online
here: https://courses.lumenlearning.com/precalculus/?p=14204

TRY IT

HOW TO: GIVEN AN IDENTITY, VERIFY USING SUM AND DIFFERENCE
FORMULAS.

1. Begin with the expression on the side of the equal sign that appears most complex. Rewrite that
expression until it matches the other side of the equal sign. Occasionally, we might have to alter both
sides, but working on only one side is the most efficient.

2. Look for opportunities to use the sum and difference formulas.
3. Rewrite sums or differences of quotients as single quotients.
4. If the process becomes cumbersome, rewrite the expression in terms of sines and cosines.

EXAMPLE 8: VERIFYING AN IDENTITY INVOLVING SINE

Verify the identity .
Answer
We see that the left side of the equation includes the sines of the sum and the difference of angles.

Try It

Write  in terms of its cofunction.
Answer

Use sum and di�erence formulas to verify identities

Verifying an identity means demonstrating that the equation holds for all values of the variable. It helps to be
very familiar with the identities or to have a list of them accessible while working the problems.
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We can rewrite each using the sum and difference formulas.

We see that the identity is verified.

EXAMPLE 9: VERIFYING AN IDENTITY INVOLVING TANGENT

Verify the following identity.

Answer
We can begin by rewriting the numerator on the left side of the equation.

We see that the identity is verified. In many cases, verifying tangent identities can successfully be
accomplished by writing the tangent in terms of sine and cosine.

EXAMPLE 10: USING SUM AND DIFFERENCE FORMULAS TO SOLVE AN
APPLICATION PROBLEM

Let  and  denote two non-vertical intersecting lines, and let  denote the acute angle between 
and . Show that

where  and  are the slopes of  and  respectively. (Hint: Use the fact that  and 
. )

Try It

Verify the identity: .
Answer
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EXAMPLE 11: INVESTIGATING A GUY-WIRE PROBLEM

Figure 7

Answer
Using the difference formula for tangent, this problem does not seem as daunting as it might.
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Figure 8

For a climbing wall, a guy-wire  is attached 47 feet high on a vertical pole. Added support is provided by
another guy-wire  attached 40 feet above ground on the same pole. If the wires are attached to the
ground 50 feet from the pole, find the angle  between the wires. 
Answer
Let’s first summarize the information we can gather from the diagram. As only the sides adjacent to the
right angle are known, we can use the tangent function. Notice that , and 

. We can then use difference formula for tangent.

Now, substituting the values we know into the formula, we have

Use the distributive property, and then simplify the functions.

Now we can calculate the angle in degrees.

Analysis of the Solution
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Occasionally, when an application appears that includes a right triangle, we may think that solving is a
matter of applying the Pythagorean Theorem. That may be partially true, but it depends on what the
problem is asking and what information is given.

Key Equations

Sum Formula for Cosine

Difference Formula for Cosine

Sum Formula for Sine

Difference Formula for Sine

Sum Formula for Tangent

Difference Formula for Tangent

Cofunction identities

Key Concepts

The sum formula for cosines states that the cosine of the sum of two angles equals the product of the
cosines of the angles minus the product of the sines of the angles. The difference formula for cosines
states that the cosine of the difference of two angles equals the product of the cosines of the angles
plus the product of the sines of the angles.
The sum and difference formulas can be used to find the exact values of the sine, cosine, or tangent of
an angle.
The sum formula for sines states that the sine of the sum of two angles equals the product of the sine of
the first angle and cosine of the second angle plus the product of the cosine of the first angle and the
sine of the second angle. The difference formula for sines states that the sine of the difference of two
angles equals the product of the sine of the first angle and cosine of the second angle minus the
product of the cosine of the first angle and the sine of the second angle.
The sum and difference formulas for sine and cosine can also be used for inverse trigonometric
functions.
The sum formula for tangent states that the tangent of the sum of two angles equals the sum of the
tangents of the angles divided by 1 minus the product of the tangents of the angles. The difference
formula for tangent states that the tangent of the difference of two angles equals the difference of the
tangents of the angles divided by 1 plus the product of the tangents of the angles.
The Pythagorean Theorem along with the sum and difference formulas can be used to find multiple
sums and differences of angles.
The cofunction identities apply to complementary angles and pairs of reciprocal functions.
Sum and difference formulas are useful in verifying identities.
Application problems are often easier to solve by using sum and difference formulas.
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DOUBLE ANGLE, HALF ANGLE, AND
REDUCTION FORMULAS

LEARNING OUTCOMES

Use double-angle formulas to find exact values.
Use double-angle formulas to verify identities.
Use reduction formulas to simplify an expression.
Use half-angle formulas to find exact values.

Using Double-Angle Formulas to Find Exact Values

In the previous section, we used addition and subtraction formulas for trigonometric functions. Now, we take
another look at those same formulas. The double-angle formulas are a special case of the sum formulas,
where . Deriving the double-angle formula for sine begins with the sum formula,

If we let , then we have

Deriving the double-angle for cosine gives us three options. First, starting from the sum formula, 
, and letting , we have

Using the Pythagorean properties, we can expand this double-angle formula for cosine and get two more
interpretations. The first one is:

The second interpretation is:

Similarly, to derive the double-angle formula for tangent, replacing  in the sum formula gives
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A GENERAL NOTE: DOUBLE-ANGLE FORMULAS

The double-angle formulas are summarized as follows:

HOW TO: GIVEN THE TANGENT OF AN ANGLE AND THE QUADRANT IN
WHICH IT IS LOCATED, USE THE DOUBLE-ANGLE FORMULAS TO FIND

THE EXACT VALUE.

1. Draw a triangle to reflect the given information.
2. Determine the correct double-angle formula.
3. Substitute values into the formula based on the triangle.
4. Simplify.

EXAMPLE 1: USING A DOUBLE-ANGLE FORMULA TO FIND THE EXACT
VALUE INVOLVING TANGENT

Given that  and  is in quadrant II, find the following:

1. 
2. 
3. 

Answer
If we draw a triangle to reflect the information given, we can find the values needed to solve the problems
on the image. We are given , such that  is in quadrant II. The tangent of an angle is equal to
the opposite side over the adjacent side, and because  is in the second quadrant, the adjacent side is on
the x-axis and is negative. Use the Pythagorean Theorem to find the length of the hypotenuse:

Now we can draw a triangle similar to the one shown in Figure 2.
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Figure 2

1. Let’s begin by writing the double-angle formula for sine.

We see that we to need to find  and . Based on Figure 2, we see that the hypotenuse equals
5, so , and . Substitute these values into the equation, and simplify.
Thus,

2. Write the double-angle formula for cosine.

Again, substitute the values of the sine and cosine into the equation, and simplify.

3. Write the double-angle formula for tangent.

In this formula, we need the tangent, which we were given as . Substitute this value into
the equation, and simplify.
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An interactive or media element has been excluded from this version of the text. You can view it online
here: https://courses.lumenlearning.com/precalculus/?p=14214

TRY IT

EXAMPLE 2: USING THE DOUBLE-ANGLE FORMULA FOR COSINE
WITHOUT EXACT VALUES

Use the double-angle formula for cosine to write  in terms of .
Answer

Analysis of the Solution

This example illustrates that we can use the double-angle formula without having exact values. It
emphasizes that the pattern is what we need to remember and that identities are true for all values in the
domain of the trigonometric function.

EXAMPLE 3: USING THE DOUBLE-ANGLE FORMULAS TO ESTABLISH AN
IDENTITY

Try It

Given , with  in quadrant I, find .
Answer

Using Double-Angle Formulas to Verify Identities

Establishing identities using the double-angle formulas is performed using the same steps we used to derive
the sum and difference formulas. Choose the more complicated side of the equation and rewrite it until it
matches the other side.
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Establish the following identity using double-angle formulas:

Answer
We will work on the right side of the equal sign and rewrite the expression until it matches the left side.

Analysis of the Solution

This process is not complicated, as long as we recall the perfect square formula from algebra:

where  and . Part of being successful in mathematics is the ability to recognize patterns.
While the terms or symbols may change, the algebra remains consistent.

EXAMPLE 4: VERIFYING A DOUBLE-ANGLE IDENTITY FOR TANGENT

Verify the identity:

Answer
In this case, we will work with the left side of the equation and simplify or rewrite until it equals the right
side of the equation.

ANALYSIS OF THE SOLUTION

Here is a case where the more complicated side of the initial equation appeared on the right, but we chose
to work the left side. However, if we had chosen the left side to rewrite, we would have been working
backwards to arrive at the equivalency. For example, suppose that we wanted to show

Let’s work on the right side.

Try It

Establish the identity: .
Answer

905



When using the identities to simplify a trigonometric expression or solve a trigonometric equation, there
are usually several paths to a desired result. There is no set rule as to what side should be manipulated.
However, we should begin with the guidelines set forth earlier.

A GENERAL NOTE: REDUCTION FORMULAS

Try It

Verify the identity: .
Answer

Use Reduction Formulas to Simplify an Expression

The double-angle formulas can be used to derive the reduction formulas, which are formulas we can use
to reduce the power of a given expression involving even powers of sine or cosine. They allow us to rewrite
the even powers of sine or cosine in terms of the first power of cosine. These formulas are especially
important in higher-level math courses, calculus in particular. Also called the power-reducing formulas, three
identities are included and are easily derived from the double-angle formulas.

We can use two of the three double-angle formulas for cosine to derive the reduction formulas for sine and
cosine. Let’s begin with . Solve for 

Next, we use the formula . Solve for 

The last reduction formula is derived by writing tangent in terms of sine and cosine:
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The reduction formulas are summarized as follows:

EXAMPLE 5: WRITING AN EQUIVALENT EXPRESSION NOT CONTAINING
POWERS GREATER THAN 1

Write an equivalent expression for  that does not involve any powers of sine or cosine greater than
1.
Answer
We will apply the reduction formula for cosine twice.

Analysis of the Solution

The solution is found by using the reduction formula twice, as noted, and the perfect square formula from
algebra.

EXAMPLE 6: USING THE POWER-REDUCING FORMULAS TO PROVE AN
IDENTITY

Use the power-reducing formulas to prove

Answer
We will work on simplifying the left side of the equation:
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Analysis of the Solution

Note that in this example, we substituted

for . The formula states

We let , so .

An interactive or media element has been excluded from this version of the text. You can view it online
here: https://courses.lumenlearning.com/precalculus/?p=14214

TRY IT

Try It

Use the power-reducing formulas to prove that .
Answer

Using Half-Angle Formulas to Find Exact Values

The next set of identities is the set of half-angle formulas, which can be derived from the reduction
formulas and we can use when we have an angle that is half the size of a special angle. If we replace  with 

, the half-angle formula for sine is found by simplifying the equation and solving for . Note that the
half-angle formulas are preceded by a  sign. This does not mean that both the positive and negative
expressions are valid. Rather, it depends on the quadrant in which  terminates.

The half-angle formula for sine is derived as follows:
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A GENERAL NOTE: HALF-ANGLE FORMULAS

The half-angle formulas are as follows:

EXAMPLE 7: USING A HALF-ANGLE FORMULA TO FIND THE EXACT VALUE
OF A SINE FUNCTION

To derive the half-angle formula for cosine, we have

For the tangent identity, we have
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Find  using a half-angle formula.
Answer
Since , we use the half-angle formula for sine:

Analysis of the Solution

Notice that we used only the positive root because  is positive.

HOW TO: GIVEN THE TANGENT OF AN ANGLE AND THE QUADRANT IN
WHICH THE ANGLE LIES, FIND THE EXACT VALUES OF TRIGONOMETRIC

FUNCTIONS OF HALF OF THE ANGLE.

1. Draw a triangle to represent the given information.
2. Determine the correct half-angle formula.
3. Substitute values into the formula based on the triangle.
4. Simplify.

EXAMPLE 8: FINDING EXACT VALUES USING HALF-ANGLE IDENTITIES

Given that  and  lies in quadrant III, find the exact value of the following:

1. 
2. 
3. 

Answer
Using the given information, we can draw the triangle shown in Figure 3. Using the Pythagorean Theorem,
we find the hypotenuse to be 17. Therefore, we can calculate  and .
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Figure 3

1. Before we start, we must remember that, if  is in quadrant III, then , so 
. This means that the terminal side of  is in quadrant II, since .To

find , we begin by writing the half-angle formula for sine. Then we substitute the value of the
cosine we found from the triangle in Figure 3 and simplify.

We choose the positive value of  because the angle terminates in quadrant II and sine is positive
in quadrant II.

2. To find , we will write the half-angle formula for cosine, substitute the value of the cosine we
found from the triangle in Figure 3, and simplify.
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We choose the negative value of  because the angle is in quadrant II because cosine is
negative in quadrant II.

3. To find , we write the half-angle formula for tangent. Again, we substitute the value of the cosine
we found from the triangle in Figure 3 and simplify.

We choose the negative value of  because  lies in quadrant II, and tangent is negative in
quadrant II.

An interactive or media element has been excluded from this version of the text. You can view it online
here: https://courses.lumenlearning.com/precalculus/?p=14214

TRY IT

EXAMPLE 9: FINDING THE MEASUREMENT OF A HALF ANGLE

Try It

Given that  and  lies in quadrant IV, find the exact value of .
Answer

912



Now, we will return to the problem posed at the beginning of the section. A bicycle ramp is constructed for
high-level competition with an angle of  formed by the ramp and the ground. Another ramp is to be
constructed half as steep for novice competition. If  for higher-level competition, what is the
measurement of the angle for novice competition?
Answer
Since the angle for novice competition measures half the steepness of the angle for the high level
competition, and  for high competition, we can find  from the right triangle and the
Pythagorean theorem so that we can use the half-angle identities.

Figure 4

We see that . We can use the half-angle formula for tangent: .
Since  is in the first quadrant, so is . Thus,

We can take the inverse tangent to find the angle: . So the angle of the ramp for
novice competition is .

Key Equations
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double-angle formulas

half-angle formulas

reduction formulas

Double-angle formulas

Reduction formulas

Half-angle formulas

Key Concepts

Double-angle identities are derived from the sum formulas of the fundamental trigonometric functions:
sine, cosine, and tangent.
Reduction formulas are especially useful in calculus, as they allow us to reduce the power of the
trigonometric term.
Half-angle formulas allow us to find the value of trigonometric functions involving half-angles, whether
the original angle is known or not.

Glossary

identities derived from the sum formulas for sine, cosine, and tangent in which the
angles are equal

identities derived from the reduction formulas and used to determine half-angle values
of trigonometric functions

identities derived from the double-angle formulas and used to reduce the power of a
trigonometric function
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HOW TO: GIVEN A PRODUCT OF COSINES, EXPRESS AS A SUM.

1. Write the formula for the product of cosines.
2. Substitute the given angles into the formula.
3. Simplify.

EXAMPLE 1: WRITING THE PRODUCT AS A SUM USING THE PRODUCT-
TO-SUM FORMULA FOR COSINE

Write the following product of cosines as a sum: .
Answer

Licensing & Attributions

CC licensed content, Original

Precalculus. Authored by: OpenStax College. Provided by: OpenStax. Located at: http://cnx.org/contents/fd53eae1-fa23-47c7-bb1b-972349835c3c@5.175:1/Preface. License: CC BY: Attribution

SUM-TO-PRODUCT AND PRODUCT-TO-SUM
FORMULAS

LEARNING OUTCOMES

Express products as sums.
Express sums as products.

Expressing Products as Sums

We have already learned a number of formulas useful for expanding or simplifying trigonometric
expressions, but sometimes we may need to express the product of cosine and sine as a sum. We can use
the product-to-sum formulas, which express products of trigonometric functions as sums. Let’s investigate
the cosine identity first and then the sine identity.

Expressing Products as Sums for Cosine

We can derive the product-to-sum formula from the sum and difference identities for cosine. If we add the
two equations, we get:

Then, we divide by  to isolate the product of cosines:
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We begin by writing the formula for the product of cosines:

We can then substitute the given angles into the formula and simplify.

An interactive or media element has been excluded from this version of the text. You can view it online
here: https://courses.lumenlearning.com/precalculus/?p=14216

TRY IT

EXAMPLE 2: WRITING THE PRODUCT AS A SUM CONTAINING ONLY SINE
OR COSINE

Express the following product as a sum containing only sine or cosine and no products: .
Answer
Write the formula for the product of sine and cosine. Then substitute the given values into the formula and
simplify.

Try It

Use the product-to-sum formula to write the product as a sum or difference: .
Answer

Expressing the Product of Sine and Cosine as a Sum

Next, we will derive the product-to-sum formula for sine and cosine from the sum and difference formulas for
sine. If we add the sum and difference identities, we get:

Then, we divide by 2 to isolate the product of cosine and sine:

Try It

Use the product-to-sum formula to write the product as a sum: .
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An interactive or media element has been excluded from this version of the text. You can view it online
here: https://courses.lumenlearning.com/precalculus/?p=14216

TRY IT

A GENERAL NOTE: THE PRODUCT-TO-SUM FORMULAS

The product-to-sum formulas are as follows:

EXAMPLE 3: EXPRESS THE PRODUCT AS A SUM OR DIFFERENCE

Write  as a sum or difference.
Answer
We have the product of cosines, so we begin by writing the related formula. Then we substitute the given
angles and simplify.

Answer

Expressing Products of Sines in Terms of Cosine

Expressing the product of sines in terms of cosine is also derived from the sum and difference identities for
cosine. In this case, we will first subtract the two cosine formulas:

Then, we divide by 2 to isolate the product of sines:

Similarly we could express the product of cosines in terms of sine or derive other product-to-sum formulas.

Try It

Use the product-to-sum formula to evaluate .
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A GENERAL NOTE: SUM-TO-PRODUCT FORMULAS

The sum-to-product formulas are as follows:

EXAMPLE 4: WRITING THE DIFFERENCE OF SINES AS A PRODUCT

Write the following difference of sines expression as a product: .
Answer
We begin by writing the formula for the difference of sines.

Answer

Expressing Sums as Products

Some problems require the reverse of the process we just used. The sum-to-product formulas allow us to
express sums of sine or cosine as products. These formulas can be derived from the product-to-sum
identities. For example, with a few substitutions, we can derive the sum-to-product identity for sine. Let 

 and .

Then,

Thus, replacing  and  in the product-to-sum formula with the substitute expressions, we have

The other sum-to-product identities are derived similarly.
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Substitute the values into the formula, and simplify.

An interactive or media element has been excluded from this version of the text. You can view it online
here: https://courses.lumenlearning.com/precalculus/?p=14216

TRY IT

EXAMPLE 5: EVALUATING USING THE SUM-TO-PRODUCT FORMULA

Evaluate .
Answer
We begin by writing the formula for the difference of cosines.

Then we substitute the given angles and simplify.

EXAMPLE 6: PROVING AN IDENTITY

Prove the identity:

Answer
We will start with the left side, the more complicated side of the equation, and rewrite the expression until
it matches the right side.

Try It

Use the sum-to-product formula to write the sum as a product: .
Answer
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Analysis of the Solution

Recall that verifying trigonometric identities has its own set of rules. The procedures for solving an
equation are not the same as the procedures for verifying an identity. When we prove an identity, we pick
one side to work on and make substitutions until that side is transformed into the other side.

EXAMPLE 7: VERIFYING THE IDENTITY USING DOUBLE-ANGLE
FORMULAS AND RECIPROCAL IDENTITIES

Verify the identity .
Answer
For verifying this equation, we are bringing together several of the identities. We will use the double-angle
formula and the reciprocal identities. We will work with the right side of the equation and rewrite it until it
matches the left side.

Try It

Verify the identity .
Answer

Key Equations
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product-to-sum formula

sum-to-product formula

Product-to-sum Formulas

Sum-to-product Formulas

Key Concepts

From the sum and difference identities, we can derive the product-to-sum formulas and the sum-to-
product formulas for sine and cosine.
We can use the product-to-sum formulas to rewrite products of sines, products of cosines, and products
of sine and cosine as sums or differences of sines and cosines.
We can also derive the sum-to-product identities from the product-to-sum identities using substitution.
We can use the sum-to-product formulas to rewrite sum or difference of sines, cosines, or products sine
and cosine as products of sines and cosines.
Trigonometric expressions are often simpler to evaluate using the formulas.
The identities can be verified using other formulas or by converting the expressions to sines and
cosines. To verify an identity, we choose the more complicated side of the equals sign and rewrite it until
it is transformed into the other side.

Glossary

a trigonometric identity that allows the writing of a product of trigonometric
functions as a sum or difference of trigonometric functions

a trigonometric identity that allows, by using substitution, the writing of a sum of
trigonometric functions as a product of trigonometric functions

Licensing & Attributions

CC licensed content, Speci�c attribution

Precalculus. Authored by: OpenStax College. Provided by: OpenStax. Located at: http://cnx.org/contents/fd53eae1-fa23-47c7-bb1b-972349835c3c@5.175:1/Preface. License: CC BY: Attribution

SOLVING TRIGONOMETRIC EQUATIONS
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EXAMPLE 1: SOLVING A LINEAR TRIGONOMETRIC EQUATION INVOLVING
THE COSINE FUNCTION

Find all possible exact solutions for the equation .
Answer
From the unit circle, we know that

These are the solutions in the interval . All possible solutions are given by

where  is an integer.

EXAMPLE 2: SOLVING A LINEAR EQUATION INVOLVING THE SINE
FUNCTION

Find all possible exact solutions for the equation .

LEARNING OUTCOMES

Solve equations involving a single trigonometric function.
Solve trigonometric equations using a calculator.
Solve trigonometric equations that involve factoring.
Solve trigonometric equations using fundamental identities.
Solve trigonometric equations with multiple angles.
Solve right triangle problems.

Solving Linear Trigonometric Equations in Sine and Cosine

Trigonometric equations are, as the name implies, equations that involve trigonometric functions. Similar in
many ways to solving polynomial equations or rational equations, only specific values of the variable will be
solutions, if there are solutions at all. Often we will solve a trigonometric equation over a specified interval.
However, just as often, we will be asked to find all possible solutions, and as trigonometric functions are
periodic, solutions are repeated within each period. In other words, trigonometric equations may have an
infinite number of solutions. Additionally, like rational equations, the domain of the function must be
considered before we assume that any solution is valid. The period of both the sine function and the cosine
function is . In other words, every  units, the y-values repeat. If we need to find all possible solutions,
then we must add , where  is an integer, to the initial solution. Recall the rule that gives the format for
stating all possible solutions for a function where the period is 

There are similar rules for indicating all possible solutions for the other trigonometric functions. Solving
trigonometric equations requires the same techniques as solving algebraic equations. We read the equation
from left to right, horizontally, like a sentence. We look for known patterns, factor, find common
denominators, and substitute certain expressions with a variable to make solving a more straightforward
process. However, with trigonometric equations, we also have the advantage of using the identities we
developed in the previous sections.
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Answer
Solving for all possible values of t means that solutions include angles beyond the period of . From the
unit circle, we can see that the solutions are  and . But the problem is asking for all possible
values that solve the equation. Therefore, the answer is

where  is an integer.

HOW TO: GIVEN A TRIGONOMETRIC EQUATION, SOLVE USING
ALGEBRA.

Look for a pattern that suggests an algebraic property, such as the difference of squares or a factoring
opportunity.
Substitute the trigonometric expression with a single variable, such as  or .
Solve the equation the same way an algebraic equation would be solved.
Substitute the trigonometric expression back in for the variable in the resulting expressions.
Solve for the angle.

EXAMPLE 3: SOLVE THE TRIGONOMETRIC EQUATION IN LINEAR FORM

Solve the equation exactly: .
Answer

An interactive or media element has been excluded from this version of the text. You can view it online
here: https://courses.lumenlearning.com/precalculus/?p=14222

TRY IT

Try It

Solve exactly the following linear equation on the interval .
Answer

Solve Trigonometric Equations Using a Calculator

Not all functions can be solved exactly using only the unit circle. When we must solve an equation involving
an angle other than one of the special angles, we will need to use a calculator. Make sure it is set to the
proper mode, either degrees or radians, depending on the criteria of the given problem.
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EXAMPLE 4: USING A CALCULATOR TO SOLVE A TRIGONOMETRIC
EQUATION INVOLVING SINE

Use a calculator to solve the equation , where  is in radians.
Answer

Make sure mode is set to radians. To find , use the inverse sine function. On most calculators, you will
need to push the 2ND button and then the SIN button to bring up the  function. What is shown on the
screen is (. The calculator is ready for the input within the parentheses. For this problem, we enter 

, and press ENTER. Thus, to four decimals places,

This is the solution in quadrant I. There is also a solution in quadrant II. To find this we subtract 

The general solution is

The angle measurement in degrees is

Analysis of the Solution

Note that a calculator will only return an angle in quadrants I or IV for the sine function, since that is the
range of the inverse sine. The other angle is obtained by using .

EXAMPLE 5: USING A CALCULATOR TO SOLVE A TRIGONOMETRIC
EQUATION INVOLVING SECANT

Use a calculator to solve the equation , giving your answer in radians.
Answer
We can begin with some algebra.

Check that the MODE is in radians. Now use the inverse cosine function.

Since  and , 1.8235 is between these two numbers, thus  is in quadrant II.
Cosine is also negative in quadrant III. Note that a calculator will only return an angle in quadrants I or II
for the cosine function, since that is the range of the inverse cosine.
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Figure 2.

So, we also need to find the measure of the angle in quadrant III. In quadrant III, the reference angle is 
 The other solution in quadrant III is 

The solutions are  and .

An interactive or media element has been excluded from this version of the text. You can view it online
here: https://courses.lumenlearning.com/precalculus/?p=14222

TRY IT

Try It

Solve .
Answer

 and 

Solving Equations Involving a Single Trigonometric Function

When we are given equations that involve only one of the six trigonometric functions, their solutions involve
using algebraic techniques and the unit circle. We need to make several considerations when the equation
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EXAMPLE 6: SOLVING A PROBLEM INVOLVING A SINGLE
TRIGONOMETRIC FUNCTION

Solve the problem exactly: .
Answer
As this problem is not easily factored, we will solve using the square root property. First, we use algebra to
isolate . Then we will find the angles.

EXAMPLE 7: SOLVING A TRIGONOMETRIC EQUATION INVOLVING
COSECANT

Solve the following equation exactly: .
Answer
We want all values of  for which  over the interval .

Analysis of the Solution

As , notice that all four solutions are in the third and fourth quadrants.

EXAMPLE 8: SOLVING AN EQUATION INVOLVING TANGENT

Solve the equation exactly: .
Answer

involves trigonometric functions other than sine and cosine. Problems involving the reciprocals of the
primary trigonometric functions need to be viewed from an algebraic perspective. In other words, we will
write the reciprocal function, and solve for the angles using the function. Also, an equation involving the
tangent function is slightly different from one containing a sine or cosine function. First, as we know, the
period of tangent is , not . Further, the domain of tangent is all real numbers with the exception of odd
integer multiples of , unless, of course, a problem places its own restrictions on the domain.
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Recall that the tangent function has a period of . On the interval , and at the angle of , the tangent
has a value of 1. However, the angle we want is . Thus, if , then

Over the interval , we have two solutions:

An interactive or media element has been excluded from this version of the text. You can view it online
here: https://courses.lumenlearning.com/precalculus/?p=14222

TRY IT

EXAMPLE 9: IDENTIFY ALL SOLUTIONS TO THE EQUATION INVOLVING
TANGENT

Identify all exact solutions to the equation .
Answer
We can solve this equation using only algebra. Isolate the expression  on the left side of the equals
sign.

There are two angles on the unit circle that have a tangent value of  and .

EXAMPLE 10: SOLVING A TRIGONOMETRIC EQUATION IN QUADRATIC
FORM

Solve the equation exactly: .

Try It

Find all solutions for .
Answer

Solving Trigonometric Equations in Quadratic Form

Solving a quadratic equation may be more complicated, but once again, we can use algebra as we would
for any quadratic equation. Look at the pattern of the equation. Is there more than one trigonometric function
in the equation, or is there only one? Which trigonometric function is squared? If there is only one function
represented and one of the terms is squared, think about the standard form of a quadratic. Replace the
trigonometric function with a variable such as  or . If substitution makes the equation look like a quadratic
equation, then we can use the same methods for solving quadratics to solve the trigonometric equations.
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Answer
We begin by using substitution and replacing cos  with . It is not necessary to use substitution, but it
may make the problem easier to solve visually. Let . We have

The equation cannot be factored, so we will use the quadratic formula .

Replace  with , and solve. Thus,

Note that only the + sign is used. This is because we get an error when we solve  on
a calculator, since the domain of the inverse cosine function is . However, there is a second
solution:

This terminal side of the angle lies in quadrant I. Since cosine is also positive in quadrant IV, the second
solution is

EXAMPLE 11: SOLVING A TRIGONOMETRIC EQUATION IN QUADRATIC
FORM BY FACTORING

Solve the equation exactly: .
Answer
Using grouping, this quadratic can be factored. Either make the real substitution, , or imagine it,
as we factor:

Now set each factor equal to zero.

Next solve for , as the range of the sine function is . However, , giving the
solution .

Analysis of the Solution

Make sure to check all solutions on the given domain as some factors have no solution.
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An interactive or media element has been excluded from this version of the text. You can view it online
here: https://courses.lumenlearning.com/precalculus/?p=14222

TRY IT

EXAMPLE 12: SOLVING A TRIGONOMETRIC EQUATION USING ALGEBRA

Solve exactly:

Answer
This problem should appear familiar as it is similar to a quadratic. Let . The equation becomes 

. We begin by factoring:

Set each factor equal to zero.

Then, substitute back into the equation the original expression  for . Thus,

The solutions within the domain  are .
If we prefer not to substitute, we can solve the equation by following the same pattern of factoring and
setting each factor equal to zero.

Try It

Solve . [Hint: Make a substitution to express the equation only in terms of
cosine.]
Answer
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Analysis of the Solution

We can see the solutions on the graph in Figure 3. On the interval , the graph crosses the x-
axis four times, at the solutions noted. Notice that trigonometric equations that are in quadratic form can
yield up to four solutions instead of the expected two that are found with quadratic equations. In this
example, each solution (angle) corresponding to a positive sine value will yield two angles that would
result in that value.

Figure 3

We can verify the solutions on the unit circle in Sum and Difference Identities as well.

EXAMPLE 13: SOLVING A TRIGONOMETRIC EQUATION QUADRATIC IN
FORM

Solve the equation quadratic in form exactly: .
Answer
We can factor using grouping. Solution values of  can be found on the unit circle:
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EXAMPLE 14: USE IDENTITIES TO SOLVE AN EQUATION

Use identities to solve exactly the trigonometric equation over the interval .

Answer
Notice that the left side of the equation is the difference formula for cosine.

From the unit circle in Sum and Difference Identities, we see that  when .

EXAMPLE 15: SOLVING THE EQUATION USING A DOUBLE-ANGLE
FORMULA

Solve the equation exactly using a double-angle formula: .
Answer
We have three choices of expressions to substitute for the double-angle of cosine. As it is simpler to solve
for one trigonometric function at a time, we will choose the double-angle identity involving only cosine:

Try It

Solve the quadratic equation .
Answer

Solving Trigonometric Equations Using Fundamental Identities

While algebra can be used to solve a number of trigonometric equations, we can also use the fundamental
identities because they make solving equations simpler. Remember that the techniques we use for solving
are not the same as those for verifying identities. The basic rules of algebra apply here, as opposed to
rewriting one side of the identity to match the other side. In the next example, we use two identities to
simplify the equation.
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So, if , then  and ; if , then .

EXAMPLE 16: SOLVING AN EQUATION USING AN IDENTITY

Solve the equation exactly using an identity: .
Answer
If we rewrite the right side, we can write the equation in terms of cosine:

Our solutions are .

An interactive or media element has been excluded from this version of the text. You can view it online
here: https://courses.lumenlearning.com/precalculus/?p=14222

TRY IT

Solving Trigonometric Equations with Multiple Angles

Sometimes it is not possible to solve a trigonometric equation with identities that have a multiple angle, such
as  or . When confronted with these equations, recall that  is a horizontal
compression by a factor of 2 of the function . On an interval of , we can graph two periods of 

, as opposed to one cycle of . This compression of the graph leads us to believe there
may be twice as many x-intercepts or solutions to  compared to . This information will
help us solve the equation.
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EXAMPLE 17: SOLVING A MULTIPLE ANGLE TRIGONOMETRIC EQUATION

Solve exactly:  on .
Answer
We can see that this equation is the standard equation with a multiple of an angle. If , we
know  is in quadrants I and IV. While  will only yield solutions in quadrants I and II, we
recognize that the solutions to the equation  will be in quadrants I and IV.
Therefore, the possible angles are  and . So,  or , which means that 
or . Does this make sense? Yes, because .
Are there any other possible answers? Let us return to our first step.
In quadrant I, , so  as noted. Let us revolve around the circle again:

so .
One more rotation yields

, so this value for  is larger than , so it is not a solution on .
In quadrant IV, , so  as noted. Let us revolve around the circle again:

so .
One more rotation yields

, so this value for  is larger than , so it is not a solution on .
Our solutions are . Note that whenever we solve a problem in the form of 

, we must go around the unit circle  times.

Solving Right Triangle Problems

933



EXAMPLE 18: USING THE PYTHAGOREAN THEOREM TO MODEL AN
EQUATION

Use the Pythagorean Theorem, and the properties of right triangles to model an equation that fits the
problem.
One of the cables that anchors the center of the London Eye Ferris wheel to the ground must be replaced.
The center of the Ferris wheel is 69.5 meters above the ground, and the second anchor on the ground is
23 meters from the base of the Ferris wheel. Approximately how long is the cable, and what is the angle of
elevation (from ground up to the center of the Ferris wheel)?

Figure 4

Answer
Using the information given, we can draw a right triangle. We can find the length of the cable with the
Pythagorean Theorem.

The angle of elevation is , formed by the second anchor on the ground and the cable reaching to the
center of the wheel. We can use the tangent function to find its measure. Round to two decimal places.

The angle of elevation is approximately , and the length of the cable is 73.2 meters.

We can now use all of the methods we have learned to solve problems that involve applying the properties
of right triangles and the Pythagorean Theorem. We begin with the familiar Pythagorean Theorem, 

, and model an equation to fit a situation.
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EXAMPLE 19: USING THE PYTHAGOREAN THEOREM TO MODEL AN
ABSTRACT PROBLEM

OSHA safety regulations require that the base of a ladder be placed 1 foot from the wall for every 4 feet of
ladder length. Find the angle that a ladder of any length forms with the ground and the height at which the
ladder touches the wall.
Answer
For any length of ladder, the base needs to be a distance from the wall equal to one fourth of the ladder’s
length. Equivalently, if the base of the ladder is “a” feet from the wall, the length of the ladder will be 4a
feet.

Figure 5

The side adjacent to  is a and the hypotenuse is . Thus,

The elevation of the ladder forms an angle of  with the ground. The height at which the ladder
touches the wall can be found using the Pythagorean Theorem:

Thus, the ladder touches the wall at  feet from the ground.

Key Concepts
When solving linear trigonometric equations, we can use algebraic techniques just as we do solving
algebraic equations. Look for patterns, like the difference of squares, quadratic form, or an expression
that lends itself well to substitution.
Equations involving a single trigonometric function can be solved or verified using the unit circle.
We can also solve trigonometric equations using a graphing calculator.
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A GENERAL NOTE: STANDARD FORM OF SINUSOIDAL EQUATIONS

The general forms of a sinusoidal equation are given as

where  is related to period such that the  is the phase shift such that 
 denotes the horizontal shift, and  represents the vertical shift from the graph’s parent graph.

Note that the models are sometimes written as  or , and
period is given as .
The difference between the sine and the cosine graphs is that the sine graph begins with the average
value of the function and the cosine graph begins with the maximum or minimum value of the function.

Many equations appear quadratic in form. We can use substitution to make the equation appear simpler,
and then use the same techniques we use solving an algebraic quadratic: factoring, the quadratic
formula, etc.
We can also use the identities to solve trigonometric equation.
We can use substitution to solve a multiple-angle trigonometric equation, which is a compression of a
standard trigonometric function. We will need to take the compression into account and verify that we
have found all solutions on the given interval.
Real-world scenarios can be modeled and solved using the Pythagorean Theorem and trigonometric
functions.
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MODELING WITH TRIGONOMETRIC
EQUATIONS

LEARNING OUTCOMES

Determine the amplitude and period of sinusoidal functions.
Model equations and graph sinusoidal functions.
Model periodic behavior.
Model harmonic motion functions.

Determining the Amplitude and Period of a Sinusoidal Function

Any motion that repeats itself in a fixed time period is considered periodic motion and can be modeled by a
sinusoidal function. The amplitude of a sinusoidal function is the distance from the midline to the
maximum value, or from the midline to the minimum value. The midline is the average value. Sinusoidal
functions oscillate above and below the midline, are periodic, and repeat values in set cycles. Recall from
Graphs of the Sine and Cosine Functions that the period of the sine function and the cosine function is 
In other words, for any value of ,
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EXAMPLE 1: SHOWING HOW THE PROPERTIES OF A TRIGONOMETRIC
FUNCTION CAN TRANSFORM A GRAPH

Show the transformation of the graph of  into the graph of .
Answer
Consider the series of graphs in Figure 2 and the way each change to the equation changes the image.

Figure 2. (a) The basic graph of  (b) Changing the amplitude from 1 to 2 generates the graph of  (c) The period
of the sine function changes with the value of , such that . Here we have , which translates to a period of . The

graph completes one full cycle in  units. (d) The graph displays a horizontal shift equal to , or . (e) Finally, the graph is
shifted vertically by the value of . In this case, the graph is shifted up by 2 units.

EXAMPLE 2: FINDING THE AMPLITUDE AND PERIOD OF A FUNCTION

Find the amplitude and period of the following functions and graph one cycle.

1. 
2. 
3. 

Answer
We will solve these problems according to the models.

1.  involves sine, so we use the form

We know that  is the amplitude, so the amplitude is 2. Period is , so the period is
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See the graph in Figure 3.

Figure 3

2.  involves sine, so we use the form

Amplitude is , so the amplitude is . Since  is negative, the graph is reflected over the
x-axis. Period is , so the period is

The graph is shifted to the left by  units.

Figure 4

3.  involves cosine, so we use the form

Amplitude is  so the amplitude is 1. The period is  This is the standard cosine function
shifted up three units.
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Figure 5

Try It

What are the amplitude and period of the function 
Answer

The amplitude is , and the period is .

Finding Equations and Graphing Sinusoidal Functions

One method of graphing sinusoidal functions is to find five key points. These points will correspond to
intervals of equal length representing  of the period. The key points will indicate the location of maximum
and minimum values. If there is no vertical shift, they will also indicate x-intercepts. For example, suppose
we want to graph the function . We know that the period is , so we find the interval between key
points as follows.

Starting with , we calculate the first y-value, add the length of the interval  to 0, and calculate the
second y-value. We then add  repeatedly until the five key points are determined. The last value should
equal the first value, as the calculations cover one full period. Making a table similar to the one below, we
can see these key points clearly on the graph shown in Figure 6.
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EXAMPLE 3: GRAPHING SINUSOIDAL FUNCTIONS USING KEY POINTS

Graph the function  using amplitude, period, and key points.
Answer
The amplitude is  The period is  (Recall that we sometimes refer to  as .)
One cycle of the graph can be drawn over the interval  To find the key points, we divide the period
by 4. Make a table similar to the one below, starting with  and then adding  successively to 
and calculate  See the graph in Figure 7.

Figure 6
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Figure 7

Try It

Graph the function  using the amplitude, period, and five key points.
Answer

x

0 0

3

0

0
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EXAMPLE 4: MODELING AN EQUATION AND SKETCHING A SINUSOIDAL
GRAPH TO FIT CRITERIA

The average monthly temperatures for a small town in Oregon are given in the table below. Find a
sinusoidal function of the form  that fits the data (round to the nearest tenth) and
sketch the graph.

Month Temperature, 

January 42.5

February 44.5

March 48.5

April 52.5

May 58

June 63

July 68.5

August 69

September 64.5

October 55.5

November 46.5

December 43.5

Answer
Recall that amplitude is found using the formula

Thus, the amplitude is

Modeling Periodic Behavior

We will now apply these ideas to problems involving periodic behavior.
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The data covers a period of 12 months, so  which gives .
The vertical shift is found using the following equation.

Thus, the vertical shift is

So far, we have the equation .
To find the horizontal shift, we input the  and  values for the first month and solve for .

We have the equation . See the graph in Figure 8.
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Figure 8

EXAMPLE 5: DESCRIBING PERIODIC MOTION

The hour hand of the large clock on the wall in Union Station measures 24 inches in length. At noon, the
tip of the hour hand is 30 inches from the ceiling. At 3 PM, the tip is 54 inches from the ceiling, and at 6
PM, 78 inches. At 9 PM, it is again 54 inches from the ceiling, and at midnight, the tip of the hour hand
returns to its original position 30 inches from the ceiling. Let  equal the distance from the tip of the hour
hand to the ceiling  hours after noon. Find the equation that models the motion of the clock and sketch
the graph.
Answer
Begin by making a table of values as shown in the table below.

Points to plot

Noon 30 in

3 PM 54 in

6 PM 78 in

9 PM 54 in

Midnight 30 in

To model an equation, we first need to find the amplitude.
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The clock’s cycle repeats every 12 hours. Thus,

The vertical shift is

There is no horizontal shift, so . Since the function begins with the minimum value of  when 
(as opposed to the maximum value), we will use the cosine function with the negative value for . In the
form , the equation is

Figure 9

EXAMPLE 6: DETERMINING A MODEL FOR TIDES

945



The height of the tide in a small beach town is measured along a seawall. Water levels oscillate between 7
feet at low tide and 15 feet at high tide. On a particular day, low tide occurred at 6 AM and high tide
occurred at noon. Approximately every 12 hours, the cycle repeats. Find an equation to model the water
levels.
Answer
As the water level varies from 7 ft to 15 ft, we can calculate the amplitude as

The cycle repeats every 12 hours; therefore,  is

There is a vertical translation of . Since the value of the function is at a maximum at ,
we will use the cosine function, with the positive value for .

Figure 10

Try It

The daily temperature in the month of March in a certain city varies from a low of  to a high of .
Find a sinusoidal function to model daily temperature and sketch the graph. Approximate the time when
the temperature reaches the freezing point . Let  correspond to noon.
Answer

The temperature reaches freezing at noon and at midnight.
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An interactive or media element has been excluded from this version of the text. You can view it online
here: https://courses.lumenlearning.com/precalculus/?p=14246

TRY IT

EXAMPLE 7: INTERPRETING THE PERIODIC BEHAVIOR EQUATION

The average person’s blood pressure is modeled by the function , where 
represents the blood pressure at time , measured in minutes. Interpret the function in terms of period and
frequency. Sketch the graph and find the blood pressure reading.
Answer
The period is given by

In a blood pressure function, frequency represents the number of heart beats per minute. Frequency is the
reciprocal of period and is given by

See the graph in Figure 11.
The blood pressure reading on the graph is .
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Figure 11

Analysis of the Solution

Blood pressure of  is considered to be normal. The top number is the maximum or systolic reading,
which measures the pressure in the arteries when the heart contracts. The bottom number is the minimum
or diastolic reading, which measures the pressure in the arteries as the heart relaxes between beats,
refilling with blood. Thus, normal blood pressure can be modeled by a periodic function with a maximum of
120 and a minimum of 80.

Modeling Harmonic Motion Functions

Harmonic motion is a form of periodic motion, but there are factors to consider that differentiate the two
types. While general periodic motion applications cycle through their periods with no outside interference,
harmonic motion requires a restoring force. Examples of harmonic motion include springs, gravitational
force, and magnetic force.
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A GENERAL NOTE: SIMPLE HARMONIC MOTION

We see that simple harmonic motion equations are given in terms of displacement:

where  is the amplitude,  is the period, and  is the frequency, or the number of cycles per unit of
time.

EXAMPLE 8: FINDING THE DISPLACEMENT, PERIOD, AND FREQUENCY,
AND GRAPHING A FUNCTION

For the given functions,

1. Find the maximum displacement of an object.
2. Find the period or the time required for one vibration.
3. Find the frequency.
4. Sketch the graph.

1. 
2. 
3. 

Answer

1. 
1. The maximum displacement is equal to the amplitude, , which is 5.
2. The period is .
3. The frequency is given as .
4. See Figure 12. The graph indicates the five key points.

Simple Harmonic Motion

A type of motion described as simple harmonic motion involves a restoring force but assumes that the
motion will continue forever. Imagine a weighted object hanging on a spring, When that object is not
disturbed, we say that the object is at rest, or in equilibrium. If the object is pulled down and then released,
the force of the spring pulls the object back toward equilibrium and harmonic motion begins. The restoring
force is directly proportional to the displacement of the object from its equilibrium point. When .
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Figure 12

2. 
1. The maximum displacement is .
2. The period is .
3. The frequency is .
4. See Figure 13.
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Figure 13.

3. 
1. The maximum displacement is .
2. The period is .

3. The frequency is .
4. See Figure 14.
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Figure 14

A GENERAL NOTE: DAMPED HARMONIC MOTION

Damped Harmonic Motion

In reality, a pendulum does not swing back and forth forever, nor does an object on a spring bounce up and
down forever. Eventually, the pendulum stops swinging and the object stops bouncing and both return to
equilibrium. Periodic motion in which an energy-dissipating force, or damping factor, acts is known as
damped harmonic motion. Friction is typically the damping factor.

In physics, various formulas are used to account for the damping factor on the moving object. Some of these
are calculus-based formulas that involve derivatives. For our purposes, we will use formulas for basic
damped harmonic motion models.
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In damped harmonic motion, the displacement of an oscillating object from its rest position at time  is
given as

where  is a damping factor,  is the initial displacement and  is the period.

EXAMPLE 9: MODELING DAMPED HARMONIC MOTION

Model the equations that fit the two scenarios and use a graphing utility to graph the functions: Two mass-
spring systems exhibit damped harmonic motion at a frequency of  cycles per second. Both have an
initial displacement of 10 cm. The first has a damping factor of  and the second has a damping factor of

.
Answer
At time , the displacement is the maximum of 10 cm, which calls for the cosine function. The cosine
function will apply to both models.
We are given the frequency  of 0.5 cycles per second. Thus,

The first spring system has a damping factor of . Following the general model for damped
harmonic motion, we have

Figure 15 models the motion of the first spring system.
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Figure 15

The second spring system has a damping factor of  and can be modeled as

Figure 16 models the motion of the second spring system.
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Figure 16

Analysis of the Solution

Notice the differing effects of the damping constant. The local maximum and minimum values of the
function with the damping factor  decreases much more rapidly than that of the function with 

.

EXAMPLE 10: FINDING A COSINE FUNCTION THAT MODELS DAMPED
HARMONIC MOTION
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Find and graph a function of the form  that models the information given.

1. 
2. 

Answer
Substitute the given values into the model. Recall that period is  and frequency is .

1. . See Figure 17.

Figure 17

2. . See Figure 18.
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Figure 18

EXAMPLE 11: FINDING A SINE FUNCTION THAT MODELS DAMPED
HARMONIC MOTION

Find and graph a function of the form  that models the information given.

Try It

The following equation represents a damped harmonic motion model: 
Find the initial displacement, the damping constant, and the frequency.
Answer

initial displacement =6, damping constant = -6, frequency = 
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1. 
2. 

Answer
Calculate the value of  and substitute the known values into the model.

1. As period is , we have

The damping factor is given as 10 and the amplitude is 7. Thus, the model is . See
Figure 19.

Figure 19

2. As frequency is , we have

The damping factor is given as  and the amplitude is . The model is .
See Figure 20.
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Figure 20

Analysis of the Solution

A comparison of the last two examples illustrates how we choose between the sine or cosine functions to
model sinusoidal criteria. We see that the cosine function is at the maximum displacement when ,
and the sine function is at the equilibrium point when . For example, consider the equation 

 from Example 9. We can see from the graph that when , which is the
initial amplitude. Check this by setting  in the cosine equation:

Using the sine function yields

Thus, cosine is the correct function.

An interactive or media element has been excluded from this version of the text. You can view it online
here: https://courses.lumenlearning.com/precalculus/?p=14246

TRY IT

Try It

Write the equation for damped harmonic motion given , and .
Answer
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EXAMPLE 12: MODELING THE OSCILLATION OF A SPRING

A spring measuring 10 inches in natural length is compressed by 5 inches and released. It oscillates once
every 3 seconds, and its amplitude decreases by 30% every second. Find an equation that models the
position of the spring  seconds after being released.
Answer
The amplitude begins at 5 in. and deceases 30% each second. Because the spring is initially compressed,
we will write A as a negative value. We can write the amplitude portion of the function as

We put  in the form  as follows:

Now let’s address the period. The spring cycles through its positions every 3 seconds, this is the period,
and we can use the formula to find omega.

The natural length of 10 inches is the midline. We will use the cosine function, since the spring starts out
at its maximum displacement. This portion of the equation is represented as

Finally, we put both functions together. Our the model for the position of the spring at  seconds is given as

See the graph in Figure 21.

Figure 21
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EXAMPLE 13: FINDING THE VALUE OF THE DAMPING CONSTANT C
ACCORDING TO THE GIVEN CRITERIA

A guitar string is plucked and vibrates in damped harmonic motion. The string is pulled and displaced 2
cm from its resting position. After 3 seconds, the displacement of the string measures 1 cm. Find the
damping constant.
Answer
The displacement factor represents the amplitude and is determined by the coefficient  in the model
for damped harmonic motion. The damping constant is included in the term . It is known that after 3
seconds, the local maximum measures one-half of its original value. Therefore, we have the equation

Use algebra and the laws of exponents to solve for .

Then use the laws of logarithms.

The damping constant is .

EXAMPLE 14: GRAPHING AN OSCILLATING COSINE CURVE

Graph the function .
Answer
The graph produced by this function will be shown in two parts. The first graph will be the exact function 

, and the second graph is the exact function  plus a bounding function. The graphs look quite
different.

Try It

A mass suspended from a spring is raised a distance of 5 cm above its resting position. The mass is
released at time  and allowed to oscillate. After  second, it is observed that the mass returns to its
highest position. Find a function to model this motion relative to its initial resting position.
Answer

Bounding Curves in Harmonic Motion

Harmonic motion graphs may be enclosed by bounding curves. When a function has a varying amplitude,
such that the amplitude rises and falls multiple times within a period, we can determine the bounding curves
from part of the function.
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Figure 22

Figure 23

Analysis of the Solution

The curves  and  are bounding curves: they bound the function from above
and below, tracing out the high and low points. The harmonic motion graph sits inside the bounding
curves. This is an example of a function whose amplitude not only decreases with time, but actually
increases and decreases multiple times within a period.

Key Equations

Standard form of sinusoidal equation

Simple harmonic motion

Damped harmonic motion

Key Concepts

Sinusoidal functions are represented by the sine and cosine graphs. In standard form, we can find the
amplitude, period, and horizontal and vertical shifts.
Use key points to graph a sinusoidal function. The five key points include the minimum and maximum
values and the midline values.
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damped harmonic motion

simple harmonic motion

Periodic functions can model events that reoccur in set cycles, like the phases of the moon, the hands
on a clock, and the seasons in a year.
Harmonic motion functions are modeled from given data. Similar to periodic motion applications,
harmonic motion requires a restoring force. Examples include gravitational force and spring motion
activated by weight.
Damped harmonic motion is a form of periodic behavior affected by a damping factor. Energy
dissipating factors, like friction, cause the displacement of the object to shrink.
Bounding curves delineate the graph of harmonic motion with variable maximum and minimum values.

Glossary

oscillating motion that resembles periodic motion and simple harmonic motion,
except that the graph is affected by a damping factor, an energy dissipating influence on the motion,
such as friction

a repetitive motion that can be modeled by periodic sinusoidal oscillation
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MODULE 10: FURTHER
APPLICATIONS OF TRIGONOMETRY

NON-RIGHT TRIANGLES: LAW OF SINES

Learning Outcomes

By the end of this section, you will be able to:
Use the Law of Sines to solve oblique triangles.
Find the area of an oblique triangle using the sine function.
Solve applied problems using the Law of Sines.

Suppose two radar stations located 20 miles apart each detect an aircraft between them. The angle of
elevation measured by the first station is 35 degrees, whereas the angle of elevation measured by the
second station is 15 degrees. How can we determine the altitude of the aircraft? We see in Figure 1 that the
triangle formed by the aircraft and the two stations is not a right triangle, so we cannot use what we know
about right triangles. In this section, we will find out how to solve problems involving non-right triangles.

Figure 1

Using the Law of Sines to Solve Obliques Triangles

In any triangle, we can draw an altitude, a perpendicular line from one vertex to the opposite side, forming
two right triangles. It would be preferable, however, to have methods that we can apply directly to non-right
triangles without first having to create right triangles.

Any triangle that is not a right triangle is an oblique triangle. Solving an oblique triangle means finding the
measurements of all three angles and all three sides. To do so, we need to start with at least three of these
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values, including at least one of the sides. We will investigate three possible oblique triangle problem
situations:

1. ASA (angle-side-angle) We know the measurements of two angles and the included side. See Figure
2.

Figure 2

2. AAS (angle-angle-side) We know the measurements of two angles and a side that is not between the
known angles. See Figure 3.

Figure 3

3. SSA (side-side-angle) We know the measurements of two sides and an angle that is not between the
known sides. See Figure 4.

Figure 4

Knowing how to approach each of these situations enables us to solve oblique triangles without having to
drop a perpendicular to form two right triangles. Instead, we can use the fact that the ratio of the
measurement of one of the angles to the length of its opposite side will be equal to the other two ratios of
angle measure to opposite side. Let’s see how this statement is derived by considering the triangle shown in
Figure 5.
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Figure 5

Using the right triangle relationships, we know that  and . Solving both equations for 
gives two different expressions for .

We then set the expressions equal to each other.

Similarly, we can compare the other ratios.

Collectively, these relationships are called the Law of Sines.

Note the standard way of labeling triangles: angle  (alpha) is opposite side ; angle  (beta) is opposite
side ; and angle  (gamma) is opposite side . See Figure 6.

While calculating angles and sides, be sure to carry the exact values through to the final answer. Generally,
final answers are rounded to the nearest tenth, unless otherwise specified.

Figure 6
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A GENERAL NOTE: LAW OF SINES

Given a triangle with angles and opposite sides labeled as in Figure 6, the ratio of the measurement of an
angle to the length of its opposite side will be equal to the other two ratios of angle measure to opposite
side. All proportions will be equal. The Law of Sines is based on proportions and is presented
symbolically two ways.

To solve an oblique triangle, use any pair of applicable ratios.

EXAMPLE 1: SOLVING FOR TWO UNKNOWN SIDES AND ANGLE OF AN
AAS TRIANGLE

Solve the triangle shown in Figure 7 to the nearest tenth.

Figure 7

Answer
The three angles must add up to 180 degrees. From this, we can determine that

To find an unknown side, we need to know the corresponding angle and a known ratio. We know that
angle  and its corresponding side . We can use the following proportion from the Law of
Sines to find the length of .

Similarly, to solve for , we set up another proportion.
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Therefore, the complete set of angles and sides is

An interactive or media element has been excluded from this version of the text. You can view it online
here: https://courses.lumenlearning.com/precalculus/?p=14311

TRY IT

Try It

Solve the triangle shown in Figure 8 to the nearest tenth.

Figure 8

Answer

Using The Law of Sines to Solve SSA Triangles

We can use the Law of Sines to solve any oblique triangle, but some solutions may not be straightforward. In
some cases, more than one triangle may satisfy the given criteria, which we describe as an ambiguous
case. Triangles classified as SSA, those in which we know the lengths of two sides and the measurement of
the angle opposite one of the given sides, may result in one or two solutions, or even no solution.
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A GENERAL NOTE: POSSIBLE OUTCOMES FOR SSA TRIANGLES

Oblique triangles in the category SSA may have four different outcomes. Figure 9 illustrates the solutions
with the known sides  and  and known angle .

Figure 9

EXAMPLE 2: SOLVING AN OBLIQUE SSA TRIANGLE

Solve the triangle in Figure 10 for the missing side and find the missing angle measures to the nearest
tenth.
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Figure 10

Answer
Use the Law of Sines to find angle  and angle , and then side . Solving for , we have the proportion

However, in the diagram, angle  appears to be an obtuse angle and may be greater than 90°. How did
we get an acute angle, and how do we find the measurement of  Let’s investigate further. Dropping a
perpendicular from  and viewing the triangle from a right angle perspective, we have Figure 11. It
appears that there may be a second triangle that will fit the given criteria.
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Figure 11

The angle supplementary to  is approximately equal to 49.9°, which means that 
. (Remember that the sine function is positive in both the first and second

quadrants.) Solving for , we have

We can then use these measurements to solve the other triangle. Since  is supplementary to , we have

Now we need to find  and .
We have

Finally,

To summarize, there are two triangles with an angle of 35°, an adjacent side of 8, and an opposite side of
6, as shown in Figure 12.
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Figure 12

However, we were looking for the values for the triangle with an obtuse angle . We can see them in the
first triangle (a) in Figure 12.

EXAMPLE 3: SOLVING FOR THE UNKNOWN SIDES AND ANGLES OF A SSA
TRIANGLE

In the triangle shown in Figure 13, solve for the unknown side and angles. Round your answers to the
nearest tenth.

Try It

Given , and , find the missing side and angles. If there is more than one possible
solution, show both.
Answer

Solution 1

Solution 2
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Figure 13

Answer
In choosing the pair of ratios from the Law of Sines to use, look at the information given. In this case, we
know the angle , and its corresponding side , and we know side . We will use this
proportion to solve for .

To find , apply the inverse sine function. The inverse sine will produce a single result, but keep in mind
that there may be two values for . It is important to verify the result, as there may be two viable solutions,
only one solution (the usual case), or no solutions.

In this case, if we subtract  from 180°, we find that there may be a second possible solution. Thus, 
. To check the solution, subtract both angles, 131.7° and 85°, from 180°. This

gives
,

which is impossible, and so .
To find the remaining missing values, we calculate . Now, only side  is
needed. Use the Law of Sines to solve for  by one of the proportions.

The complete set of solutions for the given triangle is
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EXAMPLE 4: FINDING THE TRIANGLES THAT MEET THE GIVEN CRITERIA

Find all possible triangles if one side has length 4 opposite an angle of 50°, and a second side has length
10.
Answer
Using the given information, we can solve for the angle opposite the side of length 10.

Figure 14

We can stop here without finding the value of . Because the range of the sine function is , it is
impossible for the sine value to be 1.915. In fact, inputting  in a graphing calculator
generates an ERROR DOMAIN. Therefore, no triangles can be drawn with the provided dimensions.

TRY IT

Try It

Given , find the missing side and angles. If there is more than one possible
solution, show both. Round your answers to the nearest tenth.
Answer

Try It

Determine the number of triangles possible given .
Answer

Two
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An interactive or media element has been excluded from this version of the text. You can view it online
here: https://courses.lumenlearning.com/precalculus/?p=14311

A GENERAL NOTE: AREA OF AN OBLIQUE TRIANGLE

The formula for the area of an oblique triangle is given by

This is equivalent to one-half of the product of two sides and the sine of their included angle.

EXAMPLE 5: FINDING THE AREA OF AN OBLIQUE TRIANGLE

Find the area of a triangle with sides , and angle . Round the area to the nearest
integer.
Answer
Using the formula, we have

Finding the Area of an Oblique Triangle Using the Sine Function

Now that we can solve a triangle for missing values, we can use some of those values and the sine function
to find the area of an oblique triangle. Recall that the area formula for a triangle is given as ,
where  is base and  is height. For oblique triangles, we must find  before we can use the area formula.
Observing the two triangles in Figure 15, one acute and one obtuse, we can drop a perpendicular to
represent the height and then apply the trigonometric property  to write an equation for
area in oblique triangles. In the acute triangle, we have  or . However, in the obtuse
triangle, we drop the perpendicular outside the triangle and extend the base  to form a right triangle. The
angle used in calculation is , or .

Figure 15

Thus,

Similarly,
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An interactive or media element has been excluded from this version of the text. You can view it online
here: https://courses.lumenlearning.com/precalculus/?p=14311

TRY IT

EXAMPLE 6: FINDING AN ALTITUDE

Find the altitude of the aircraft in the problem introduced at the beginning of this section, shown in Figure
16. Round the altitude to the nearest tenth of a mile.

Figure 16

Answer
To find the elevation of the aircraft, we first find the distance from one station to the aircraft, such as the
side , and then use right triangle relationships to find the height of the aircraft, .
Because the angles in the triangle add up to 180 degrees, the unknown angle must be 180°−15°
−35°=130°. This angle is opposite the side of length 20, allowing us to set up a Law of Sines relationship.

Try It

Find the area of the triangle given . Round the area to the nearest tenth.
Answer

about 8.2 square feet

Solving Applied Problems Using the Law of Sines

The more we study trigonometric applications, the more we discover that the applications are countless.
Some are flat, diagram-type situations, but many applications in calculus, engineering, and physics involve
three dimensions and motion.
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The distance from one station to the aircraft is about 14.98 miles.
Now that we know , we can use right triangle relationships to solve for .

The aircraft is at an altitude of approximately 3.9 miles.

TRY IT

Try It

The diagram shown in Figure 17 represents the height of a blimp flying over a football stadium. Find the
height of the blimp if the angle of elevation at the southern end zone, point A, is 70°, the angle of elevation
from the northern end zone, point , is 62°, and the distance between the viewing points of the two end
zones is 145 yards.

Figure 17

Answer

161.9 yd
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altitude

ambiguous case

Law of Sines

oblique triangle

An interactive or media element has been excluded from this version of the text. You can view it online
here: https://courses.lumenlearning.com/precalculus/?p=14311

Key Equations

Law of Sines

Area for oblique triangles

Key Concepts

The Law of Sines can be used to solve oblique triangles, which are non-right triangles.
According to the Law of Sines, the ratio of the measurement of one of the angles to the length of its
opposite side equals the other two ratios of angle measure to opposite side.
There are three possible cases: ASA, AAS, SSA. Depending on the information given, we can choose
the appropriate equation to find the requested solution.
The ambiguous case arises when an oblique triangle can have different outcomes.
There are three possible cases that arise from SSA arrangement—a single solution, two possible
solutions, and no solution.
The Law of Sines can be used to solve triangles with given criteria.
The general area formula for triangles translates to oblique triangles by first finding the appropriate
height value.
There are many trigonometric applications. They can often be solved by first drawing a diagram of the
given information and then using the appropriate equation.

Glossary

a perpendicular line from one vertex of a triangle to the opposite side, or in the case of an
obtuse triangle, to the line containing the opposite side, forming two right triangles

a scenario in which more than one triangle is a valid solution for a given oblique
SSA triangle

states that the ratio of the measurement of one angle of a triangle to the length of its
opposite side is equal to the remaining two ratios of angle measure to opposite side; any pair of
proportions may be used to solve for a missing angle or side

any triangle that is not a right triangle
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NON-RIGHT TRIANGLES: LAW OF COSINES

Learning Outcomes

Use the Law of Cosines to solve oblique triangles.
Solve applied problems using the Law of Cosines.
Use Heron’s formula to find the area of a triangle.

Suppose a boat leaves port, travels 10 miles, turns 20 degrees, and travels another 8 miles as shown in
Figure 1. How far from port is the boat?
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Figure 1

Unfortunately, while the Law of Sines enables us to address many non-right triangle cases, it does not help
us with triangles where the known angle is between two known sides, a SAS (side-angle-side) triangle, or
when all three sides are known, but no angles are known, a SSS (side-side-side) triangle. In this section,
we will investigate another tool for solving oblique triangles described by these last two cases.

Using the Law of Cosines to Solve Oblique Triangles

The tool we need to solve the problem of the boat’s distance from the port is the Law of Cosines, which
defines the relationship among angle measurements and side lengths in oblique triangles. Three formulas
make up the Law of Cosines. At first glance, the formulas may appear complicated because they include
many variables. However, once the pattern is understood, the Law of Cosines is easier to work with than
most formulas at this mathematical level.
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A GENERAL NOTE: LAW OF COSINES

Understanding how the Law of Cosines is derived will be helpful in using the formulas. The derivation begins
with the Generalized Pythagorean Theorem, which is an extension of the Pythagorean Theorem to non-
right triangles. Here is how it works: An arbitrary non-right triangle  is placed in the coordinate plane
with vertex  at the origin, side  drawn along the x-axis, and vertex  located at some point  in the
plane, as illustrated in Figure 2. Generally, triangles exist anywhere in the plane, but for this explanation we
will place the triangle as noted.

Figure 2

We can drop a perpendicular from  to the x-axis (this is the altitude or height). Recalling the basic
trigonometric identities, we know that

In terms of  and  The  point located at  has coordinates .
Using the side  as one leg of a right triangle and  as the second leg, we can find the length of
hypotenuse  using the Pythagorean Theorem. Thus,

The formula derived is one of the three equations of the Law of Cosines. The other equations are found in a
similar fashion.

Keep in mind that it is always helpful to sketch the triangle when solving for angles or sides. In a real-world
scenario, try to draw a diagram of the situation. As more information emerges, the diagram may have to be
altered. Make those alterations to the diagram and, in the end, the problem will be easier to solve.
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The Law of Cosines states that the square of any side of a triangle is equal to the sum of the squares of
the other two sides minus twice the product of the other two sides and the cosine of the included angle.
For triangles labeled as in Figure 3, with angles , and , and opposite corresponding sides , and ,
respectively, the Law of Cosines is given as three equations.

Figure 3

To solve for a missing side measurement, the corresponding opposite angle measure is needed.
When solving for an angle, the corresponding opposite side measure is needed. We can use another
version of the Law of Cosines to solve for an angle.

HOW TO: GIVEN TWO SIDES AND THE ANGLE BETWEEN THEM (SAS),
FIND THE MEASURES OF THE REMAINING SIDE AND ANGLES OF A

TRIANGLE.

1. Sketch the triangle. Identify the measures of the known sides and angles. Use variables to represent
the measures of the unknown sides and angles.

2. Apply the Law of Cosines to find the length of the unknown side or angle.
3. Apply the Law of Sines or Cosines to find the measure of a second angle.
4. Compute the measure of the remaining angle.

EXAMPLE 1: FINDING THE UNKNOWN SIDE AND ANGLES OF A SAS
TRIANGLE
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Find the unknown side and angles of the triangle in Figure 4.

Figure 4

Answer
First, make note of what is given: two sides and the angle between them. This arrangement is classified
as SAS and supplies the data needed to apply the Law of Cosines.
Each one of the three laws of cosines begins with the square of an unknown side opposite a known angle.
For this example, the first side to solve for is side , as we know the measurement of the opposite angle .

Because we are solving for a length, we use only the positive square root. Now that we know the length ,
we can use the Law of Sines to fill in the remaining angles of the triangle. Solving for angle , we have

The other possibility for  would be . In the original diagram,  is adjacent to
the longest side, so  is an acute angle and, therefore,  does not make sense. Notice that if we
choose to apply the Law of Cosines, we arrive at a unique answer. We do not have to consider the other
possibilities, as cosine is unique for angles between  and . Proceeding with , we can then
find the third angle of the triangle.

The complete set of angles and sides is
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An interactive or media element has been excluded from this version of the text. You can view it online
here: https://courses.lumenlearning.com/precalculus/?p=14352

TRY IT

EXAMPLE 2: SOLVING FOR AN ANGLE OF A SSS TRIANGLE

Find the angle  for the given triangle if side , side , and side .
Answer
For this example, we have no angles. We can solve for any angle using the Law of Cosines. To solve for
angle , we have

See Figure 5.

Try It

Find the missing side and angles of the given triangle: .
Answer

.
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Figure 5

Analysis of the Solution

Because the inverse cosine can return any angle between 0 and 180 degrees, there will not be any
ambiguous cases using this method.

An interactive or media element has been excluded from this version of the text. You can view it online
here: https://courses.lumenlearning.com/precalculus/?p=14352

TRY IT

EXAMPLE 3: USING THE LAW OF COSINES TO SOLVE A
COMMUNICATION PROBLEM

Try It

Given , and , find the missing angles.
Answer

Solving Applied Problems Using the Law of Cosines

Just as the Law of Sines provided the appropriate equations to solve a number of applications, the Law of
Cosines is applicable to situations in which the given data fits the cosine models. We may see these in the
fields of navigation, surveying, astronomy, and geometry, just to name a few.
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On many cell phones with GPS, an approximate location can be given before the GPS signal is received.
This is accomplished through a process called triangulation, which works by using the distances from two
known points. Suppose there are two cell phone towers within range of a cell phone. The two towers are
located 6000 feet apart along a straight highway, running east to west, and the cell phone is north of the
highway. Based on the signal delay, it can be determined that the signal is 5050 feet from the first tower
and 2420 feet from the second tower. Determine the position of the cell phone north and east of the first
tower, and determine how far it is from the highway.
Answer
For simplicity, we start by drawing a diagram similar to Figure 6 and labeling our given information.

Figure 6

Using the Law of Cosines, we can solve for the angle . Remember that the Law of Cosines uses the
square of one side to find the cosine of the opposite angle. For this example, let , and 

. Thus,  corresponds to the opposite side .

To answer the questions about the phone’s position north and east of the tower, and the distance to the
highway, drop a perpendicular from the position of the cell phone, as in Figure 7. This forms two right
triangles, although we only need the right triangle that includes the first tower for this problem.
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Figure 7

Using the angle  and the basic trigonometric identities, we can find the solutions. Thus

The cell phone is approximately 4638 feet east and 1998 feet north of the first tower, and 1998 feet from
the highway.

EXAMPLE 4: CALCULATING DISTANCE TRAVELED USING A SAS TRIANGLE

Returning to our problem at the beginning of this section, suppose a boat leaves port, travels 10 miles,
turns 20 degrees, and travels another 8 miles. How far from port is the boat? The diagram is repeated
here in Figure 8.
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Figure 8

Answer
The boat turned 20 degrees, so the obtuse angle of the non-right triangle is the supplemental angle, 

. With this, we can utilize the Law of Cosines to find the missing side of the obtuse
triangle—the distance of the boat to the port.

The boat is about 17.7 miles from port.

Using Heron’s Formula to Find the Area of a Triangle

988



A GENERAL NOTE: HERON’S FORMULA

Heron’s formula finds the area of oblique triangles in which sides , and  are known.

where  is one half of the perimeter of the triangle, sometimes called the semi-perimeter.

EXAMPLE 5: USING HERON’S FORMULA TO FIND THE AREA OF A GIVEN
TRIANGLE

Find the area of the triangle in Figure 9 using Heron’s formula.

Figure 9

Answer
First, we calculate .

Then we apply the formula.

The area is approximately 29.4 square units.

We already learned how to find the area of an oblique triangle when we know two sides and an angle. We
also know the formula to find the area of a triangle using the base and the height. When we know the three
sides, however, we can use Heron’s formula instead of finding the height. Heron of Alexandria was a
geometer who lived during the first century A.D. He discovered a formula for finding the area of oblique
triangles when three sides are known.

Try It

Use Heron’s formula to find the area of a triangle with sides of lengths , and 
.

Answer

Area = 552 square feet
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An interactive or media element has been excluded from this version of the text. You can view it online
here: https://courses.lumenlearning.com/precalculus/?p=14352

TRY IT

EXAMPLE 6: APPLYING HERON’S FORMULA TO A REAL-WORLD
PROBLEM

A Chicago city developer wants to construct a building consisting of artist’s lofts on a triangular lot
bordered by Rush Street, Wabash Avenue, and Pearson Street. The frontage along Rush Street is
approximately 62.4 meters, along Wabash Avenue it is approximately 43.5 meters, and along Pearson
Street it is approximately 34.1 meters. How many square meters are available to the developer? See
Figure 10 for a view of the city property.
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Figure 10

Answer
Find the measurement for , which is one-half of the perimeter.

Apply Heron’s formula.

The developer has about 711.4 square meters.
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Law of Cosines

Generalized Pythagorean Theorem

An interactive or media element has been excluded from this version of the text. You can view it online
here: https://courses.lumenlearning.com/precalculus/?p=14352

TRY IT

Try It

Find the area of a triangle given  and 
Answer

about 8.15 square feet

Key Equations

Law of Cosines

Heron’s formula  where 

Key Concepts

The Law of Cosines defines the relationship among angle measurements and lengths of sides in
oblique triangles.
The Generalized Pythagorean Theorem is the Law of Cosines for two cases of oblique triangles: SAS
and SSS. Dropping an imaginary perpendicular splits the oblique triangle into two right triangles or
forms one right triangle, which allows sides to be related and measurements to be calculated.
The Law of Cosines is useful for many types of applied problems. The first step in solving such
problems is generally to draw a sketch of the problem presented. If the information given fits one of the
three models (the three equations), then apply the Law of Cosines to find a solution.
Heron’s formula allows the calculation of area in oblique triangles. All three sides must be known to
apply Heron’s formula.

Glossary

states that the square of any side of a triangle is equal to the sum of the squares
of the other two sides minus twice the product of the other two sides and the cosine of the
included angle

an extension of the Law of Cosines; relates the sides of an
oblique triangle and is used for SAS and SSS triangles
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POLAR COORDINATES

Learning Outcomes

Plot points using polar coordinates.
Convert from polar coordinates to rectangular coordinates.
Convert from rectangular coordinates to polar coordinates.
Transform equations between polar and rectangular forms.
Identify and graph polar equations by converting to rectangular equations.

Over 12 kilometers from port, a sailboat encounters rough weather and is blown off course by a 16-knot
wind. How can the sailor indicate his location to the Coast Guard? In this section, we will investigate a
method of representing location that is different from a standard coordinate grid.

Figure 1
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EXAMPLE 1: PLOTTING A POINT ON THE POLAR GRID

Plot the point  on the polar grid.

Plotting Points Using Polar Coordinates

When we think about plotting points in the plane, we usually think of rectangular coordinates  in the
Cartesian coordinate plane. However, there are other ways of writing a coordinate pair and other types of
grid systems. In this section, we introduce to polar coordinates, which are points labeled  and plotted
on a polar grid. The polar grid is represented as a series of concentric circles radiating out from the pole, or
the origin of the coordinate plane.

The polar grid is scaled as the unit circle with the positive x-axis now viewed as the polar axis and the
origin as the pole. The first coordinate  is the radius or length of the directed line segment from the pole.
The angle , measured in radians, indicates the direction of . We move counterclockwise from the polar
axis by an angle of , and measure a directed line segment the length of  in the direction of . Even though
we measure  first and then , the polar point is written with the r-coordinate first. For example, to plot the
point , we would move  units in the counterclockwise direction and then a length of 2 from the pole.
This point is plotted on the grid in Figure 2.

Figure 2
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Answer
The angle  is found by sweeping in a counterclockwise direction 90° from the polar axis. The point is
located at a length of 3 units from the pole in the  direction, as shown in Figure 3.

Figure 3

Try It

Plot the point  in the polar grid.
Answer
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EXAMPLE 2: PLOTTING A POINT IN THE POLAR COORDINATE SYSTEM
WITH A NEGATIVE COMPONENT

Plot the point  on the polar grid.
Answer
We know that  is located in the first quadrant. However, . We can approach plotting a point with a
negative  in two ways:

1. Plot the point  by moving  in the counterclockwise direction and extending a directed line
segment 2 units into the first quadrant. Then retrace the directed line segment back through the pole,
and continue 2 units into the third quadrant;

2. Move  in the counterclockwise direction, and draw the directed line segment from the pole 2 units in
the negative direction, into the third quadrant.

See Figure 4(a). Compare this to the graph of the polar coordinate  shown in Figure 4(b).

Figure 4

Try It

Plot the points  and  on the same polar grid.
Answer
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An interactive or media element has been excluded from this version of the text. You can view it online
here: https://courses.lumenlearning.com/precalculus/?p=14374

TRY IT

 Converting Between Polar Coordinates to Rectangular
Coordinates

When given a set of polar coordinates, we may need to convert them to rectangular coordinates. To do
so, we can recall the relationships that exist among the variables , and .

Dropping a perpendicular from the point in the plane to the x-axis forms a right triangle, as illustrated in
Figure 5. An easy way to remember the equations above is to think of  as the adjacent side over the
hypotenuse and  as the opposite side over the hypotenuse.
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A GENERAL NOTE: CONVERTING FROM POLAR COORDINATES TO
RECTANGULAR COORDINATES

To convert polar coordinates  to rectangular coordinates , let

HOW TO: GIVEN POLAR COORDINATES, CONVERT TO RECTANGULAR
COORDINATES.

1. Given the polar coordinate , write  and .
2. Evaluate  and .
3. Multiply  by  to find the x-coordinate of the rectangular form.
4. Multiply  by  to find the y-coordinate of the rectangular form.

EXAMPLE 3: WRITING POLAR COORDINATES AS RECTANGULAR
COORDINATES

Write the polar coordinates  as rectangular coordinates.
Answer
Use the equivalent relationships.

Figure 5
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The rectangular coordinates are .

Figure 6

EXAMPLE 4: WRITING POLAR COORDINATES AS RECTANGULAR
COORDINATES

Write the polar coordinates  as rectangular coordinates.
Answer
See Figure 7. Writing the polar coordinates as rectangular, we have

The rectangular coordinates are also .
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Figure 7

An interactive or media element has been excluded from this version of the text. You can view it online
here: https://courses.lumenlearning.com/precalculus/?p=14374

TRY IT

A GENERAL NOTE: CONVERTING FROM RECTANGULAR COORDINATES
TO POLAR COORDINATES

Converting from rectangular coordinates to polar coordinates requires the use of one or more of the
relationships illustrated in Figure 8.

Try It

Write the polar coordinates  as rectangular coordinates.
Answer

Converting from Rectangular Coordinates to Polar Coordinates

To convert rectangular coordinates to polar coordinates, we will use two other familiar relationships. With
this conversion, however, we need to be aware that a set of rectangular coordinates will yield more than one
polar point.
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Figure 8

EXAMPLE 5: WRITING RECTANGULAR COORDINATES AS POLAR
COORDINATES

Convert the rectangular coordinates  to polar coordinates.
Answer
We see that the original point  is in the first quadrant. To find , use the formula . This
gives

To find , we substitute the values for  and  into the formula . We know that  must be
positive, as  is in the first quadrant. Thus

So,  and , giving us the polar point .
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HOW TO: GIVEN AN EQUATION IN POLAR FORM, GRAPH IT USING A
GRAPHING CALCULATOR.

1. Change the MODE to POL, representing polar form.
2. Press the Y= button to bring up a screen allowing the input of six equations: .
3. Enter the polar equation, set equal to .
4. Press GRAPH.

EXAMPLE 6: WRITING A CARTESIAN EQUATION IN POLAR FORM

Write the Cartesian equation  in polar form.
Answer
The goal is to eliminate  and  from the equation and introduce  and . Ideally, we would write the
equation  as a function of . To obtain the polar form, we will use the relationships between  and 

. Since  and , we can substitute and solve for .

Figure 9

Analysis of the Solution

There are other sets of polar coordinates that will be the same as our first solution. For example, the
points  and  will coincide with the original solution of . The point 

 indicates a move further counterclockwise by , which is directly opposite . The radius is
expressed as . However, the angle  is located in the third quadrant and, as  is negative, we
extend the directed line segment in the opposite direction, into the first quadrant. This is the same point as

. The point  is a move further clockwise by , from . The radius, , is the
same.

Transforming Equations between Polar and Rectangular Forms

We can now convert coordinates between polar and rectangular form. Converting equations can be more
difficult, but it can be beneficial to be able to convert between the two forms. Since there are a number of
polar equations that cannot be expressed clearly in Cartesian form, and vice versa, we can use the same
procedures we used to convert points between the coordinate systems. We can then use a graphing
calculator to graph either the rectangular form or the polar form of the equation.
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Figure 10. (a) Cartesian form  (b) Polar form 

Thus, , and  should generate the same graph.To graph a circle in rectangular
form, we must first solve for .

Note that this is two separate functions, since a circle fails the vertical line test. Therefore, we need to
enter the positive and negative square roots into the calculator separately, as two equations in the form 

 and . Press GRAPH.

EXAMPLE 7: REWRITING A CARTESIAN EQUATION AS A POLAR
EQUATION

Rewrite the Cartesian equation  as a polar equation.
Answer
This equation appears similar to the previous example, but it requires different steps to convert the
equation.
We can still follow the same procedures we have already learned and make the following substitutions:
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Therefore, the equations  and  should give us the same graph.

Figure 11. (a) Cartesian form  (b) polar form 

The Cartesian or rectangular equation is plotted on the rectangular grid, and the polar equation is
plotted on the polar grid. Clearly, the graphs are identical.

EXAMPLE 8: REWRITING A CARTESIAN EQUATION IN POLAR FORM

Rewrite the Cartesian equation  as a polar equation.
Answer
We will use the relationships  and .

 

An interactive or media element has been excluded from this version of the text. You can view it online
here: https://courses.lumenlearning.com/precalculus/?p=14374

TRY IT

Try It

Rewrite the Cartesian equation  in polar form.
Answer

 Identify and Graph Polar Equations by Converting to
Rectangular Equations
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EXAMPLE 9: GRAPHING A POLAR EQUATION BY CONVERTING TO A
RECTANGULAR EQUATION

Covert the polar equation  to a rectangular equation, and draw its corresponding graph.
Answer
The conversion is

Notice that the equation  drawn on the polar grid is clearly the same as the vertical line 
drawn on the rectangular grid. Just as  is the standard form for a vertical line in rectangular form, 

 is the standard form for a vertical line in polar form.

Figure 12. (a) Polar grid (b) Rectangular coordinate system

A similar discussion would demonstrate that the graph of the function  will be the horizontal line 
. In fact,  is the standard form for a horizontal line in polar form, corresponding to the

rectangular form .

EXAMPLE 10: REWRITING A POLAR EQUATION IN CARTESIAN FORM

Rewrite the polar equation  as a Cartesian equation.
Answer
The goal is to eliminate  and , and introduce  and . We clear the fraction, and then use substitution. In
order to replace  with  and , we must use the expression .

We have learned how to convert rectangular coordinates to polar coordinates, and we have seen that the
points are indeed the same. We have also transformed polar equations to rectangular equations and vice
versa. Now we will demonstrate that their graphs, while drawn on different grids, are identical.
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The Cartesian equation is . However, to graph it, especially using a graphing
calculator or computer program, we want to isolate .

When our entire equation has been changed from  and  to  and , we can stop, unless asked to solve
for  or simplify.

Figure 13

The “hour-glass” shape of the graph is called a hyperbola. Hyperbolas have many interesting geometric
features and applications, which we will investigate further in Analytic Geometry.

Analysis of the Solution

In this example, the right side of the equation can be expanded and the equation simplified further, as
shown above. However, the equation cannot be written as a single function in Cartesian form. We may
wish to write the rectangular equation in the hyperbola’s standard form. To do this, we can start with the
initial equation.
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An interactive or media element has been excluded from this version of the text. You can view it online
here: https://courses.lumenlearning.com/precalculus/?p=14374

TRY IT

EXAMPLE 11: REWRITING A POLAR EQUATION IN CARTESIAN FORM

Rewrite the polar equation  in Cartesian form.
Answer

This equation can also be written as

Try It

Rewrite the polar equation  in Cartesian form.
Answer

 or, in the standard form for a circle, 

Key Equations
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polar axis

polar coordinates

pole

Conversion formulas

Key Concepts

The polar grid is represented as a series of concentric circles radiating out from the pole, or origin.
To plot a point in the form , move in a counterclockwise direction from the polar axis by an
angle of , and then extend a directed line segment from the pole the length of  in the direction of . If 
is negative, move in a clockwise direction, and extend a directed line segment the length of  in the
direction of .
If  is negative, extend the directed line segment in the opposite direction of .
To convert from polar coordinates to rectangular coordinates, use the formulas  and 

.
To convert from rectangular coordinates to polar coordinates, use one or more of the formulas: 

, and .
Transforming equations between polar and rectangular forms means making the appropriate
substitutions based on the available formulas, together with algebraic manipulations.
Using the appropriate substitutions makes it possible to rewrite a polar equation as a rectangular
equation, and then graph it in the rectangular plane.

Glossary

on the polar grid, the equivalent of the positive x-axis on the rectangular grid

on the polar grid, the coordinates of a point labeled , where  indicates the angle of
rotation from the polar axis and  represents the radius, or the distance of the point from the pole in the
direction of 

the origin of the polar grid
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POLAR COORDINATES: GRAPHS

Learning Outcomes

By the end of this section, you will be able to:
Test polar equations for symmetry.
Graph polar equations by plotting points.
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Figure 1. Planets follow elliptical paths as they orbit around the Sun. (credit: modification of work by NASA/JPL-Caltech)

The planets move through space in elliptical, periodic orbits about the sun, as shown in Figure 1. They are in
constant motion, so fixing an exact position of any planet is valid only for a moment. In other words, we can
fix only a planet’s instantaneous position. This is one application of polar coordinates, represented as 

. We interpret  as the distance from the sun and  as the planet’s angular bearing, or its direction from
a fixed point on the sun. In this section, we will focus on the polar system and the graphs that are generated
directly from polar coordinates.

Testing Polar Equations for Symmetry

Just as a rectangular equation such as  describes the relationship between  and  on a Cartesian
grid, a polar equation describes a relationship between  and  on a polar grid. Recall that the coordinate
pair  indicates that we move counterclockwise from the polar axis (positive x-axis) by an angle of , and
extend a ray from the pole (origin)  units in the direction of . All points that satisfy the polar equation are on
the graph.

Symmetry is a property that helps us recognize and plot the graph of any equation. If an equation has a
graph that is symmetric with respect to an axis, it means that if we folded the graph in half over that axis, the
portion of the graph on one side would coincide with the portion on the other side. By performing three tests,
we will see how to apply the properties of symmetry to polar equations. Further, we will use symmetry (in
addition to plotting key points, zeros, and maximums of )
to determine the graph of a polar equation.

In the first test, we consider symmetry with respect to the line  (y-axis). We replace  with 
to determine if the new equation is equivalent to the original equation. For example, suppose we are given
the equation ;

This equation exhibits symmetry with respect to the line .

1009



A GENERAL NOTE: SYMMETRY TESTS

A polar equation describes a curve on the polar grid. The graph of a polar equation can be evaluated for
three types of symmetry, as shown in Figure 2.

Figure 2. (a) A graph is symmetric with respect to the line  (y-axis) if replacing  with  yields an equivalent equation.
(b) A graph is symmetric with respect to the polar axis (x-axis) if replacing  with  or  yields an equivalent equation.
(c) A graph is symmetric with respect to the pole (origin) if replacing  with  yields an equivalent equation.

HOW TO: GIVEN A POLAR EQUATION, TEST FOR SYMMETRY.

1. Substitute the appropriate combination of components for   for  symmetry; 
 for polar axis symmetry; and  for symmetry with respect to the pole.

2. If the resulting equations are equivalent in one or more of the tests, the graph produces the expected
symmetry.

In the second test, we consider symmetry with respect to the polar axis (  -axis). We replace  with 
 or  to determine equivalency between the tested equation and the original. For example,

suppose we are given the equation .

The graph of this equation exhibits symmetry with respect to the polar axis.

In the third test, we consider symmetry with respect to the pole (origin). We replace  with  to
determine if the tested equation is equivalent to the original equation. For example, suppose we are given
the equation .

The equation has failed the symmetry test, but that does not mean that it is not symmetric with respect to
the pole. Passing one or more of the symmetry tests verifies that symmetry will be exhibited in a graph.
However, failing the symmetry tests does not necessarily indicate that a graph will not be symmetric about
the line , the polar axis, or the pole. In these instances, we can confirm that symmetry exists by
plotting reflecting points across the apparent axis of symmetry or the pole. Testing for symmetry is a
technique that simplifies the graphing of polar equations, but its application is not perfect.
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EXAMPLE 1: TESTING A POLAR EQUATION FOR SYMMETRY

Test the equation  for symmetry.
Answer
Test for each of the three types of symmetry.

1) Replacing  with  yields the same
result. Thus, the graph is symmetric with respect to
the line .

2) Replacing  with  does not yield the same
equation. Therefore, the graph fails the test and may
or may not be symmetric with respect to the polar
axis.

3) Replacing  with  changes the equation and
fails the test. The graph may or may not be symmetric
with respect to the pole.

Analysis of the Solution

Using a graphing calculator, we can see that the equation  is a circle centered at  with
radius  and is indeed symmetric to the line . We can also see that the graph is not symmetric
with the polar axis or the pole. See Figure 3.
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Figure 3

An interactive or media element has been excluded from this version of the text. You can view it online
here: https://courses.lumenlearning.com/precalculus/?p=14414

TRY IT

Try It

Test the equation for symmetry: .
Answer

The equation fails the symmetry test with respect to the line  and with respect to the pole. It passes
the polar axis symmetry test.

 Graphing Polar Equations by Plotting Points

To graph in the rectangular coordinate system we construct a table of  and  values. To graph in the polar
coordinate system we construct a table of  and  values. We enter values of  into a polar equation and
calculate . However, using the properties of symmetry and finding key values of  and  means fewer
calculations will be needed.
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EXAMPLE 2: FINDING ZEROS AND MAXIMUM VALUES FOR A POLAR
EQUATION

Using the equation in Example 1, find the zeros and maximum  and, if necessary, the polar axis
intercepts of .
Answer
To find the zeros, set  equal to zero and solve for .

Substitute any one of the  values into the equation. We will use .

The points  and  are the zeros of the equation. They all coincide, so only one point is visible
on the graph. This point is also the only polar axis intercept.
To find the maximum value of the equation, look at the maximum value of the trigonometric function ,
which occurs when  resulting in . Substitute  for 

ANALYSIS OF THE SOLUTION

The point  will be the maximum value on the graph. Let’s plot a few more points to verify the graph
of a circle.

Finding Zeros and Maxima

To find the zeros of a polar equation, we solve for the values of  that result in . Recall that, to find the
zeros of polynomial functions, we set the equation equal to zero and then solve for . We use the same
process for polar equations. Set , and solve for .

For many of the forms we will encounter, the maximum value of a polar equation is found by substituting
those values of  into the equation that result in the maximum value of the trigonometric functions. Consider 

; the maximum distance between the curve and the pole is 5 units. The maximum value of the
cosine function is 1 when , so our polar equation is , and the value  will yield the maximum 

.

Similarly, the maximum value of the sine function is 1 when , and if our polar equation is ,
the value  will yield the maximum . We may find additional information by calculating values of 
when . These points would be polar axis intercepts, which may be helpful in drawing the graph and
identifying the curve of a polar equation.
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Figure 4

Try It

Without converting to Cartesian coordinates, test the given equation for symmetry and find the zeros and
maximum values of  .
Answer

Tests will reveal symmetry about the polar axis. The zero is , and the maximum value is .

1014



A GENERAL NOTE: FORMULAS FOR THE EQUATION OF A CIRCLE

Some of the formulas that produce the graph of a circle in polar coordinates are given by  and 
, where  is the diameter of the circle or the distance from the pole to the farthest point on the

circumference. The radius is , or one-half the diameter. For  the center is . For 
, the center is . Figure 5 shows the graphs of these four circles.

EXAMPLE 3: SKETCHING THE GRAPH OF A POLAR EQUATION FOR A
CIRCLE

Sketch the graph of .
Answer
First, testing the equation for symmetry, we find that the graph is symmetric about the polar axis. Next, we
find the zeros and maximum  for . First, set , and solve for  . Thus, a zero occurs at 

. A key point to plot is .
To find the maximum value of , note that the maximum value of the cosine function is 1 when 
. Substitute  into the equation:

The maximum value of the equation is 4. A key point to plot is .
As  is symmetric with respect to the polar axis, we only need to calculate r-values for  over the
interval . Points in the upper quadrant can then be reflected to the lower quadrant. Make a table of
values similar to the table below. The graph is shown in Figure 6.

 Graphing Circles and the 5 Classic Polar Curves

Investigating Circles

Now we have seen the equation of a circle in the polar coordinate system. In the last two examples, the
same equation was used to illustrate the properties of symmetry and demonstrate how to find the zeros,
maximum values, and plotted points that produced the graphs. However, the circle is only one of many
shapes in the set of polar curves.

There are five classic polar curves: cardioids, limaҫons, lemniscates, rose curves, and Archimedes’
spirals. We will briefly touch on the polar formulas for the circle before moving on to the classic curves and
their variations.
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4 3.46 2.83 2 0 −2 −2.83 −3.46 4

Figure 6

A GENERAL NOTE: FORMULAS FOR A CARDIOID

The formulas that produce the graphs of a cardioid are given by  and 
where , and . The cardioid graph passes through the pole, as we can see in Figure 7.

Investigating Cardioids

While translating from polar coordinates to Cartesian coordinates may seem simpler in some instances,
graphing the classic curves is actually less complicated in the polar system. The next curve is called a
cardioid, as it resembles a heart. This shape is often included with the family of curves called limaçons, but
here we will discuss the cardioid on its own.
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Figure 7

HOW TO: GIVEN THE POLAR EQUATION OF A CARDIOID, SKETCH ITS
GRAPH.

1. Check equation for the three types of symmetry.
2. Find the zeros. Set .
3. Find the maximum value of the equation according to the maximum value of the trigonometric

expression.
4. Make a table of values for  and .
5. Plot the points and sketch the graph.

EXAMPLE 4: SKETCHING THE GRAPH OF A CARDIOID

Sketch the graph of .
Answer
First, testing the equation for symmetry, we find that the graph of this equation will be symmetric about the
polar axis. Next, we find the zeros and maximums. Setting , we have . The zero of the
equation is located at . The graph passes through this point.
The maximum value of  occurs when  is a maximum, which is when  or when

. Substitute  into the equation, and solve for .

The point  is the maximum value on the graph.
We found that the polar equation is symmetric with respect to the polar axis, but as it extends to all four
quadrants, we need to plot values over the interval . The upper portion of the graph is then reflected
over the polar axis. Next, we make a table of values, as in the table below, and then we plot the points and
draw the graph. See Figure 8.

4 3.41 2 1 0
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Figure 8

A GENERAL NOTE: FORMULAS FOR ONE-LOOP LIMAÇONS

The formulas that produce the graph of a dimpled one-loop limaçon are given by  and 
 where . All four graphs are shown in Figure 9.

Investigating Limaçons

The word limaçon is Old French for “snail,” a name that describes the shape of the graph. As mentioned
earlier, the cardioid is a member of the limaçon family, and we can see the similarities in the graphs. The
other images in this category include the one-loop limaçon and the two-loop (or inner-loop) limaçon. One-
loop limaçons are sometimes referred to as dimpled limaçons when  and convex limaçons
when .
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Figure 9. Dimpled limaçons

HOW TO: GIVEN A POLAR EQUATION FOR A ONE-LOOP LIMAÇON,
SKETCH THE GRAPH.

1. Test the equation for symmetry. Remember that failing a symmetry test does not mean that the shape
will not exhibit symmetry. Often the symmetry may reveal itself when the points are plotted.

2. Find the zeros.
3. Find the maximum values according to the trigonometric expression.
4. Make a table.
5. Plot the points and sketch the graph.

EXAMPLE 5: SKETCHING THE GRAPH OF A ONE-LOOP LIMAÇON

Graph the equation .
Answer
First, testing the equation for symmetry, we find that it fails all three symmetry tests, meaning that the
graph may or may not exhibit symmetry, so we cannot use the symmetry to help us graph it. However, this
equation has a graph that clearly displays symmetry with respect to the line , yet it fails all the three
symmetry tests. A graphing calculator will immediately illustrate the graph’s reflective quality.
Next, we find the zeros and maximum, and plot the reflecting points to verify any symmetry. Setting 
results in  being undefined. What does this mean? How could  be undefined? The angle  is undefined
for any value of . Therefore,  is undefined because there is no value of  for which .
Consequently, the graph does not pass through the pole. Perhaps the graph does cross the polar axis, but
not at the pole. We can investigate other intercepts by calculating  when .

So, there is at least one polar axis intercept at .
Next, as the maximum value of the sine function is 1 when , we will substitute  into the
equation and solve for . Thus, .
Make a table of the coordinates similar to the table below.

4 2.5 1.4 1 1.4 2.5 4 5.5 6.6 7 6.6 5.5 4

The graph is shown in Figure 10.
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Figure 10. One-loop limaçon

Analysis of the Solution

This is an example of a curve for which making a table of values is critical to producing an accurate graph.
The symmetry tests fail; the zero is undefined. While it may be apparent that an equation involving  is
likely symmetric with respect to the line , evaluating more points helps to verify that the graph is
correct.

Try It

Sketch the graph of .
Answer
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An interactive or media element has been excluded from this version of the text. You can view it online
here: https://courses.lumenlearning.com/precalculus/?p=14414

TRY IT

A GENERAL NOTE: FORMULAS FOR INNER-LOOP LIMAÇONS

The formulas that generate the inner-loop limaçons are given by  and 
where , and . The graph of the inner-loop limaçon passes through the pole twice: once
for the outer loop, and once for the inner loop. See Figure 11 for the graphs.

Figure 11

EXAMPLE 6: SKETCHING THE GRAPH OF AN INNER-LOOP LIMAÇON

Sketch the graph of .
Answer

Another type of limaçon, the inner-loop limaçon, is named for the loop formed inside the general limaçon
shape. It was discovered by the German artist Albrecht Dürer(1471-1528), who revealed a method for
drawing the inner-loop limaçon in his 1525 book Underweysung der Messing. A century later, the father of
mathematician Blaise Pascal, Étienne Pascal(1588-1651), rediscovered it.
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Testing for symmetry, we find that the graph of the equation is symmetric about the polar axis. Next,
finding the zeros reveals that when . The maximum  is found when  or when 

. Thus, the maximum is found at the point (7, 0).
Even though we have found symmetry, the zero, and the maximum, plotting more points will help to define
the shape, and then a pattern will emerge.

7 6.3 4.5 2 −0.5 −2.3 −3 −2.3 −0.5 2 4.5 6.3 7

As expected, the values begin to repeat after . The graph is shown in Figure 12.

Figure 12. Inner-loop limaçon

A GENERAL NOTE: FORMULAS FOR LEMNISCATES

Investigating Lemniscates

The lemniscate is a polar curve resembling the infinity symbol  or a figure 8. Centered at the pole, a
lemniscate is symmetrical by definition.
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The formulas that generate the graph of a lemniscate are given by  and 
where . The formula  is symmetric with respect to the pole. The formula 
is symmetric with respect to the pole, the line , and the polar axis. See Figure 13 for the graphs.

Figure 13

EXAMPLE 7: SKETCHING THE GRAPH OF A LEMNISCATE

Sketch the graph of .
Answer
The equation exhibits symmetry with respect to the line , the polar axis, and the pole.
Let’s find the zeros. It should be routine by now, but we will approach this equation a little differently by
making the substitution .

So, the point  is a zero of the equation.
Now let’s find the maximum value. Since the maximum of  when , the maximum 
when . Thus,

We have a maximum at (2, 0). Since this graph is symmetric with respect to the pole, the line , and
the polar axis, we only need to plot points in the first quadrant.
Make a table similar to the table below.

0

2 0 0

Plot the points on the graph, such as the one shown in Figure 14.
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Figure 14. Lemniscate

Analysis of the Solution

Making a substitution such as  is a common practice in mathematics because it can make
calculations simpler. However, we must not forget to replace the substitution term with the original term at
the end, and then solve for the unknown.
Some of the points on this graph may not show up using the Trace function on the TI-84 graphing
calculator, and the calculator table may show an error for these same points of . This is because there
are no real square roots for these values of . In other words, the corresponding r-values of 
are complex numbers because there is a negative number under the radical.

A GENERAL NOTE: ROSE CURVES

The formulas that generate the graph of a rose curve are given by  and  where 
. If  is even, the curve has  petals. If  is odd, the curve has  petals.

Investigating Rose Curves

The next type of polar equation produces a petal-like shape called a rose curve. Although the graphs look
complex, a simple polar equation generates the pattern.
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Figure 15

EXAMPLE 8: SKETCHING THE GRAPH OF A ROSE CURVE (N EVEN)

Sketch the graph of .
Answer
Testing for symmetry, we find again that the symmetry tests do not tell the whole story. The graph is not
only symmetric with respect to the polar axis, but also with respect to the line  and the pole.
Now we will find the zeros. First make the substitution .

The zero is . The point  is on the curve.
Next, we find the maximum . We know that the maximum value of  when . Thus,

The point  is on the curve.
The graph of the rose curve has unique properties, which are revealed in the table below.

0

2 0 −2 0 2 0 −2
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As  when , it makes sense to divide values in the table by  units. A definite pattern emerges.
Look at the range of r-values: 2, 0, −2, 0, 2, 0, −2, and so on. This represents the development of the
curve one petal at a time. Starting at , each petal extends out a distance of , and then turns
back to zero  times for a total of eight petals. See the graph in Figure 16.

Figure 16. Rose curve,  even

Analysis of the Solution

When these curves are drawn, it is best to plot the points in order, as in the table of Example 8’s solution.
This allows us to see how the graph hits a maximum (the tip of a petal), loops back crossing the pole, hits
the opposite maximum, and loops back to the pole. The action is continuous until all the petals are drawn.

Try It

Sketch the graph of .
Answer
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EXAMPLE 9: SKETCHING THE GRAPH OF A ROSE CURVE (N ODD)

Sketch the graph of .
Answer
The graph of the equation shows symmetry with respect to the line . Next, find the zeros and
maximum. We will want to make the substitution .

The maximum value is calculated at the angle where  is a maximum. Therefore,

Thus, the maximum value of the polar equation is 2. This is the length of each petal. As the curve for 
odd yields the same number of petals as , there will be five petals on the graph.
Create a table of values similar to the table below.

0

0 1 −1.73 2 −1.73 1 0

The graph is a rose curve,  even
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Figure 17. Rose curve,  odd

TRY IT

Try It

Sketch the graph of .
Answer

Rose curve,  odd
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An interactive or media element has been excluded from this version of the text. You can view it online
here: https://courses.lumenlearning.com/precalculus/?p=14414

A GENERAL NOTE: ARCHIMEDES’ SPIRAL

The formula that generates the graph of the Archimedes’ spiral is given by  for . As 
increases,  increases at a constant rate in an ever-widening, never-ending, spiraling path.

Figure 18

HOW TO: GIVEN AN ARCHIMEDES’ SPIRAL OVER , SKETCH THE
GRAPH.

1. Make a table of values for  and  over the given domain.
2. Plot the points and sketch the graph.

EXAMPLE 10: SKETCHING THE GRAPH OF AN ARCHIMEDES’ SPIRAL

Sketch the graph of  over .
Answer
As  is equal to , the plot of the Archimedes’ spiral begins at the pole at the point (0, 0). While the graph
hints of symmetry, there is no formal symmetry with regard to passing the symmetry tests. Further, there is

Investigating the Archimedes’ Spiral

The final polar equation we will discuss is the Archimedes’ spiral, named for its discoverer, the Greek
mathematician Archimedes (c. 287 BCE – c. 212 BCE), who is credited with numerous discoveries in the
fields of geometry and mechanics.
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no maximum value, unless the domain is restricted.
Create a table such as the one below.

0.785 1.57 3.14 4.71 5.50 6.28

Notice that the r-values are just the decimal form of the angle measured in radians. We can see them on a
graph in Figure 19.

Figure 19. Archimedes’ spiral

Analysis of the Solution

The domain of this polar curve is . In general, however, the domain of this function is .
Graphing the equation of the Archimedes’ spiral is rather simple, although the image makes it seem like it
would be complex.

Try It

Sketch the graph of  over the interval .
Answer
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Key Concepts

It is easier to graph polar equations if we can test the equations for symmetry with respect to the line 
, the polar axis, or the pole.

There are three symmetry tests that indicate whether the graph of a polar equation will exhibit
symmetry. If an equation fails a symmetry test, the graph may or may not exhibit symmetry.
Polar equations may be graphed by making a table of values for  and .
The maximum value of a polar equation is found by substituting the value  that leads to the maximum
value of the trigonometric expression.
The zeros of a polar equation are found by setting  and solving for .
Some formulas that produce the graph of a circle in polar coordinates are given by  and 

.
The formulas that produce the graphs of a cardioid are given by  and , for 

, and .
The formulas that produce the graphs of a one-loop limaçon are given by  and 

 for .
The formulas that produce the graphs of an inner-loop limaçon are given by  and 

 for , and .
The formulas that produce the graphs of a lemniscates are given by  and ,
where .
The formulas that produce the graphs of rose curves are given by  and , where 

; if  is even, there are  petals, and if  is odd, there are  petals.
The formula that produces the graph of an Archimedes’ spiral is given by .

Summary of Curves

We have explored a number of seemingly complex polar curves in this section. Figures 20 and
21 summarize the graphs and equations for each of these curves.
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Archimedes’ spiral

cardioid

convex limaҫon

dimpled limaҫon

inner-loop limaçon

lemniscate

one-loop limaҫon

polar equation

Glossary

a polar curve given by . When multiplied by a constant, the equation appears as 
. As , the curve continues to widen in a spiral path over the domain.

a member of the limaçon family of curves, named for its resemblance to a heart; its equation is
given as  and , where 

a type of one-loop limaçon represented by  and  such that 

a type of one-loop limaçon represented by  and  such that 

a polar curve similar to the cardioid, but with an inner loop; passes through the pole
twice; represented by  and  where 

a polar curve resembling a figure 8 and given by the equation  and 

a polar curve represented by  and  such that ,
and ; may be dimpled or convex; does not pass through the pole

an equation describing a curve on the polar grid.

1032



rose curve

HOW TO: GIVEN A COMPLEX NUMBER , PLOT IT IN THE COMPLEX
PLANE.

1. Label the horizontal axis as the real axis and the vertical axis as the imaginary axis.
2. Plot the point in the complex plane by moving  units in the horizontal direction and  units in the

vertical direction.

EXAMPLE 1: PLOTTING A COMPLEX NUMBER IN THE COMPLEX PLANE

a polar equation resembling a flower, given by the equations  and ;
when  is even there are  petals, and the curve is highly symmetrical; when  is odd there are 
petals.
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POLAR FORM OF COMPLEX NUMBERS

Learning Outcomes

Plot complex numbers in the complex plane.
Find the absolute value of a complex number.
Write complex numbers in polar form.
Convert a complex number from polar to rectangular form.
Find products of complex numbers in polar form.
Find quotients of complex numbers in polar form.
Find powers and roots of complex numbers in polar form.

“God made the integers; all else is the work of man.” This rather famous quote by nineteenth-century
German mathematician Leopold Kronecker sets the stage for this section on the polar form of a complex
number. Complex numbers were invented by people and represent over a thousand years of continuous
investigation and struggle by mathematicians such as Pythagoras, Descartes, De Moivre, Euler, Gauss,
and others. Complex numbers answered questions that for centuries had puzzled the greatest minds in
science.

We first encountered complex numbers in Precalculus I. In this section, we will focus on the mechanics of
working with complex numbers: translation of complex numbers from polar form to rectangular form and vice
versa, interpretation of complex numbers in the scheme of applications, and application of De Moivre’s
Theorem.

Plotting Complex Numbers in the Complex Plane

Plotting a complex number  is similar to plotting a real number, except that the horizontal axis
represents the real part of the number, , and the vertical axis represents the imaginary part of the number, 

.
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Plot the complex number  in the complex plane.
Answer
From the origin, move two units in the positive horizontal direction and three units in the negative vertical
direction.

Figure 1

Try It

Plot the point  in the complex plane.
Answer

 Finding the Absolute Value of a Complex Number
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A GENERAL NOTE: ABSOLUTE VALUE OF A COMPLEX NUMBER

Given , a complex number, the absolute value of  is defined as

It is the distance from the origin to the point .
Notice that the absolute value of a real number gives the distance of the number from 0, while the
absolute value of a complex number gives the distance of the number from the origin, .

EXAMPLE 2: FINDING THE ABSOLUTE VALUE OF A COMPLEX NUMBER
WITH A RADICAL

Find the absolute value of .
Answer
Using the formula, we have

The first step toward working with a complex number in polar form is to find the absolute value. The
absolute value of a complex number is the same as its magnitude, or . It measures the distance from the
origin to a point in the plane. For example, the graph of , in Figure 2, shows .

Figure 2
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Figure 3

EXAMPLE 3: FINDING THE ABSOLUTE VALUE OF A COMPLEX NUMBER

Given , find .
Answer
Using the formula, we have

Try It

Find the absolute value of the complex number .
Answer

13
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The absolute value  is 5.

Figure 4

An interactive or media element has been excluded from this version of the text. You can view it online
here: https://courses.lumenlearning.com/precalculus/?p=14449

TRY IT

Try It

Given , find .
Answer

 Writing Complex Numbers in Polar Form
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A GENERAL NOTE: POLAR FORM OF A COMPLEX NUMBER

Writing a complex number in polar form involves the following conversion formulas:

Making a direct substitution, we have

The polar form of a complex number expresses a number in terms of an angle  and its distance from the
origin . Given a complex number in rectangular form expressed as , we use the same
conversion formulas as we do to write the number in trigonometric form:

We review these relationships in Figure 5.

Figure 5

We use the term modulus to represent the absolute value of a complex number, or the distance from the
origin to the point . The modulus, then, is the same as , the radius in polar form. We use  to indicate
the angle of direction (just as with polar coordinates). Substituting, we have
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where  is the modulus and  is the argument. We often use the abbreviation  to represent 
.

EXAMPLE 4: EXPRESSING A COMPLEX NUMBER USING POLAR
COORDINATES

Express the complex number  using polar coordinates.
Answer
On the complex plane, the number  is the same as . Writing it in polar form, we have to
calculate  first.

Next, we look at . If , and , then . In polar coordinates, the complex number 
 can be written as  or .

Figure 6

Try It

Express  as  in polar form.
Answer
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EXAMPLE 5: FINDING THE POLAR FORM OF A COMPLEX NUMBER

Find the polar form of .
Answer
First, find the value of .

Find the angle  using the formula:

Thus, the solution is .

An interactive or media element has been excluded from this version of the text. You can view it online
here: https://courses.lumenlearning.com/precalculus/?p=14449

TRY IT

EXAMPLE 6: CONVERTING FROM POLAR TO RECTANGULAR FORM

Convert the polar form of the given complex number to rectangular form:

Answer
We begin by evaluating the trigonometric expressions.

Try It

Write  in polar form.
Answer

 Converting a Complex Number from Polar to Rectangular Form

Converting a complex number from polar form to rectangular form is a matter of evaluating what is given and
using the distributive property. In other words, given , first evaluate the trigonometric
functions  and . Then, multiply through by .
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After substitution, the complex number is

We apply the distributive property:

The rectangular form of the given point in complex form is .

EXAMPLE 7: FINDING THE RECTANGULAR FORM OF A COMPLEX
NUMBER

Find the rectangular form of the complex number given  and .
Answer
If , and , we first determine  We then find 

 and .

The rectangular form of the given number in complex form is .

An interactive or media element has been excluded from this version of the text. You can view it online
here: https://courses.lumenlearning.com/precalculus/?p=14449

TRY IT

Try It

Convert the complex number to rectangular form:

Answer

 Finding Products and Quotients of Complex Numbers in Polar
Form
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A GENERAL NOTE: PRODUCTS OF COMPLEX NUMBERS IN POLAR FORM

If  and , then the product of these numbers is given as:

Notice that the product calls for multiplying the moduli and adding the angles.

EXAMPLE 8: FINDING THE PRODUCT OF TWO COMPLEX NUMBERS IN
POLAR FORM

Find the product of , given  and .
Answer
Follow the formula

A GENERAL NOTE: QUOTIENTS OF COMPLEX NUMBERS IN POLAR FORM

If  and , then the quotient of these numbers is

Notice that the moduli are divided, and the angles are subtracted.

HOW TO: GIVEN TWO COMPLEX NUMBERS IN POLAR FORM, FIND THE
QUOTIENT.

1. Divide .
2. Find .

Now that we can convert complex numbers to polar form we will learn how to perform operations on
complex numbers in polar form. For the rest of this section, we will work with formulas developed by French
mathematician Abraham de Moivre (1667-1754). These formulas have made working with products,
quotients, powers, and roots of complex numbers much simpler than they appear. The rules are based on
multiplying the moduli and adding the arguments.

Finding Quotients of Complex Numbers in Polar Form

The quotient of two complex numbers in polar form is the quotient of the two moduli and the difference of the
two arguments.
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3. Substitute the results into the formula: . Replace  with , and replace  with 
.

4. Calculate the new trigonometric expressions and multiply through by .

EXAMPLE 9: FINDING THE QUOTIENT OF TWO COMPLEX NUMBERS

Find the quotient of  and .
Answer
Using the formula, we have

An interactive or media element has been excluded from this version of the text. You can view it online
here: https://courses.lumenlearning.com/precalculus/?p=14449

TRY IT

A GENERAL NOTE: DE MOIVRE’S THEOREM

If  is a complex number, then

where  is a positive integer.

Try It

Find the product and the quotient of  and 
.

Answer

 Finding Powers and Roots of Complex Numbers in Polar Form

Finding powers of complex numbers is greatly simplified using De Moivre’s Theorem. It states that, for a
positive integer  is found by raising the modulus to the  power and multiplying the argument by . It
is the standard method used in modern mathematics.
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EXAMPLE 10: EVALUATING AN EXPRESSION USING DE MOIVRE’S
THEOREM

Evaluate the expression  using De Moivre’s Theorem.
Answer
Since De Moivre’s Theorem applies to complex numbers written in polar form, we must first write 
in polar form. Let us find .

Then we find . Using the formula  gives

Use De Moivre’s Theorem to evaluate the expression.

A GENERAL NOTE: THE NTH ROOT THEOREM

To find the  root of a complex number in polar form, use the formula given as

where . We add  to  in order to obtain the periodic roots.

EXAMPLE 11: FINDING THE NTH ROOT OF A COMPLEX NUMBER

Evaluate the cube roots of .
Answer
We have

Finding Roots of Complex Numbers in Polar Form

To find the nth root of a complex number in polar form, we use the  Root Theorem or De Moivre’s
Theorem and raise the complex number to a power with a rational exponent. There are several ways to
represent a formula for finding  roots of complex numbers in polar form.
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There will be three roots: . When , we have

When , we have

When , we have

Remember to find the common denominator to simplify fractions in situations like this one. For , the
angle simplification is

Try It

Find the four fourth roots of .
Answer

Key Concepts

Complex numbers in the form  are plotted in the complex plane similar to the way rectangular
coordinates are plotted in the rectangular plane. Label the x-axis as the real axis and the y-axis as the
imaginary axis.
The absolute value of a complex number is the same as its magnitude. It is the distance from the origin
to the point: .
To write complex numbers in polar form, we use the formulas , and 
. Then, .
To convert from polar form to rectangular form, first evaluate the trigonometric functions. Then, multiply
through by .
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argument

De Moivre’s Theorem

modulus

polar form of a complex number

To find the product of two complex numbers, multiply the two moduli and add the two angles. Evaluate
the trigonometric functions, and multiply using the distributive property.
To find the quotient of two complex numbers in polar form, find the quotient of the two moduli and the
difference of the two angles.
To find the power of a complex number , raise  to the power , and multiply  by .
Finding the roots of a complex number is the same as raising a complex number to a power, but using a
rational exponent.

Glossary

the angle associated with a complex number; the angle between the line from the origin to the
point and the positive real axis

formula used to find the  power or nth roots of a complex number; states that, for
a positive integer  is found by raising the modulus to the  power and multiplying the angles by 

the absolute value of a complex number, or the distance from the origin to the point ; also
called the amplitude

a complex number expressed in terms of an angle  and its distance
from the origin ; can be found by using conversion formulas , and 
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PARAMETRIC EQUATIONS

Learning Outcomes

Find a rectangular equation for a curve defined parametrically.
Find parametric equations for curves defined by rectangular equations.

Consider the path a moon follows as it orbits a planet, which simultaneously rotates around the sun, as seen
in Figure 1. At any moment, the moon is located at a particular spot relative to the planet. But how do we
write and solve the equation for the position of the moon when the distance from the planet, the speed of the
moon’s orbit around the planet, and the speed of rotation around the sun are all unknowns? We can solve
only for one variable at a time.
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Figure 1

In this section, we will consider sets of equations given by  and  where  is the independent
variable of time. We can use these parametric equations in a number of applications when we are looking for
not only a particular position but also the direction of the movement. As we trace out successive values of ,
the orientation of the curve becomes clear. This is one of the primary advantages of using parametric
equations: we are able to trace the movement of an object along a path according to time. We begin this
section with a look at the basic components of parametric equations and what it means to parameterize a
curve. Then we will learn how to eliminate the parameter, translate the equations of a curve defined
parametrically into rectangular equations, and find the parametric equations for curves defined by
rectangular equations.

Parameterizing a Curve

When an object moves along a curve—or curvilinear path—in a given direction and in a given amount of
time, the position of the object in the plane is given by the x-coordinate and the y-coordinate. However, both 

 and 
vary over time and so are functions of time. For this reason, we add another variable, the parameter, upon
which both  and  are dependent functions. In the example in the section opener, the parameter is time, .
The  position of the moon at time, , is represented as the function , and the  position of the moon at
time, , is represented as the function . Together,  and  are called parametric equations, and
generate an ordered pair . Parametric equations primarily describe motion and direction.

When we parameterize a curve, we are translating a single equation in two variables, such as  and , into
an equivalent pair of equations in three variables, , and . One of the reasons we parameterize a curve is
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A GENERAL NOTE: PARAMETRIC EQUATIONS

Suppose  is a number on an interval, . The set of ordered pairs, , where  and 
, forms a plane curve based on the parameter . The equations  and  are the

parametric equations.

EXAMPLE 1: PARAMETERIZING A CURVE

Parameterize the curve  letting . Graph both equations.
Answer
If , then to find  we replace the variable  with the expression given in . In other words, 

. Make a table of values similar to the table below, and sketch the graph.

because the parametric equations yield more information: specifically, the direction of the object’s motion
over time.

When we graph parametric equations, we can observe the individual behaviors of  and of . There are a
number of shapes that cannot be represented in the form , meaning that they are not functions. For
example, consider the graph of a circle, given as . Solving for  gives , or two
equations:  and . If we graph  and  together, the graph will not pass the
vertical line test, as shown in Figure 2. Thus, the equation for the graph of a circle is not a function.

Figure 2

However, if we were to graph each equation on its own, each one would pass the vertical line test and
therefore would represent a function. In some instances, the concept of breaking up the equation for a circle
into two functions is similar to the concept of creating parametric equations, as we use two functions to
produce a non-function. This will become clearer as we move forward.
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See the graphs in Figure 3. It may be helpful to use the TRACE feature of a graphing calculator to see
how the points are generated as  increases.

Figure 3. (a) Parametric  (b) Rectangular 

Analysis of the Solution

The arrows indicate the direction in which the curve is generated. Notice the curve is identical to the curve
of .

Try It

Construct a table of values and plot the parametric equations: .
Answer
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EXAMPLE 2: FINDING A PAIR OF PARAMETRIC EQUATIONS

Find a pair of parametric equations that models the graph of , using the parameter .
Plot some points and sketch the graph.
Answer
If  and we substitute  for  into the  equation, then . Our pair of parametric
equations is

To graph the equations, first we construct a table of values like that in the table below. We can choose
values around , from  to . The values in the  column will be the same as those in the
 column because . Calculate values for the column .

The graph of  is a parabola facing downward, as shown in Figure 4. We have mapped the curve
over the interval , shown as a solid line with arrows indicating the orientation of the curve according
to . Orientation refers to the path traced along the curve in terms of increasing values of . As this
parabola is symmetric with respect to the line , the values of  are reflected across the y-axis.
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Figure 4

EXAMPLE 3: FINDING PARAMETRIC EQUATIONS THAT MODEL GIVEN
CRITERIA

Try It

Parameterize the curve given by .
Answer
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An object travels at a steady rate along a straight path  to  in the same plane in four
seconds. The coordinates are measured in meters. Find parametric equations for the position of the
object.
Answer
The parametric equations are simple linear expressions, but we need to view this problem in a step-by-
step fashion. The x-value of the object starts at  meters and goes to 3 meters. This means the distance
x has changed by 8 meters in 4 seconds, which is a rate of , or . We can write the x-coordinate
as a linear function with respect to time as . In the linear function template 

 and .
Similarly, the y-value of the object starts at 3 and goes to , which is a change in the distance y of −4
meters in 4 seconds, which is a rate of , or . We can also write the y-coordinate as the linear
function . Together, these are the parametric equations for the position of the object, where 

 and  are expressed in meters and  represents time:

Using these equations, we can build a table of values for , and . In this example, we limited values of 
to non-negative numbers. In general, any value of  can be used.

From this table, we can create three graphs, as shown in Figure 5.

Figure 5. (a) A graph of  vs. , representing the horizontal position over time. (b) A graph of  vs. , representing the vertical position
over time. (c) A graph of  vs. , representing the position of the object in the plane at time .

Analysis of the Solution
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EXAMPLE 4: ELIMINATING THE PARAMETER IN POLYNOMIALS

Given  and , eliminate the parameter, and write the parametric equations as a
Cartesian equation.
Answer
We will begin with the equation for  because the linear equation is easier to solve for .

Next, substitute  for  in .

The Cartesian form is .

Analysis of the Solution

This is an equation for a parabola in which, in rectangular terms,  is dependent on . From the curve’s
vertex at , the graph sweeps out to the right. See Figure 6. In this section, we consider sets of
equations given by the functions  and , where  is the independent variable of time. Notice, both 
and  are functions of time; so in general  is not a function of .

Again, we see that, in Figure 5(c), when the parameter represents time, we can indicate the movement of
the object along the path with arrows.

Methods for Finding Cartesian and Polar Equations from Curves

In many cases, we may have a pair of parametric equations but find that it is simpler to draw a curve if the
equation involves only two variables, such as  and . Eliminating the parameter is a method that may make
graphing some curves easier. However, if we are concerned with the mapping of the equation according to
time, then it will be necessary to indicate the orientation of the curve as well. There are various methods for
eliminating the parameter  from a set of parametric equations; not every method works for every type of
equation. Here we will review the methods for the most common types of equations.

Eliminating the Parameter from Polynomial, Exponential, and
Logarithmic Equations

For polynomial, exponential, or logarithmic equations expressed as two parametric equations, we choose
the equation that is most easily manipulated and solve for . We substitute the resulting expression for  into
the second equation. This gives one equation in  and .
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Figure 6

An interactive or media element has been excluded from this version of the text. You can view it online
here: https://courses.lumenlearning.com/precalculus/?p=14466

TRY IT

EXAMPLE 5: ELIMINATING THE PARAMETER IN EXPONENTIAL
EQUATIONS

Eliminate the parameter and write as a Cartesian equation:  and .
Answer
Isolate .

Try It

Given the equations below, eliminate the parameter and write as a rectangular equation for  as a
function of .

Answer
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Substitute the expression into .

The Cartesian form is .

Analysis of the Solution

The graph of the parametric equation is shown in Figure 7(a). The domain is restricted to . The
Cartesian equation,  is shown in Figure 7(b) and has only one restriction on the domain, .

EXAMPLE 6: ELIMINATING THE PARAMETER IN LOGARITHMIC
EQUATIONS

Eliminate the parameter and write as a Cartesian equation:  and .
Answer
Solve the first equation for .

Then, substitute the expression for  into the  equation.

The Cartesian form is .
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Analysis of the Solution

To be sure that the parametric equations are equivalent to the Cartesian equation, check the domains.
The parametric equations restrict the domain on  to ; we restrict the domain on  to 
. The domain for the parametric equation  is restricted to ; we limit the domain on 

 to .

EXAMPLE 7: ELIMINATING THE PARAMETER FROM A PAIR OF
TRIGONOMETRIC PARAMETRIC EQUATIONS

Eliminate the parameter from the given pair of trigonometric equations where  and sketch
the graph.

Answer
Solving for  and , we have

Try It

Eliminate the parameter and write as a rectangular equation.

Answer

Eliminating the Parameter from Trigonometric Equations

Eliminating the parameter from trigonometric equations is a straightforward substitution. We can use a few of
the familiar trigonometric identities and the Pythagorean Theorem.

First, we use the identities:

Solving for  and , we have

Then, use the Pythagorean Theorem:

Substituting gives
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Next, use the Pythagorean identity and make the substitutions.

The graph for the equation is shown in Figure 8.

Figure 8

Analysis of the Solution

Applying the general equations for conic sections, we can identify  as an ellipse centered at 
. Notice that when  the coordinates are , and when  the coordinates are . This

shows the orientation of the curve with increasing values of .

Try It

Eliminate the parameter from the given pair of parametric equations and write as a Cartesian equation:
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An interactive or media element has been excluded from this version of the text. You can view it online
here: https://courses.lumenlearning.com/precalculus/?p=14466

TRY IT

EXAMPLE 8: FINDING A CARTESIAN EQUATION USING ALTERNATE
METHODS

Use two different methods to find the Cartesian equation equivalent to the given set of parametric
equations.

Answer
Method 1. First, let’s solve the  equation for . Then we can substitute the result into the  equation.

Now substitute the expression for  into the  equation.

Method 2. Solve the  equation for  and substitute this expression in the  equation.

Make the substitution and then solve for .

 and .
Answer

When we are given a set of parametric equations and need to find an equivalent Cartesian equation, we are
essentially “eliminating the parameter.” However, there are various methods we can use to rewrite a set of
parametric equations as a Cartesian equation. The simplest method is to set one equation equal to the
parameter, such as . In this case,  can be any expression. For example, consider the following
pair of equations.

Rewriting this set of parametric equations is a matter of substituting  for . Thus, the Cartesian equation is 
.
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A YouTube element has been excluded from this version of the text. You can view it online here:
https://courses.lumenlearning.com/precalculus/?p=14466

EXAMPLE 9: FINDING A SET OF PARAMETRIC EQUATIONS FOR CURVES
DEFINED BY RECTANGULAR EQUATIONS

Find a set of equivalent parametric equations for .

Try It

Write the given parametric equations as a Cartesian equation:  and .
Answer

Finding Parametric Equations for Curves De�ned by Rectangular
Equations

Although we have just shown that there is only one way to interpret a set of parametric equations as a
rectangular equation, there are multiple ways to interpret a rectangular equation as a set of parametric
equations. Any strategy we may use to find the parametric equations is valid if it produces equivalency. In
other words, if we choose an expression to represent , and then substitute it into the  equation, and it
produces the same graph over the same domain as the rectangular equation, then the set of parametric
equations is valid. If the domain becomes restricted in the set of parametric equations, and the function does
not allow the same values for  as the domain of the rectangular equation, then the graphs will be different.

The following video shows examples of how to find Cartesian representations of parametric equations of
different kinds.
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parameter

Answer
An obvious choice would be to let . Then . But let’s try something more
interesting. What if we let  Then we have

The set of parametric equations is

Figure 9

Key Concepts

Parameterizing a curve involves translating a rectangular equation in two variables,  and , into two
equations in three variables, x, y, and t. Often, more information is obtained from a set of parametric
equations.
Sometimes equations are simpler to graph when written in rectangular form. By eliminating , an
equation in  and  is the result.
To eliminate , solve one of the equations for , and substitute the expression into the second equation.
Finding the rectangular equation for a curve defined parametrically is basically the same as eliminating
the parameter. Solve for  in one of the equations, and substitute the expression into the second
equation.
There are an infinite number of ways to choose a set of parametric equations for a curve defined as a
rectangular equation.
Find an expression for  such that the domain of the set of parametric equations remains the same as
the original rectangular equation.

Glossary

a variable, often representing time, upon which  and  are both dependent
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PARAMETRIC EQUATIONS: GRAPHS

Learning Outcomes

Graph plane curves described by parametric equations by plotting points.
Graph parametric equations.

It is the bottom of the ninth inning, with two outs and two men on base. The home team is losing by two
runs. The batter swings and hits the baseball at 140 feet per second and at an angle of approximately  to
the horizontal. How far will the ball travel? Will it clear the fence for a game-winning home run? The outcome
may depend partly on other factors (for example, the wind), but mathematicians can model the path of a
projectile and predict approximately how far it will travel using parametric equations. In this section, we’ll
discuss parametric equations and some common applications, such as projectile motion problems.

Figure 1. Parametric equations can model the path of a projectile. (credit: Paul Kreher, Flickr)
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HOW TO: GIVEN A PAIR OF PARAMETRIC EQUATIONS, SKETCH A GRAPH
BY PLOTTING POINTS.

1. Construct a table with three columns: .
2. Evaluate  and  for values of  over the interval for which the functions are defined.
3. Plot the resulting pairs .

EXAMPLE 1: SKETCHING THE GRAPH OF A PAIR OF PARAMETRIC
EQUATIONS BY PLOTTING POINTS

Sketch the graph of the parametric equations .
Answer
Construct a table of values for , and , as in the table below, and plot the points in a plane.

The graph is a parabola with vertex at the point , opening to the right. See Figure 2.

Graphing Parametric Equations by Plotting Points

In lieu of a graphing calculator or a computer graphing program, plotting points to represent the graph of an
equation is the standard method. As long as we are careful in calculating the values, point-plotting is highly
dependable.
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Figure 2

Analysis of the Solution

As values for  progress in a positive direction from 0 to 5, the plotted points trace out the top half of the
parabola. As values of  become negative, they trace out the lower half of the parabola. There are no
restrictions on the domain. The arrows indicate direction according to increasing values of . The graph
does not represent a function, as it will fail the vertical line test. The graph is drawn in two parts: the
positive values for , and the negative values for .

Try It

Sketch the graph of the parametric equations .
Answer
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EXAMPLE 2: SKETCHING THE GRAPH OF TRIGONOMETRIC PARAMETRIC
EQUATIONS

Construct a table of values for the given parametric equations and sketch the graph:

Answer
Construct a table like the one below using angle measure in radians as inputs for , and evaluating  and 
. Using angles with known sine and cosine values for  makes calculations easier.
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0

Figure 3 shows the graph.
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Figure 3

By the symmetry shown in the values of  and , we see that the parametric equations represent an
ellipse. The ellipse is mapped in a counterclockwise direction as shown by the arrows indicating
increasing  values.

Analysis of the Solution

We have seen that parametric equations can be graphed by plotting points. However, a graphing
calculator will save some time and reveal nuances in a graph that may be too tedious to discover using
only hand calculations.
Make sure to change the mode on the calculator to parametric (PAR). To confirm, the  window should
show

instead of .

Try It

Graph the parametric equations: .
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EXAMPLE 3: GRAPHING PARAMETRIC EQUATIONS AND RECTANGULAR
FORM TOGETHER

Graph the parametric equations  and . First, construct the graph using data points
generated from the parametric form. Then graph the rectangular form of the equation. Compare the two
graphs.
Answer
Construct a table of values like the table below.

Plot the  values from the table. See Figure 4.

Answer
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Figure 4

Next, translate the parametric equations to rectangular form. To do this, we solve for  in either  or 
, and then substitute the expression for  in the other equation. The result will be a function  if

solving for  as a function of , or  if solving for  as a function of .

Then, use the Pythagorean Theorem.

Analysis of the Solution

In Figure 5, the data from the parametric equations and the rectangular equation are plotted together. The
parametric equations are plotted in blue; the graph for the rectangular equation is drawn on top of the
parametric in a dashed style colored red. Clearly, both forms produce the same graph.
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Figure 5

EXAMPLE 4: GRAPHING PARAMETRIC EQUATIONS AND RECTANGULAR
EQUATIONS ON THE COORDINATE SYSTEM

Graph the parametric equations  and , and the rectangular equivalent 
on the same coordinate system.
Answer
Construct a table of values for the parametric equations, as we did in the previous example, and graph 

 on the same grid, as in Figure 6.
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Figure 6

Analysis of the Solution

With the domain on  restricted, we only plot positive values of . The parametric data is graphed in blue
and the graph of the rectangular equation is dashed in red. Once again, we see that the two forms
overlap.

Try It

Sketch the graph of the parametric equations , along with the rectangular
equation on the same grid.
Answer

The graph of the parametric equations is in red and the graph of the rectangular equation is drawn in blue

dots on top of the parametric equations.
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An interactive or media element has been excluded from this version of the text. You can view it online
here: https://courses.lumenlearning.com/precalculus/?p=14480

TRY IT

HOW TO: GIVEN A PROJECTILE MOTION PROBLEM, USE PARAMETRIC
EQUATIONS TO SOLVE.

1. The horizontal distance is given by . Substitute the initial speed of the object for .
2. The expression  indicates the angle at which the object is propelled. Substitute that angle in

degrees for .
3. The vertical distance is given by the formula . The term 

represents the effect of gravity. Depending on units involved, use  or . Again,
substitute the initial speed for , and the height at which the object was propelled for .

4. Proceed by calculating each term to solve for .

EXAMPLE 5: FINDING THE PARAMETRIC EQUATIONS TO DESCRIBE THE
MOTION OF A BASEBALL

Solve the problem presented at the beginning of this section. Does the batter hit the game-winning home
run? Assume that the ball is hit with an initial velocity of 140 feet per second at an angle of  to the
horizontal, making contact 3 feet above the ground.

1. Find the parametric equations to model the path of the baseball.
2. Where is the ball after 2 seconds?
3. How long is the ball in the air?
4. Is it a home run?

 Applications of Parametric Equations

Many of the advantages of parametric equations become obvious when applied to solving real-world
problems. Although rectangular equations in x and y give an overall picture of an object’s path, they do not
reveal the position of an object at a specific time. Parametric equations, however, illustrate how the values of
x and y change depending on t, as the location of a moving object at a particular time.

A common application of parametric equations is solving problems involving projectile motion. In this type of
motion, an object is propelled forward in an upward direction forming an angle of  to the horizontal, with an
initial speed of , and at a height  above the horizontal.

The path of an object propelled at an inclination of  to the horizontal, with initial speed , and at a height 
above the horizontal, is given by

where  accounts for the effects of gravity and  is the initial height of the object. Depending on the units
involved in the problem, use  or . The equation for  gives horizontal distance, and
the equation for  gives the vertical distance.
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Answer

1. Use the formulas to set up the equations. The horizontal position is found using the parametric
equation for . Thus,

The vertical position is found using the parametric equation for . Thus,

2. Substitute 2 into the equations to find the horizontal and vertical positions of the ball.

After 2 seconds, the ball is 198 feet away from the batter’s box and 137 feet above the ground.
3. To calculate how long the ball is in the air, we have to find out when it will hit ground, or when .

Thus,

When  seconds, the ball has hit the ground. (The quadratic equation can be solved in
various ways, but this problem was solved using a computer math program.)

4. We cannot confirm that the hit was a home run without considering the size of the outfield, which
varies from field to field. However, for simplicity’s sake, let’s assume that the outfield wall is 400 feet
from home plate in the deepest part of the park. Let’s also assume that the wall is 10 feet high. In
order to determine whether the ball clears the wall, we need to calculate how high the ball is when x =
400 feet. So we will set x = 400, solve for , and input  into .

The ball is 141.8 feet in the air when it soars out of the ballpark. It was indeed a home run. See Figure
7.
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Figure 7

Key Concepts

When there is a third variable, a third parameter on which  and  depend, parametric equations can be
used.
To graph parametric equations by plotting points, make a table with three columns labeled , and 

. Choose values for  in increasing order. Plot the last two columns for  and .
When graphing a parametric curve by plotting points, note the associated t-values and show arrows on
the graph indicating the orientation of the curve.
Parametric equations allow the direction or the orientation of the curve to be shown on the graph.
Equations that are not functions can be graphed and used in many applications involving motion.
Projectile motion depends on two parametric equations:  and 

. Initial velocity is symbolized as .  represents the initial angle of the
object when thrown, and  represents the height at which the object is propelled.
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VECTORS

Learning Outcomes

View vectors geometrically.
Find magnitude and direction.
Perform vector addition and scalar multiplication.
Find the component form of a vector.
Find the unit vector in the direction of  .
Perform operations with vectors in terms of  and  .
Find the dot product of two vectors.

1073



An airplane is flying at an airspeed of 200 miles per hour headed on a SE bearing of 140°. A north wind
(from north to south) is blowing at 16.2 miles per hour, as shown in Figure 1. What are the ground speed
and actual bearing of the plane?

Figure 1

Ground speed refers to the speed of a plane relative to the ground. Airspeed refers to the speed a plane can
travel relative to its surrounding air mass. These two quantities are not the same because of the effect of
wind. In an earlier section, we used triangles to solve a similar problem involving the movement of boats.
Later in this section, we will find the airplane’s groundspeed and bearing, while investigating another
approach to problems of this type. First, however, let’s examine the basics of vectors.

A Geometric View of Vectors

A vector is a specific quantity drawn as a line segment with an arrowhead at one end. It has an initial
point, where it begins, and a terminal point, where it ends. A vector is defined by its magnitude, or the
length of the line, and its direction, indicated by an arrowhead at the terminal point. Thus, a vector is a
directed line segment. There are various symbols that distinguish vectors from other quantities:

1074



A GENERAL NOTE: PROPERTIES OF VECTORS

A vector is a directed line segment with an initial point and a terminal point. Vectors are identified by
magnitude, or the length of the line, and direction, represented by the arrowhead pointing toward the
terminal point. The position vector has an initial point at  and is identified by its terminal point .

EXAMPLE 1: FIND THE POSITION VECTOR

Consider the vector whose initial point is  and terminal point is . Find the position vector.
Answer

Lower case, boldfaced type, with or without an arrow on top such as .
Given initial point  and terminal point , a vector can be represented as . The arrowhead on top is
what indicates that it is not just a line, but a directed line segment.
Given an initial point of  and terminal point , a vector may be represented as .

This last symbol  has special significance. It is called the standard position. The position vector has
an initial point  and a terminal point . To change any vector into the position vector, we think about

the change in the x-coordinates and the change in the y-coordinates. Thus, if the initial point of a vector 
is  and the terminal point is , then the position vector is found by calculating

In Figure 2, we see the original vector  and the position vector .

Figure 2
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The position vector is found by subtracting one x-coordinate from the other x-coordinate, and one y-
coordinate from the other y-coordinate. Thus

The position vector begins at  and terminates at . The graphs of both vectors are shown in
Figure 3.

Figure 3

We see that the position vector is .

EXAMPLE 2: DRAWING A VECTOR WITH THE GIVEN CRITERIA AND ITS
EQUIVALENT POSITION VECTOR

Find the position vector given that vectorv has an initial point at  and a terminal point at , then
graph both vectors in the same plane.
Answer
The position vector is found using the following calculation:

Thus, the position vector begins at  and terminates at .
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Figure 4

An interactive or media element has been excluded from this version of the text. You can view it online
here: https://courses.lumenlearning.com/precalculus/?p=14540

TRY IT

Try It

Draw a vector  that connects from the origin to the point .
Answer
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A GENERAL NOTE: MAGNITUDE AND DIRECTION OF A VECTOR

Given a position vector  , the magnitude is found by . The direction is equal to
the angle formed with the x-axis, or with the y-axis, depending on the application. For a position vector, the
direction is found by , as illustrated in Figure 5.

Figure 5

Two vectors v and u are considered equal if they have the same magnitude and the same direction.
Additionally, if both vectors have the same position vector, they are equal.

EXAMPLE 3: FINDING THE MAGNITUDE AND DIRECTION OF A VECTOR

Find the magnitude and direction of the vector with initial point  and terminal point .
Draw the vector.
Answer
First, find the position vector.

We use the Pythagorean Theorem to find the magnitude.

The direction is given as

 Finding Magnitude and Direction

To work with a vector, we need to be able to find its magnitude and its direction. We find its magnitude using
the Pythagorean Theorem or the distance formula, and we find its direction using the inverse tangent
function.
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However, the angle terminates in the fourth quadrant, so we add 360° to obtain a positive angle. Thus, 
.

Figure 6

EXAMPLE 4: SHOWING THAT TWO VECTORS ARE EQUAL

Show that vector v with initial point at  and terminal point at  is equal to vector u with
initial point at  and terminal point at . Draw the position vector on the same grid as v and
u. Next, find the magnitude and direction of each vector.
Answer
As shown in Figure 7, draw the vector  starting at initial  and terminal point . Draw the
vector  with initial point  and terminal point . Find the standard position for each.
Next, find and sketch the position vector for v and u. We have

Since the position vectors are the same, v and u are the same.
An alternative way to check for vector equality is to show that the magnitude and direction are the same
for both vectors. To show that the magnitudes are equal, use the Pythagorean Theorem.
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As the magnitudes are equal, we now need to verify the direction. Using the tangent function with the
position vector gives

However, we can see that the position vector terminates in the second quadrant, so we add . Thus,
the direction is .
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Figure 7

 Performing Vector Addition and Scalar Multiplication

Now that we understand the properties of vectors, we can perform operations involving them. While it is
convenient to think of the vector   as an arrow or directed line segment from the origin to the point 

, vectors can be situated anywhere in the plane. The sum of two vectors u and v, or vector addition,
produces a third vector u+ v, the resultant vector.

To find u + v, we first draw the vector u, and from the terminal end of u, we drawn the vector v. In other
words, we have the initial point of v meet the terminal end of u. This position corresponds to the notion that
we move along the first vector and then, from its terminal point, we move along the second vector. The sum
u + v is the resultant vector because it results from addition or subtraction of two vectors. The resultant
vector travels directly from the beginning of u to the end of v in a straight path, as shown in Figure 8.
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EXAMPLE 5: ADDING AND SUBTRACTING VECTORS

Given   and  , find two new vectors u + v, and u − v.
Answer
To find the sum of two vectors, we add the components. Thus,

See Figure 10(a).
To find the difference of two vectors, add the negative components of  to . Thus,

See Figure 10(b).

Figure 8

Vector subtraction is similar to vector addition. To find u − v, view it as u + (−v). Adding −v is reversing
direction of v and adding it to the end of u. The new vector begins at the start of u and stops at the end point
of −v. See Figure 9 for a visual that compares vector addition and vector subtraction using parallelograms.

Figure 9
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Figure 10. (a) Sum of two vectors (b) Difference of two vectors

A GENERAL NOTE: SCALAR MULTIPLICATION

Scalar multiplication involves the product of a vector and a scalar. Each component of the vector is
multiplied by the scalar. Thus, to multiply   by  , we have

Only the magnitude changes, unless  is negative, and then the vector reverses direction.

EXAMPLE 6: PERFORMING SCALAR MULTIPLICATION

Given vector  , find 3v,  v, and −v.
Answer
See Figure 11 for a geometric interpretation. If  , then

Multiplying By a Scalar

While adding and subtracting vectors gives us a new vector with a different magnitude and direction, the
process of multiplying a vector by a scalar, a constant, changes only the magnitude of the vector or the
length of the line. Scalar multiplication has no effect on the direction unless the scalar is negative, in which
case the direction of the resulting vector is opposite the direction of the original vector.
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Figure 11

Analysis of the Solution

Notice that the vector 3v is three times the length of v,   is half the length of v, and –v is the same
length of v, but in the opposite direction.

EXAMPLE 7: USING VECTOR ADDITION AND SCALAR MULTIPLICATION
TO FIND A NEW VECTOR

Given  and , find a new vector w = 3u + 2v.
Answer
First, we must multiply each vector by the scalar.

Try It

Find the scalar multiple   given  .
Answer
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Then, add the two together.

So, .

An interactive or media element has been excluded from this version of the text. You can view it online
here: https://courses.lumenlearning.com/precalculus/?p=14540

TRY IT

Finding Component Form

In some applications involving vectors, it is helpful for us to be able to break a vector down into its
components. Vectors are comprised of two components: the horizontal component is the  direction, and the
vertical component is the  direction. For example, we can see in the graph in Figure 12 that the position
vector  comes from adding the vectors v1 and v2. We have v1 with initial point  and terminal point 

.

We also have v2 with initial point  and terminal point .

Therefore, the position vector is

Using the Pythagorean Theorem, the magnitude of v1 is 2, and the magnitude of v2 is 3. To find the
magnitude of v, use the formula with the position vector.

The magnitude of v is . To find the direction, we use the tangent function .

1085



EXAMPLE 8: FINDING THE COMPONENTS OF THE VECTOR

Find the components of the vector  with initial point  and terminal point .
Answer
First find the standard position.

See the illustration in Figure 13.

Figure 12

Thus, the magnitude of  is  and the direction is  off the horizontal.
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Figure 13

The horizontal component is  and the vertical component is .

 Finding the Unit Vector in the Direction of v

In addition to finding a vector’s components, it is also useful in solving problems to find a vector in the same
direction as the given vector, but of magnitude 1. We call a vector with a magnitude of 1 a unit vector. We
can then preserve the direction of the original vector while simplifying calculations.

Unit vectors are defined in terms of components. The horizontal unit vector is written as  and is
directed along the positive horizontal axis. The vertical unit vector is written as  and is directed
along the positive vertical axis.

Figure 14
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A GENERAL NOTE: THE UNIT VECTORS

If  is a nonzero vector, then  is a unit vector in the direction of . Any vector divided by its magnitude

is a unit vector. Notice that magnitude is always a scalar, and dividing by a scalar is the same as
multiplying by the reciprocal of the scalar.

EXAMPLE 9: FINDING THE UNIT VECTOR IN THE DIRECTION OF V

Find a unit vector in the same direction as .
Answer
First, we will find the magnitude.

Then we divide each component by , which gives a unit vector in the same direction as v:

or, in component form
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Figure 15

Verify that the magnitude of the unit vector equals 1. The magnitude of  is given as
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The vector   i  j is the unit vector in the same direction as v .

A GENERAL NOTE: VECTORS IN THE RECTANGULAR PLANE

Given a vector  with initial point  and terminal point , v is written as

The position vector from  to , where  and , is written as v = ai + bj.
This vector sum is called a linear combination of the vectors i and j.
The magnitude of v = ai + bj is given as .

Figure 16

EXAMPLE 10: WRITING A VECTOR IN TERMS OF I AND J

Given a vector  with initial point  and terminal point , write the vector in terms of 
 and .

Answer
Begin by writing the general form of the vector. Then replace the coordinates with the given values.

 Performing Operations with Vectors in Terms of i and j

So far, we have investigated the basics of vectors: magnitude and direction, vector addition and subtraction,
scalar multiplication, the components of vectors, and the representation of vectors geometrically. Now that
we are familiar with the general strategies used in working with vectors, we will represent vectors in
rectangular coordinates in terms of i and j.
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EXAMPLE 11: WRITING A VECTOR IN TERMS OF I AND J USING INITIAL
AND TERMINAL POINTS

Given initial point  and terminal point , write the vector  in terms of  and .
Answer
Begin by writing the general form of the vector. Then replace the coordinates with the given values.

A GENERAL NOTE: ADDING AND SUBTRACTING VECTORS IN
RECTANGULAR COORDINATES

Given v = ai + bj and u = ci + dj, then

EXAMPLE 12: FINDING THE SUM OF THE VECTORS

Find the sum of  and .
Answer
According to the formula, we have

Try It

Write the vector  with initial point  and terminal point  in terms of  and .
Answer

Performing Operations on Vectors in Terms of i and j
When vectors are written in terms ofi andj, we can carry out addition, subtraction, and scalar multiplication
by performing operations on corresponding components.

 Calculating the Component Form of a Vector: Direction

We have seen how to draw vectors according to their initial and terminal points and how to find the position
vector. We have also examined notation for vectors drawn specifically in the Cartesian coordinate plane
using . For any of these vectors, we can calculate the magnitude. Now, we want to combine the key
points, and look further at the ideas of magnitude and direction.
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A GENERAL NOTE: VECTOR COMPONENTS IN TERMS OF MAGNITUDE
AND DIRECTION

Given a position vector  and a direction angle ,

Thus, , and magnitude is expressed as .

EXAMPLE 13: WRITING A VECTOR IN TERMS OF MAGNITUDE AND
DIRECTION

Write a vector with length 7 at an angle of 135° to the positive x-axis in terms of magnitude and direction.
Answer
Using the conversion formulas  and , we find that

This vector can be written as  or simplified as

An interactive or media element has been excluded from this version of the text. You can view it online
here: https://courses.lumenlearning.com/precalculus/?p=14540

TRY IT

Calculating direction follows the same straightforward process we used for polar coordinates. We find the
direction of the vector by finding the angle to the horizontal. We do this by using the basic trigonometric
identities, but with |v| replacingr.

Try It

A vector travels from the origin to the point . Write the vector in terms of magnitude and direction.
Answer

Magnitude = 

 Finding the Dot Product of Two Vectors
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A GENERAL NOTE: DOT PRODUCT

The dot product of two vectors  and  is the sum of the product of the horizontal
components and the product of the vertical components.

To find the angle between the two vectors, use the formula below.

EXAMPLE 14: FINDING THE DOT PRODUCT OF TWO VECTORS

Find the dot product of  and .
Answer
Using the formula, we have

EXAMPLE 15: FINDING THE DOT PRODUCT OF TWO VECTORS AND THE
ANGLE BETWEEN THEM

Find the dot product of v1 = 5i + 2j and v2 = 3i + 7j. Then, find the angle between the two vectors.
Answer
Finding the dot product, we multiply corresponding components.

To find the angle between them, we use the formula .

As we discussed earlier in the section, scalar multiplication involves multiplying a vector by a scalar, and the
result is a vector. As we have seen, multiplying a vector by a number is called scalar multiplication. If we
multiply a vector by a vector, there are two possibilities: the dot product and the cross product. We will only
examine the dot product here; you may encounter the cross product in more advanced mathematics
courses.

The dot product of two vectors involves multiplying two vectors together, and the result is a scalar.
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Figure 17

EXAMPLE 16: FINDING THE ANGLE BETWEEN TWO VECTORS

Find the angle between  and .
Answer

Using the formula, ,
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Figure 18

EXAMPLE 17: FINDING GROUND SPEED AND BEARING USING VECTORS

We now have the tools to solve the problem we introduced in the opening of the section.
An airplane is flying at an airspeed of 200 miles per hour headed on a SE bearing of 140°. A north wind
(from north to south) is blowing at 16.2 miles per hour. What are the ground speed and actual bearing of
the plane?
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Figure 19

Answer
The ground speed is represented by  in the diagram, and we need to find the angle  in order to
calculate the adjusted bearing, which will be .
Notice in Figure 19, that angle  must be equal to angle  by the rule of alternating interior
angles, so angle  is 140°. We can find  by the Law of Cosines:

The ground speed is approximately 213 miles per hour. Now we can calculate the bearing using the Law
of Sines.
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dot product

initial point

magnitude

resultant

scalar

scalar multiplication

standard position

terminal point

Therefore, the plane has a SE bearing of 140°+2.8°=142.8°. The ground speed is 212.7 miles per hour.

Key Concepts

The position vector has its initial point at the origin.
If the position vector is the same for two vectors, they are equal.
Vectors are defined by their magnitude and direction.
If two vectors have the same magnitude and direction, they are equal.
Vector addition and subtraction result in a new vector found by adding or subtracting corresponding
elements.
Scalar multiplication is multiplying a vector by a constant. Only the magnitude changes; the direction
stays the same.
Vectors are comprised of two components: the horizontal component along the positive x-axis, and the
vertical component along the positive y-axis.
The unit vector in the same direction of any nonzero vector is found by dividing the vector by its
magnitude.
The magnitude of a vector in the rectangular coordinate system is .
In the rectangular coordinate system, unit vectors may be represented in terms of i and j wherei

represents the horizontal component andj represents the vertical component. Then, v = ai + bj is a
scalar multiple ofv by real numbers .
Adding and subtracting vectors in terms of i and j consists of adding or subtracting corresponding
coefficients of i and corresponding coefficients of j.
A vector v = ai + bj is written in terms of magnitude and direction as .
The dot product of two vectors is the product of thei terms plus the product of thej terms.
We can use the dot product to find the angle between two vectors.
Dot products are useful for many types of physics applications.

Glossary

given two vectors, the sum of the product of the horizontal components and the product of the
vertical components

the origin of a vector

the length of a vector; may represent a quantity such as speed, and is calculated using the
Pythagorean Theorem

a vector that results from addition or subtraction of two vectors, or from scalar multiplication

a quantity associated with magnitude but not direction; a constant

the product of a constant and each component of a vector

the placement of a vector with the initial point at  and the terminal point ,
represented by the change in the x-coordinates and the change in the y-coordinates of the original
vector

the end point of a vector, usually represented by an arrow indicating its direction
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unit vector

vector

vector addition

a vector that begins at the origin and has magnitude of 1; the horizontal unit vector runs along
the x-axis and is defined as  the vertical unit vector runs along the y-axis and is defined as 

.

a quantity associated with both magnitude and direction, represented as a directed line segment with
a starting point (initial point) and an end point (terminal point)

the sum of two vectors, found by adding corresponding components
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MODULE 11: ANALYTIC GEOMETRY

THE ELLIPSE

Learning Outcomes

Write equations of ellipses in standard form.
Graph ellipses.
Solve applied problems involving ellipses.

Figure 1. The National Statuary Hall in Washington, D.C. (credit: Greg Palmer, Flickr)

Can you imagine standing at one end of a large room and still being able to hear a whisper from a person
standing at the other end? The National Statuary Hall in Washington, D.C. is such a room. (Note: Architect
of the Capitol. http://www.aoc.gov. Accessed April 15, 2014.) It is an oval-shaped room called a whispering
chamber because the shape makes it possible for sound to travel along the walls. In this section, we will
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investigate the shape of this room and its real-world applications, including how far apart two people in
Statuary Hall can stand and still hear each other whisper.

Writing Equations of Ellipses in Standard Form

A conic section, or conic, is a shape resulting from intersecting a right circular cone with a plane. The angle
at which the plane intersects the cone determines the shape.

Figure 2

Conic sections can also be described by a set of points in the coordinate plane. Later in this chapter, we will
see that the graph of any quadratic equation in two variables is a conic section. The signs of the equations
and the coefficients of the variable terms determine the shape. This section focuses on the four variations of
the standard form of the equation for the ellipse. An ellipse is the set of all points  in a plane such that
the sum of their distances from two fixed points is a constant. Each fixed point is called a focus (plural:
foci).

We can draw an ellipse using a piece of cardboard, two thumbtacks, a pencil, and string. Place the
thumbtacks in the cardboard to form the foci of the ellipse. Cut a piece of string longer than the distance
between the two thumbtacks (the length of the string represents the constant in the definition). Tack each
end of the string to the cardboard, and trace a curve with a pencil held taut against the string. The result is
an ellipse.
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Figure 3

Every ellipse has two axes of symmetry. The longer axis is called the major axis, and the shorter axis is
called the minor axis. Each endpoint of the major axis is the vertex of the ellipse (plural: vertices), and
each endpoint of the minor axis is a co-vertex of the ellipse. The center of an ellipse is the midpoint of
both the major and minor axes. The axes are perpendicular at the center. The foci always lie on the major
axis, and the sum of the distances from the foci to any point on the ellipse (the constant sum) is greater than
the distance between the foci.
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Figure 4

In this section, we restrict ellipses to those that are positioned vertically or horizontally in the coordinate
plane. That is, the axes will either lie on or be parallel to the x– and y-axes. Later in the chapter, we will see
ellipses that are rotated in the coordinate plane.

To work with horizontal and vertical ellipses in the coordinate plane, we consider two cases: those that are
centered at the origin and those that are centered at a point other than the origin. First we will learn to derive
the equations of ellipses, and then we will learn how to write the equations of ellipses in standard form. Later
we will use what we learn to draw the graphs.

Deriving the Equation of an Ellipse Centered at the Origin

To derive the equation of an ellipse centered at the origin, we begin with the foci  and . The
ellipse is the set of all points  such that the sum of the distances from  to the foci is constant, as
shown in Figure 5.
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Figure 5

If  is a vertex of the ellipse, the distance from  to  is . The distance from 
 to  is  . The sum of the distances from the foci to the vertex is

If  is a point on the ellipse, then we can define the following variables:

By the definition of an ellipse,  is constant for any point  on the ellipse. We know that the sum
of these distances is  for the vertex . It follows that  for any point on the ellipse. We will
begin the derivation by applying the distance formula. The rest of the derivation is algebraic.
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A GENERAL NOTE: STANDARD FORMS OF THE EQUATION OF AN ELLIPSE
WITH CENTER (0,0)

Thus, the standard equation of an ellipse is . This equation defines an ellipse centered at the
origin. If , the ellipse is stretched further in the horizontal direction, and if , the ellipse is stretched
further in the vertical direction.

Writing Equations of Ellipses Centered at the Origin in Standard
Form

Standard forms of equations tell us about key features of graphs. Take a moment to recall some of the
standard forms of equations we’ve worked with in the past: linear, quadratic, cubic, exponential, logarithmic,
and so on. By learning to interpret standard forms of equations, we are bridging the relationship between
algebraic and geometric representations of mathematical phenomena.

The key features of the ellipse are its center, vertices, co-vertices, foci, and lengths and positions of the
major and minor axes. Just as with other equations, we can identify all of these features just by looking at
the standard form of the equation. There are four variations of the standard form of the ellipse. These
variations are categorized first by the location of the center (the origin or not the origin), and then by the
position (horizontal or vertical). Each is presented along with a description of how the parts of the equation
relate to the graph. Interpreting these parts allows us to form a mental picture of the ellipse.
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The standard form of the equation of an ellipse with center  and major axis on the x-axis is

where

the length of the major axis is 
the coordinates of the vertices are 
the length of the minor axis is 
the coordinates of the co-vertices are 
the coordinates of the foci are  , where .

The standard form of the equation of an ellipse with center  and major axis on the y-axis is

where

the length of the major axis is 
the coordinates of the vertices are 
the length of the minor axis is 
the coordinates of the co-vertices are 
the coordinates of the foci are  , where .

Note that the vertices, co-vertices, and foci are related by the equation . When we are given
the coordinates of the foci and vertices of an ellipse, we can use this relationship to find the equation of
the ellipse in standard form.

Figure 6. (a) Horizontal ellipse with center  (b) Vertical ellipse with center 

HOW TO: GIVEN THE VERTICES AND FOCI OF AN ELLIPSE CENTERED AT
THE ORIGIN, WRITE ITS EQUATION IN STANDARD FORM.

1. Determine whether the major axis lies on the x– or y-axis.
1. If the given coordinates of the vertices and foci have the form  and  respectively,

then the major axis is the x-axis. Use the standard form .
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2. If the given coordinates of the vertices and foci have the form  and , respectively,
then the major axis is the y-axis. Use the standard form .

2. Use the equation , along with the given coordinates of the vertices and foci, to solve for 
.

3. Substitute the values for  and  into the standard form of the equation determined in Step 1.

EXAMPLE 1: WRITING THE EQUATION OF AN ELLIPSE CENTERED AT THE
ORIGIN IN STANDARD FORM

What is the standard form equation of the ellipse that has vertices  and foci 
Answer
The foci are on the x-axis, so the major axis is the x-axis. Thus, the equation will have the form

The vertices are , so  and .
The foci are , so  and .
We know that the vertices and foci are related by the equation . Solving for , we have:

Now we need only substitute  and  into the standard form of the equation. The equation of
the ellipse is .

An interactive or media element has been excluded from this version of the text. You can view it online
here: https://courses.lumenlearning.com/precalculus/?p=14637

TRY IT

Q & A

CAN WE WRITE THE EQUATION OF AN ELLIPSE CENTERED AT THE
ORIGIN GIVEN COORDINATES OF JUST ONE FOCUS AND VERTEX?

Yes. Ellipses are symmetrical, so the coordinates of the vertices of an ellipse centered around the origin
will always have the form  or . Similarly, the coordinates of the foci will always have the
form  or . Knowing this, we can use  and  from the given points, along with the equation 

, to find .

Try It

What is the standard form equation of the ellipse that has vertices  and foci 
Answer
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A GENERAL NOTE: STANDARD FORMS OF THE EQUATION OF AN ELLIPSE
WITH CENTER (H, K)

The standard form of the equation of an ellipse with center  and major axis parallel to the x-axis is

where

the length of the major axis is 
the coordinates of the vertices are 
the length of the minor axis is 
the coordinates of the co-vertices are 
the coordinates of the foci are , where .

The standard form of the equation of an ellipse with center  and major axis parallel to the y-axis is

where

the length of the major axis is 
the coordinates of the vertices are 
the length of the minor axis is 
the coordinates of the co-vertices are 
the coordinates of the foci are , where .

Just as with ellipses centered at the origin, ellipses that are centered at a point  have vertices, co-
vertices, and foci that are related by the equation . We can use this relationship along with
the midpoint and distance formulas to find the equation of the ellipse in standard form when the vertices
and foci are given.

Writing Equations of Ellipses Not Centered at the Origin

Like the graphs of other equations, the graph of an ellipse can be translated. If an ellipse is translated 
units horizontally and  units vertically, the center of the ellipse will be . This translation results in the
standard form of the equation we saw previously, with  replaced by  and y replaced by .
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Figure 7. (a) Horizontal ellipse with center  (b) Vertical ellipse with center 

HOW TO: GIVEN THE VERTICES AND FOCI OF AN ELLIPSE NOT
CENTERED AT THE ORIGIN, WRITE ITS EQUATION IN STANDARD FORM.

1. Determine whether the major axis is parallel to the x– or y-axis.
1. If the y-coordinates of the given vertices and foci are the same, then the major axis is parallel to

the x-axis. Use the standard form .
2. If the x-coordinates of the given vertices and foci are the same, then the major axis is parallel to

the y-axis. Use the standard form .
2. Identify the center of the ellipse  using the midpoint formula and the given coordinates for the

vertices.
3. Find  by solving for the length of the major axis, , which is the distance between the given

vertices.
4. Find  using  and , found in Step 2, along with the given coordinates for the foci.
5. Solve for  using the equation .
6. Substitute the values for , and  into the standard form of the equation determined in Step 1.

EXAMPLE 2: WRITING THE EQUATION OF AN ELLIPSE CENTERED AT A
POINT OTHER THAN THE ORIGIN

What is the standard form equation of the ellipse that has vertices  and  and foci 
and 
Answer
The x-coordinates of the vertices and foci are the same, so the major axis is parallel to the y-axis. Thus,
the equation of the ellipse will have the form

First, we identify the center, . The center is halfway between the vertices,  and .
Applying the midpoint formula, we have:
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Next, we find . The length of the major axis, , is bounded by the vertices. We solve for  by finding the
distance between the y-coordinates of the vertices.

So .
Now we find . The foci are given by . So,  and . We
substitute  using either of these points to solve for .

So .
Next, we solve for  using the equation .

Finally, we substitute the values found for , and  into the standard form equation for an ellipse:

An interactive or media element has been excluded from this version of the text. You can view it online
here: https://courses.lumenlearning.com/precalculus/?p=14637

TRY IT

HOW TO: GIVEN THE STANDARD FORM OF AN EQUATION FOR AN
ELLIPSE CENTERED AT , SKETCH THE GRAPH.

Try It

What is the standard form equation of the ellipse that has vertices  and  and foci 
and 
Answer

Graphing Ellipses Centered at the Origin

Just as we can write the equation for an ellipse given its graph, we can graph an ellipse given its equation.
To graph ellipses centered at the origin, we use the standard form  for horizontal ellipses

and  for vertical ellipses.
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Use the standard forms of the equations of an ellipse to determine the major axis, vertices, co-
vertices, and foci.

If the equation is in the form , where , then
the major axis is the x-axis
the coordinates of the vertices are 
the coordinates of the co-vertices are 
the coordinates of the foci are 

If the equation is in the form , where , then
the major axis is the y-axis
the coordinates of the vertices are 
the coordinates of the co-vertices are 
the coordinates of the foci are 

Solve for  using the equation .
Plot the center, vertices, co-vertices, and foci in the coordinate plane, and draw a smooth curve to
form the ellipse.

EXAMPLE 3: GRAPHING AN ELLIPSE CENTERED AT THE ORIGIN

Graph the ellipse given by the equation, . Identify and label the center, vertices, co-vertices,
and foci.
Answer
First, we determine the position of the major axis. Because , the major axis is on the y-axis.
Therefore, the equation is in the form , where  and . It follows that:

the center of the ellipse is 
the coordinates of the vertices are 
the coordinates of the co-vertices are 
the coordinates of the foci are , where  Solving for , we have:

Therefore, the coordinates of the foci are .
Next, we plot and label the center, vertices, co-vertices, and foci, and draw a smooth curve to form the
ellipse.
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Figure 8

TRY IT

Try It

Graph the ellipse given by the equation . Identify and label the center, vertices, co-vertices,
and foci.
Answer

center: ; vertices: ; co-vertices: ; foci: 
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An interactive or media element has been excluded from this version of the text. You can view it online
here: https://courses.lumenlearning.com/precalculus/?p=14637

EXAMPLE 4: GRAPHING AN ELLIPSE CENTERED AT THE ORIGIN FROM AN
EQUATION NOT IN STANDARD FORM

Graph the ellipse given by the equation . Rewrite the equation in standard form. Then
identify and label the center, vertices, co-vertices, and foci.
Answer
First, use algebra to rewrite the equation in standard form.

Next, we determine the position of the major axis. Because , the major axis is on the x-axis.
Therefore, the equation is in the form , where  and . It follows that:

the center of the ellipse is 
the coordinates of the vertices are 
the coordinates of the co-vertices are 
the coordinates of the foci are , where . Solving for , we have:

Therefore the coordinates of the foci are .
Next, we plot and label the center, vertices, co-vertices, and foci, and draw a smooth curve to form the
ellipse.

Figure 9
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HOW TO: GIVEN THE STANDARD FORM OF AN EQUATION FOR AN
ELLIPSE CENTERED AT , SKETCH THE GRAPH.

Use the standard forms of the equations of an ellipse to determine the center, position of the major
axis, vertices, co-vertices, and foci.

Try It

Graph the ellipse given by the equation . Rewrite the equation in standard form. Then
identify and label the center, vertices, co-vertices, and foci.
Answer

Standard form: ; center: ; vertices: ; co-vertices: ; foci: 

Graphing Ellipses Not Centered at the Origin

When an ellipse is not centered at the origin, we can still use the standard forms to find the key features of
the graph. When the ellipse is centered at some point, , we use the standard forms 

 for horizontal ellipses and  for vertical ellipses. From
these standard equations, we can easily determine the center, vertices, co-vertices, foci, and positions of the
major and minor axes.
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If the equation is in the form , where , then
the center is 
the major axis is parallel to the x-axis
the coordinates of the vertices are 
the coordinates of the co-vertices are 
the coordinates of the foci are 

If the equation is in the form , where , then
the center is 
the major axis is parallel to the y-axis
the coordinates of the vertices are 
the coordinates of the co-vertices are 
the coordinates of the foci are 

Solve for  using the equation .
Plot the center, vertices, co-vertices, and foci in the coordinate plane, and draw a smooth curve to
form the ellipse.

EXAMPLE 5: GRAPHING AN ELLIPSE CENTERED AT (H, K)

Graph the ellipse given by the equation, . Identify and label the center, vertices, co-
vertices, and foci.
Answer
First, we determine the position of the major axis. Because , the major axis is parallel to the y-axis.
Therefore, the equation is in the form , where  and . It follows that:

the center of the ellipse is 
the coordinates of the vertices are , or  and 
the coordinates of the co-vertices are , or  and 
the coordinates of the foci are , where . Solving for , we have:

Therefore, the coordinates of the foci are  and .
Next, we plot and label the center, vertices, co-vertices, and foci, and draw a smooth curve to form the
ellipse.
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Figure 10

Try It

Graph the ellipse given by the equation . Identify and label the center, vertices, co-
vertices, and foci.
Answer

Center: ; vertices:  and ; co-vertices:  and ; foci:  and 
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An interactive or media element has been excluded from this version of the text. You can view it online
here: https://courses.lumenlearning.com/precalculus/?p=14637

TRY IT

HOW TO: GIVEN THE GENERAL FORM OF AN EQUATION FOR AN ELLIPSE
CENTERED AT (H, K), EXPRESS THE EQUATION IN STANDARD FORM.

Recognize that an ellipse described by an equation in the form  is in
general form.
Rearrange the equation by grouping terms that contain the same variable. Move the constant term to
the opposite side of the equation.
Factor out the coefficients of the  and  terms in preparation for completing the square.
Complete the square for each variable to rewrite the equation in the form of the sum of multiples of
two binomials squared set equal to a constant, , where , and 

 are constants.
Divide both sides of the equation by the constant term to express the equation in standard form.

EXAMPLE 6: GRAPHING AN ELLIPSE CENTERED AT (H, K) BY FIRST
WRITING IT IN STANDARD FORM
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Graph the ellipse given by the equation . Identify and label the center,
vertices, co-vertices, and foci.
Answer
We must begin by rewriting the equation in standard form.

Group terms that contain the same variable, and move the constant to the opposite side of the equation.

Factor out the coefficients of the squared terms.

Complete the square twice. Remember to balance the equation by adding the same constants to each
side.

Rewrite as perfect squares.

Divide both sides by the constant term to place the equation in standard form.

Now that the equation is in standard form, we can determine the position of the major axis. Because 
, the major axis is parallel to the x-axis. Therefore, the equation is in the form ,

where  and . It follows that:
the center of the ellipse is 
the coordinates of the vertices are , or  and 
the coordinates of the co-vertices are , or  and 
the coordinates of the foci are , where . Solving for , we have:

Therefore, the coordinates of the foci are  and .
Next we plot and label the center, vertices, co-vertices, and foci, and draw a smooth curve to form the
ellipse.
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Figure 11

Try It

Express the equation of the ellipse given in standard form. Identify the center, vertices, co-vertices, and
foci of the ellipse.

Answer

; center: ; vertices:  and ; co-vertices:  and ; foci: 
 and 

Solving Applied Problems Involving Ellipses

Many real-world situations can be represented by ellipses, including orbits of planets, satellites, moons and
comets, and shapes of boat keels, rudders, and some airplane wings. A medical device called a lithotripter
uses elliptical reflectors to break up kidney stones by generating sound waves. Some buildings, called
whispering chambers, are designed with elliptical domes so that a person whispering at one focus can easily
be heard by someone standing at the other focus. This occurs because of the acoustic properties of an
ellipse. When a sound wave originates at one focus of a whispering chamber, the sound wave will be
reflected off the elliptical dome and back to the other focus. In the whisper chamber at the Museum of
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EXAMPLE 7: LOCATING THE FOCI OF A WHISPERING CHAMBER

The Statuary Hall in the Capitol Building in Washington, D.C. is a whispering chamber. Its dimensions are
46 feet wide by 96 feet long as shown in Figure 13.

a. What is the standard form of the equation of the ellipse representing the outline of the room?
Hint: assume a horizontal ellipse, and let the center of the room be the point .
b. If two senators standing at the foci of this room can hear each other whisper, how far apart are
the senators? Round to the nearest foot.

Science and Industry in Chicago, two people standing at the foci—about 43 feet apart—can hear each other
whisper.

Figure 12

1119



Figure 13

Answer
a. We are assuming a horizontal ellipse with center , so we need to find an equation of the form 

, where . We know that the length of the major axis, , is longer than the length of the
minor axis, . So the length of the room, 96, is represented by the major axis, and the width of the room,
46, is represented by the minor axis.

Solving for , we have , so , and .
Solving for , we have , so , and .

Therefore, the equation of the ellipse is .
b. To find the distance between the senators, we must find the distance between the foci, , where 

. Solving for , we have:

The points  represent the foci. Thus, the distance between the senators is  feet.

Try It

Suppose a whispering chamber is 480 feet long and 320 feet wide.

a. What is the standard form of the equation of the ellipse representing the room? Hint: assume a
horizontal ellipse, and let the center of the room be the point .

b. If two people are standing at the foci of this room and can hear each other whisper, how far apart
are the people? Round to the nearest foot.

Answer
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center of an ellipse

conic section

ellipse

foci

focus (of an ellipse)

major axis

minor axis

An interactive or media element has been excluded from this version of the text. You can view it online
here: https://courses.lumenlearning.com/precalculus/?p=14637

TRY IT

a. 
b. The people are standing 358 feet apart.

Key Equations

Horizontal ellipse, center at origin

Vertical ellipse, center at origin

Horizontal ellipse, center 

Vertical ellipse, center 

Key Concepts

An ellipse is the set of all points  in a plane such that the sum of their distances from two fixed
points is a constant. Each fixed point is called a focus (plural: foci).
When given the coordinates of the foci and vertices of an ellipse, we can write the equation of the
ellipse in standard form.
When given an equation for an ellipse centered at the origin in standard form, we can identify its
vertices, co-vertices, foci, and the lengths and positions of the major and minor axes in order to graph
the ellipse.
When given the equation for an ellipse centered at some point other than the origin, we can identify its
key features and graph the ellipse.
Real-world situations can be modeled using the standard equations of ellipses and then evaluated to
find key features, such as lengths of axes and distance between foci.

Glossary

the midpoint of both the major and minor axes

any shape resulting from the intersection of a right circular cone with a plane

the set of all points  in a plane such that the sum of their distances from two fixed points is a
constant

plural of focus

one of the two fixed points on the major axis of an ellipse such that the sum of the
distances from these points to any point  on the ellipse is a constant

the longer of the two axes of an ellipse

the shorter of the two axes of an ellipse
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THE HYPERBOLA

Learning Outcomes

Locate a hyperbola’s vertices and foci.
Write equations of hyperbolas in standard form.
Graph hyperbolas.
Solve applied problems involving hyperbolas.

What do paths of comets, supersonic booms, ancient Grecian pillars, and natural draft cooling towers have
in common? They can all be modeled by the same type of conic. For instance, when something moves
faster than the speed of sound, a shock wave in the form of a cone is created. A portion of a conic is formed
when the wave intersects the ground, resulting in a sonic boom.

Figure 1

A shock wave intersecting the ground forms a portion of a conic and results in a sonic boom.

Most people are familiar with the sonic boom created by supersonic aircraft, but humans were breaking the
sound barrier long before the first supersonic flight. The crack of a whip occurs because the tip is exceeding
the speed of sound. The bullets shot from many firearms also break the sound barrier, although the bang of
the gun usually supersedes the sound of the sonic boom.
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Locating the Vertices and Foci of a Hyperbola

In analytic geometry, a hyperbola is a conic section formed by intersecting a right circular cone with a plane
at an angle such that both halves of the cone are intersected. This intersection produces two separate
unbounded curves that are mirror images of each other.

Figure 2. A hyperbola

Like the ellipse, the hyperbola can also be defined as a set of points in the coordinate plane. A hyperbola is
the set of all points  in a plane such that the difference of the distances between  and the foci is a
positive constant.

Notice that the definition of a hyperbola is very similar to that of an ellipse. The distinction is that the
hyperbola is defined in terms of the difference of two distances, whereas the ellipse is defined in terms of the
sum of two distances.

As with the ellipse, every hyperbola has two axes of symmetry. The transverse axis is a line segment that
passes through the center of the hyperbola and has vertices as its endpoints. The foci lie on the line that
contains the transverse axis. The conjugate axis is perpendicular to the transverse axis and has the co-
vertices as its endpoints. The center of a hyperbola is the midpoint of both the transverse and conjugate
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axes, where they intersect. Every hyperbola also has two asymptotes that pass through its center. As a
hyperbola recedes from the center, its branches approach these asymptotes. The central rectangle of the
hyperbola is centered at the origin with sides that pass through each vertex and co-vertex; it is a useful tool
for graphing the hyperbola and its asymptotes. To sketch the asymptotes of the hyperbola, simply sketch
and extend the diagonals of the central rectangle.

Figure 3. Key features of the hyperbola

In this section, we will limit our discussion to hyperbolas that are positioned vertically or horizontally in the
coordinate plane; the axes will either lie on or be parallel to the x– and y-axes. We will consider two cases:
those that are centered at the origin, and those that are centered at a point other than the origin.

Deriving the Equation of a Hyperbola Centered at the Origin

Let  and  be the foci of a hyperbola centered at the origin. The hyperbola is the set of all points 
 such that the difference of the distances from  to the foci is constant.
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Figure 4

If  is a vertex of the hyperbola, the distance from  to  is . The distance
from  to  is . The sum of the distances from the foci to the vertex is

If  is a point on the hyperbola, we can define the following variables:

By definition of a hyperbola,  is constant for any point  on the hyperbola. We know that the
difference of these distances is  for the vertex . It follows that  for any point on the
hyperbola. As with the derivation of the equation of an ellipse, we will begin by applying the distance
formula. The rest of the derivation is algebraic. Compare this derivation with the one from the previous
section for ellipses.
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A GENERAL NOTE: STANDARD FORMS OF THE EQUATION OF A
HYPERBOLA WITH CENTER (0,0)

The standard form of the equation of a hyperbola with center  and transverse axis on the x-axis is

where
the length of the transverse axis is 
the coordinates of the vertices are 
the length of the conjugate axis is 
the coordinates of the co-vertices are 
the distance between the foci is , where 
the coordinates of the foci are 
the equations of the asymptotes are 

The standard form of the equation of a hyperbola with center  and transverse axis on the y-axis is

where
the length of the transverse axis is 

This equation defines a hyperbola centered at the origin with vertices  and co-vertices .
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the coordinates of the vertices are 
the length of the conjugate axis is 
the coordinates of the co-vertices are 
the distance between the foci is , where 
the coordinates of the foci are 
the equations of the asymptotes are 

Note that the vertices, co-vertices, and foci are related by the equation . When we are given
the equation of a hyperbola, we can use this relationship to identify its vertices and foci.

HOW TO: GIVEN THE EQUATION OF A HYPERBOLA IN STANDARD FORM,
LOCATE ITS VERTICES AND FOCI.

1. Determine whether the transverse axis lies on the x– or y-axis. Notice that  is always under the
variable with the positive coefficient. So, if you set the other variable equal to zero, you can easily
find the intercepts. In the case where the hyperbola is centered at the origin, the intercepts
coincide with the vertices.

a. If the equation has the form , then the transverse axis lies on the x-axis. The
vertices are located at , and the foci are located at .

b. If the equation has the form , then the transverse axis lies on the y-axis. The
vertices are located at , and the foci are located at .

1. Solve for  using the equation .
2. Solve for  using the equation .

EXAMPLE 1: LOCATING A HYPERBOLA’S VERTICES AND FOCI

Identify the vertices and foci of the hyperbola with equation .
Answer

Figure 5. (a) Horizontal hyperbola with center  (b) Vertical hyperbola with center 
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The equation has the form , so the transverse axis lies on the y-axis. The hyperbola is
centered at the origin, so the vertices serve as the y-intercepts of the graph. To find the vertices, set 

, and solve for .

The foci are located at . Solving for ,

Therefore, the vertices are located at , and the foci are located at .

An interactive or media element has been excluded from this version of the text. You can view it online
here: https://courses.lumenlearning.com/precalculus/?p=14666

TRY IT

HOW TO: GIVEN THE VERTICES AND FOCI OF A HYPERBOLA CENTERED
AT , WRITE ITS EQUATION IN STANDARD FORM.

1. Determine whether the transverse axis lies on the x– or y-axis.

Try It

Identify the vertices and foci of the hyperbola with equation .
Answer

Vertices: ; Foci: 

Writing Equations of Hyperbolas in Standard Form

Just as with ellipses, writing the equation for a hyperbola in standard form allows us to calculate the key
features: its center, vertices, co-vertices, foci, asymptotes, and the lengths and positions of the transverse
and conjugate axes. Conversely, an equation for a hyperbola can be found given its key features. We begin
by finding standard equations for hyperbolas centered at the origin. Then we will turn our attention to finding
standard equations for hyperbolas centered at some point other than the origin.

Hyperbolas Centered at the Origin

Reviewing the standard forms given for hyperbolas centered at , we see that the vertices, co-vertices,
and foci are related by the equation . Note that this equation can also be rewritten as 

. This relationship is used to write the equation for a hyperbola when given the coordinates of
its foci and vertices.
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1. If the given coordinates of the vertices and foci have the form  and , respectively,
then the transverse axis is the x-axis. Use the standard form .

2. If the given coordinates of the vertices and foci have the form  and , respectively,
then the transverse axis is the y-axis. Use the standard form .

2. Find  using the equation .
3. Substitute the values for  and  into the standard form of the equation determined in Step 1.

EXAMPLE 2: FINDING THE EQUATION OF A HYPERBOLA CENTERED AT
(0,0) GIVEN ITS FOCI AND VERTICES

What is the standard form equation of the hyperbola that has vertices  and foci 
Answer
The vertices and foci are on the x-axis. Thus, the equation for the hyperbola will have the form 

.

The vertices are , so  and .
The foci are , so  and .
Solving for , we have

Finally, we substitute  and  into the standard form of the equation, . The

equation of the hyperbola is .

Figure 6
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An interactive or media element has been excluded from this version of the text. You can view it online
here: https://courses.lumenlearning.com/precalculus/?p=14666

TRY IT

A GENERAL NOTE: STANDARD FORMS OF THE EQUATION OF A
HYPERBOLA WITH CENTER (H, K)

The standard form of the equation of a hyperbola with center  and transverse axis parallel to the x-
axis is

where
the length of the transverse axis is 
the coordinates of the vertices are 
the length of the conjugate axis is 
the coordinates of the co-vertices are 
the distance between the foci is , where 
the coordinates of the foci are 

The asymptotes of the hyperbola coincide with the diagonals of the central rectangle. The length of the
rectangle is  and its width is . The slopes of the diagonals are , and each diagonal passes through
the center . Using the point-slope formula, it is simple to show that the equations of the asymptotes
are .
The standard form of the equation of a hyperbola with center  and transverse axis parallel to the y-
axis is

where
the length of the transverse axis is 
the coordinates of the vertices are 
the length of the conjugate axis is 
the coordinates of the co-vertices are 
the distance between the foci is , where 
the coordinates of the foci are 

Try It

What is the standard form equation of the hyperbola that has vertices  and foci 
Answer

Hyperbolas Not Centered at the Origin

Like the graphs for other equations, the graph of a hyperbola can be translated. If a hyperbola is translated 
units horizontally and  units vertically, the center of the hyperbola will be . This translation results in
the standard form of the equation we saw previously, with  replaced by  and  replaced by .
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Using the reasoning above, the equations of the asymptotes are .

HOW TO: GIVEN THE VERTICES AND FOCI OF A HYPERBOLA CENTERED
AT , WRITE ITS EQUATION IN STANDARD FORM.

1. Determine whether the transverse axis is parallel to the x– or y-axis.
1. If the y-coordinates of the given vertices and foci are the same, then the transverse axis is

parallel to the x-axis. Use the standard form .
2. If the x-coordinates of the given vertices and foci are the same, then the transverse axis is

parallel to the y-axis. Use the standard form .
2. Identify the center of the hyperbola, , using the midpoint formula and the given coordinates for

the vertices.
3. Find  by solving for the length of the transverse axis,  , which is the distance between the given

vertices.
4. Find  using  and  found in Step 2 along with the given coordinates for the foci.
5. Solve for  using the equation .
6. Substitute the values for , and  into the standard form of the equation determined in Step 1.

EXAMPLE 3: FINDING THE EQUATION OF A HYPERBOLA CENTERED AT
(H, K) GIVEN ITS FOCI AND VERTICES

What is the standard form equation of the hyperbola that has vertices at  and  and foci at 
 and 

Answer

Figure 7. (a) Horizontal hyperbola with center  (b) Vertical hyperbola with center 

Like hyperbolas centered at the origin, hyperbolas centered at a point  have vertices, co-vertices, and
foci that are related by the equation . We can use this relationship along with the midpoint and
distance formulas to find the standard equation of a hyperbola when the vertices and foci are given.
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The y-coordinates of the vertices and foci are the same, so the transverse axis is parallel to the x-axis.
Thus, the equation of the hyperbola will have the form

First, we identify the center, . The center is halfway between the vertices  and .
Applying the midpoint formula, we have

Next, we find . The length of the transverse axis, , is bounded by the vertices. So, we can find  by
finding the distance between the x-coordinates of the vertices.

Now we need to find . The coordinates of the foci are . So  and 
. We can use the x-coordinate from either of these points to solve for . Using the

point , and substituting ,

Next, solve for  using the equation 

Finally, substitute the values found for , and  into the standard form of the equation.

An interactive or media element has been excluded from this version of the text. You can view it online
here: https://courses.lumenlearning.com/precalculus/?p=14666

TRY IT

Try It

What is the standard form equation of the hyperbola that has vertices  and  and foci 
and 
Answer

Graphing Hyperbolas

When we have an equation in standard form for a hyperbola centered at the origin, we can interpret its parts
to identify the key features of its graph: the center, vertices, co-vertices, asymptotes, foci, and lengths and
positions of the transverse and conjugate axes. To graph hyperbolas centered at the origin, we use the
standard form  for horizontal hyperbolas and the standard form  for vertical
hyperbolas.
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HOW TO: GIVEN A STANDARD FORM EQUATION FOR A HYPERBOLA
CENTERED AT , SKETCH THE GRAPH.

Determine which of the standard forms applies to the given equation.
Use the standard form identified in Step 1 to determine the position of the transverse axis;
coordinates for the vertices, co-vertices, and foci; and the equations for the asymptotes.

If the equation is in the form , then
the transverse axis is on the x-axis
the coordinates of the vertices are 
the coordinates of the co-vertices are 
the coordinates of the foci are 
the equations of the asymptotes are 

If the equation is in the form , then
the transverse axis is on the y-axis
the coordinates of the vertices are 
the coordinates of the co-vertices are 
the coordinates of the foci are 
the equations of the asymptotes are 

Solve for the coordinates of the foci using the equation .
Plot the vertices, co-vertices, foci, and asymptotes in the coordinate plane, and draw a smooth curve
to form the hyperbola.

EXAMPLE 4: GRAPHING A HYPERBOLA CENTERED AT (0, 0) GIVEN AN
EQUATION IN STANDARD FORM

Graph the hyperbola given by the equation . Identify and label the vertices, co-vertices, foci,
and asymptotes.
Answer
The standard form that applies to the given equation is . Thus, the transverse axis is on the
y-axis
The coordinates of the vertices are 
The coordinates of the co-vertices are 

The coordinates of the foci are , where . Solving for , we have

Therefore, the coordinates of the foci are 
The equations of the asymptotes are 
Plot and label the vertices and co-vertices, and then sketch the central rectangle. Sides of the rectangle
are parallel to the axes and pass through the vertices and co-vertices. Sketch and extend the diagonals of
the central rectangle to show the asymptotes. The central rectangle and asymptotes provide the
framework needed to sketch an accurate graph of the hyperbola. Label the foci and asymptotes, and draw
a smooth curve to form the hyperbola, as shown in Figure 8.
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Figure 8

Try It

Graph the hyperbola given by the equation . Identify and label the vertices, co-vertices, foci,
and asymptotes.
Answer

vertices: ; co-vertices: ; foci: ; asymptotes: ;
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An interactive or media element has been excluded from this version of the text. You can view it online
here: https://courses.lumenlearning.com/precalculus/?p=14666

TRY IT

HOW TO: GIVEN A GENERAL FORM FOR A HYPERBOLA CENTERED AT 
, SKETCH THE GRAPH.

Convert the general form to that standard form. Determine which of the standard forms applies to the
given equation.
Use the standard form identified in Step 1 to determine the position of the transverse axis;
coordinates for the center, vertices, co-vertices, foci; and equations for the asymptotes.

If the equation is in the form , then
the transverse axis is parallel to the x-axis
the center is 
the coordinates of the vertices are 
the coordinates of the co-vertices are 
the coordinates of the foci are 
the equations of the asymptotes are 

If the equation is in the form , then
the transverse axis is parallel to the y-axis
the center is 
the coordinates of the vertices are 
the coordinates of the co-vertices are 
the coordinates of the foci are 
the equations of the asymptotes are 

Solve for the coordinates of the foci using the equation .
Plot the center, vertices, co-vertices, foci, and asymptotes in the coordinate plane and draw a smooth
curve to form the hyperbola.

EXAMPLE 5: GRAPHING A HYPERBOLA CENTERED AT (H, K) GIVEN AN
EQUATION IN GENERAL FORM

Graph the hyperbola given by the equation . Identify and label the
center, vertices, co-vertices, foci, and asymptotes.
Answer

Graphing Hyperbolas Not Centered at the Origin

Graphing hyperbolas centered at a point  other than the origin is similar to graphing ellipses centered
at a point other than the origin. We use the standard forms  for horizontal hyperbolas,

and  for vertical hyperbolas. From these standard form equations we can easily
calculate and plot key features of the graph: the coordinates of its center, vertices, co-vertices, and foci; the
equations of its asymptotes; and the positions of the transverse and conjugate axes.
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Start by expressing the equation in standard form. Group terms that contain the same variable, and move
the constant to the opposite side of the equation.

Factor the leading coefficient of each expression.

Complete the square twice. Remember to balance the equation by adding the same constants to each
side.

Rewrite as perfect squares.

Divide both sides by the constant term to place the equation in standard form.

The standard form that applies to the given equation is , where  and ,
or  and . Thus, the transverse axis is parallel to the x-axis. It follows that:

the center of the ellipse is 
the coordinates of the vertices are , or  and 
the coordinates of the co-vertices are , or  and 
the coordinates of the foci are , where . Solving for , we have

Therefore, the coordinates of the foci are  and .
The equations of the asymptotes are .
Next, we plot and label the center, vertices, co-vertices, foci, and asymptotes and draw smooth curves to
form the hyperbola.
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Figure 9

Try It

Graph the hyperbola given by the standard form of an equation . Identify and label the
center, vertices, co-vertices, foci, and asymptotes.
Answer

center: ; vertices:  and ; co-vertices: ; and ; foci: 
and ; asymptotes: 
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An interactive or media element has been excluded from this version of the text. You can view it online
here: https://courses.lumenlearning.com/precalculus/?p=14666

TRY IT

Solving Applied Problems Involving Hyperbolas

As we discussed at the beginning of this section, hyperbolas have real-world applications in many fields,
such as astronomy, physics, engineering, and architecture. The design efficiency of hyperbolic cooling
towers is particularly interesting. Cooling towers are used to transfer waste heat to the atmosphere and are
often touted for their ability to generate power efficiently. Because of their hyperbolic form, these structures
are able to withstand extreme winds while requiring less material than any other forms of their size and
strength. For example, a 500-foot tower can be made of a reinforced concrete shell only 6 or 8 inches wide!

1138



EXAMPLE 6: SOLVING APPLIED PROBLEMS INVOLVING HYPERBOLAS

The design layout of a cooling tower is shown in Figure 11. The tower stands 179.6 meters tall. The
diameter of the top is 72 meters. At their closest, the sides of the tower are 60 meters apart.

Figure 10. Cooling towers at the Drax power station in North Yorkshire, United Kingdom (credit: Les Haines, Flickr)

The first hyperbolic towers were designed in 1914 and were 35 meters high. Today, the tallest cooling towers
are in France, standing a remarkable 170 meters tall. In Example 6 we will use the design layout of a cooling
tower to find a hyperbolic equation that models its sides.
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Figure 11. Project design for a natural draft cooling tower

Find the equation of the hyperbola that models the sides of the cooling tower. Assume that the center of
the hyperbola—indicated by the intersection of dashed perpendicular lines in the figure—is the origin of
the coordinate plane. Round final values to four decimal places.
Answer
We are assuming the center of the tower is at the origin, so we can use the standard form of a horizontal
hyperbola centered at the origin: , where the branches of the hyperbola form the sides of the
cooling tower. We must find the values of  and  to complete the model.
First, we find . Recall that the length of the transverse axis of a hyperbola is . This length is
represented by the distance where the sides are closest, which is given as  meters. So, .
Therefore,  and .
To solve for , we need to substitute for  and  in our equation using a known point. To do this, we can
use the dimensions of the tower to find some point  that lies on the hyperbola. We will use the top
right corner of the tower to represent that point. Since the y-axis bisects the tower, our x-value can be
represented by the radius of the top, or 36 meters. The y-value is represented by the distance from the
origin to the top, which is given as 79.6 meters. Therefore,
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The sides of the tower can be modeled by the hyperbolic equation

Try It

A design for a cooling tower project is shown in Figure 12. Find the equation of the hyperbola that models
the sides of the cooling tower. Assume that the center of the hyperbola—indicated by the intersection of
dashed perpendicular lines in the figure—is the origin of the coordinate plane. Round final values to four
decimal places.

Figure 12

Answer
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center of a hyperbola

conjugate axis

hyperbola

transverse axis

An interactive or media element has been excluded from this version of the text. You can view it online
here: https://courses.lumenlearning.com/precalculus/?p=14666

TRY IT

The sides of the tower can be modeled by the hyperbolic equation. .

Key Equations

Hyperbola, center at origin, transverse axis on x-axis

Hyperbola, center at origin, transverse axis on y-axis

Hyperbola, center at , transverse axis parallel to x-axis

Hyperbola, center at , transverse axis parallel to y-axis

Key Concepts

A hyperbola is the set of all points  in a plane such that the difference of the distances between 
 and the foci is a positive constant.

The standard form of a hyperbola can be used to locate its vertices and foci.
When given the coordinates of the foci and vertices of a hyperbola, we can write the equation of the
hyperbola in standard form.
When given an equation for a hyperbola, we can identify its vertices, co-vertices, foci, asymptotes, and
lengths and positions of the transverse and conjugate axes in order to graph the hyperbola.
Real-world situations can be modeled using the standard equations of hyperbolas. For instance, given
the dimensions of a natural draft cooling tower, we can find a hyperbolic equation that models its sides.

Glossary

the midpoint of both the transverse and conjugate axes of a hyperbola

the axis of a hyperbola that is perpendicular to the transverse axis and has the co-vertices
as its endpoints

the set of all points  in a plane such that the difference of the distances between  and
the foci is a positive constant

the axis of a hyperbola that includes the foci and has the vertices as its endpoints
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THE PARABOLA

Learning Outcomes

Identify the vertex, focus, directrix, and endpoints of the latus rectum.
Write equations of parabolas in standard form.
Graph parabolas.
Solve applied problems involving parabolas.

Figure 1. The Olympic torch concludes its journey around the world when it is used to light the Olympic cauldron during the opening
ceremony. (credit: Ken Hackman, U.S. Air Force)

Did you know that the Olympic torch is lit several months before the start of the games? The ceremonial
method for lighting the flame is the same as in ancient times. The ceremony takes place at the Temple of
Hera in Olympia, Greece, and is rooted in Greek mythology, paying tribute to Prometheus, who stole fire
from Zeus to give to all humans. One of eleven acting priestesses places the torch at the focus of a
parabolic mirror, which focuses light rays from the sun to ignite the flame.

Parabolic mirrors (or reflectors) are able to capture energy and focus it to a single point. The advantages of
this property are evidenced by the vast list of parabolic objects we use every day: satellite dishes,
suspension bridges, telescopes, microphones, spotlights, and car headlights, to name a few. Parabolic
reflectors are also used in alternative energy devices, such as solar cookers and water heaters, because
they are inexpensive to manufacture and need little maintenance. In this section we will explore the parabola
and its uses, including low-cost, energy-efficient solar designs.
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Graphing Parabolas with Vertices at the Origin

In The Ellipse, we saw that an ellipse is formed when a plane cuts through a right circular cone. If the plane
is parallel to the edge of the cone, an unbounded curve is formed. This curve is a parabola.

Figure 2. Parabola

Like the ellipse and hyperbola, the parabola can also be defined by a set of points in the coordinate plane.
A parabola is the set of all points  in a plane that are the same distance from a fixed line, called the
directrix, and a fixed point (the focus) not on the directrix.

We previously learned about a parabola’s vertex and axis of symmetry. Now we extend the discussion to
include other key features of the parabola. See Figure 3. Notice that the axis of symmetry passes through
the focus and vertex and is perpendicular to the directrix. The vertex is the midpoint between the directrix
and the focus.

The line segment that passes through the focus and is parallel to the directrix is called the latus rectum.
The endpoints of the latus rectum lie on the curve. By definition, the distance  from the focus to any point 
on the parabola is equal to the distance from  to the directrix.
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Figure 3. Key features of the parabola

To work with parabolas in the coordinate plane, we consider two cases: those with a vertex at the origin
and those with a vertex at a point other than the origin. We begin with the former.

Figure 4

Let  be a point on the parabola with vertex , focus , and directrix  as shown in Figure
4. The distance  from point  to point  on the directrix is the difference of the y-values: 
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A GENERAL NOTE: STANDARD FORMS OF PARABOLAS WITH VERTEX (0,
0)

The table below and Figure 5 summarize the standard features of parabolas with a vertex at the origin.

Axis of Symmetry Equation Focus Directrix Endpoints of Latus Rectum

x-axis

y-axis

. The distance from the focus  to the point  is also equal to  and can be expressed using the
distance formula.

Set the two expressions for  equal to each other and solve for  to derive the equation of the parabola. We
do this because the distance from  to  equals the distance from  to .

We then square both sides of the equation, expand the squared terms, and simplify by combining like terms.

The equations of parabolas with vertex  are  when the x-axis is the axis of symmetry and 
 when the y-axis is the axis of symmetry. These standard forms are given below, along with their

general graphs and key features.
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Figure 5. (a) When  and the axis of symmetry is the x-axis, the parabola opens right. (b) When  and the axis of symmetry is
the x-axis, the parabola opens left. (c) When  and the axis of symmetry is the y-axis, the parabola opens up. (d) When  and
the axis of symmetry is the y-axis, the parabola opens down.

The key features of a parabola are its vertex, axis of symmetry, focus, directrix, and latus rectum. When
given a standard equation for a parabola centered at the origin, we can easily identify the key features to
graph the parabola.

A line is said to be tangent to a curve if it intersects the curve at exactly one point. If we sketch lines tangent
to the parabola at the endpoints of the latus rectum, these lines intersect on the axis of symmetry, as shown
in Figure 6.
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HOW TO: GIVEN A STANDARD FORM EQUATION FOR A PARABOLA
CENTERED AT (0, 0), SKETCH THE GRAPH.

Determine which of the standard forms applies to the given equation:  or .
Use the standard form identified in Step 1 to determine the axis of symmetry, focus, equation of the
directrix, and endpoints of the latus rectum.

If the equation is in the form , then
the axis of symmetry is the x-axis, 
set  equal to the coefficient of x in the given equation to solve for . If , the parabola
opens right. If , the parabola opens left.

Figure 6
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use  to find the coordinates of the focus, 
use  to find the equation of the directrix, 
use  to find the endpoints of the latus rectum, . Alternately, substitute  into the
original equation.

If the equation is in the form , then
the axis of symmetry is the y-axis, 
set  equal to the coefficient of y in the given equation to solve for . If , the parabola
opens up. If , the parabola opens down.
use  to find the coordinates of the focus, 
use  to find equation of the directrix, 
use  to find the endpoints of the latus rectum, 

Plot the focus, directrix, and latus rectum, and draw a smooth curve to form the parabola.

EXAMPLE 1: GRAPHING A PARABOLA WITH VERTEX (0, 0) AND THE X-
AXIS AS THE AXIS OF SYMMETRY

Graph . Identify and label the focus, directrix, and endpoints of the latus rectum.
Answer
The standard form that applies to the given equation is . Thus, the axis of symmetry is the x-axis.
It follows that:

, so . Since , the parabola opens right the coordinates of the focus are 

the equation of the directrix is 
the endpoints of the latus rectum have the same x-coordinate at the focus. To find the endpoints,
substitute  into the original equation: 

Next we plot the focus, directrix, and latus rectum, and draw a smooth curve to form the parabola.
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Figure 7

Try It

Graph . Identify and label the focus, directrix, and endpoints of the latus rectum.
Answer

Focus: ; Directrix: ; Endpoints of the latus rectum: 
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EXAMPLE 2: GRAPHING A PARABOLA WITH VERTEX (0, 0) AND THE Y-
AXIS AS THE AXIS OF SYMMETRY

Graph . Identify and label the focus, directrix, and endpoints of the latus rectum.
Answer
The standard form that applies to the given equation is . Thus, the axis of symmetry is the y-axis.
It follows that:

, so . Since , the parabola opens down.
the coordinates of the focus are 
the equation of the directrix is 
the endpoints of the latus rectum can be found by substituting  into the original equation, 

Next we plot the focus, directrix, and latus rectum, and draw a smooth curve to form the parabola.

Figure 8

Try It

Graph . Identify and label the focus, directrix, and endpoints of the latus rectum.
Answer
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An interactive or media element has been excluded from this version of the text. You can view it online
here: https://courses.lumenlearning.com/precalculus/?p=14700

TRY IT

HOW TO: GIVEN ITS FOCUS AND DIRECTRIX, WRITE THE EQUATION FOR
A PARABOLA IN STANDARD FORM.

Determine whether the axis of symmetry is the x– or y-axis.
If the given coordinates of the focus have the form , then the axis of symmetry is the x-axis.
Use the standard form .
If the given coordinates of the focus have the form , then the axis of symmetry is the y-axis.
Use the standard form .

Multiply .
Substitute the value from Step 2 into the equation determined in Step 1.

EXAMPLE 3: WRITING THE EQUATION OF A PARABOLA IN STANDARD
FORM GIVEN ITS FOCUS AND DIRECTRIX

What is the equation for the parabola with focus  and directrix 
Answer
The focus has the form , so the equation will have the form .
Multiplying , we have . Substituting for , we have .
Therefore, the equation for the parabola is .

Focus: ; Directrix: ; Endpoints of the latus rectum: .

Writing Equations of Parabolas in Standard Form

In the previous examples, we used the standard form equation of a parabola to calculate the locations of its
key features. We can also use the calculations in reverse to write an equation for a parabola when given its
key features.
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An interactive or media element has been excluded from this version of the text. You can view it online
here: https://courses.lumenlearning.com/precalculus/?p=14700

TRY IT

HOW TO: GIVEN ITS FOCUS AND DIRECTRIX, WRITE THE EQUATION FOR
A PARABOLA IN STANDARD FORM.

Determine whether the axis of symmetry is the x– or y-axis.
If the given coordinates of the focus have the form , then the axis of symmetry is the x-axis.
Use the standard form .
If the given coordinates of the focus have the form , then the axis of symmetry is the y-axis.
Use the standard form .

Multiply .
Substitute the value from Step 2 into the equation determined in Step 1.

EXAMPLE 4: WRITING THE EQUATION OF A PARABOLA IN STANDARD
FORM GIVEN ITS FOCUS AND DIRECTRIX

What is the equation for the parabola with focus  and directrix 
Answer
The focus has the form , so the equation will have the form .

Multiplying , we have .
Substituting for , we have .

Therefore, the equation for the parabola is .

Try It

What is the equation for the parabola with focus  and directrix 
Answer

In the previous examples, we used the standard form equation of a parabola to calculate the locations of its
key features. We can also use the calculations in reverse to write an equation for a parabola when given its
key features.

Try It

What is the equation for the parabola with focus  and directrix 
Answer

Graphing Parabolas with Vertices Not at the Origin
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A GENERAL NOTE: STANDARD FORMS OF PARABOLAS WITH VERTEX (H,
K)

The table and Figure 9 summarize the standard features of parabolas with a vertex at a point .

Axis of Symmetry Equation Focus Directrix Endpoints of Latus Rectum

Figure 9. (a) When , the parabola opens right. (b) When , the parabola opens left. (c) When , the parabola opens up.
(d) When , the parabola opens down.

Like other graphs we’ve worked with, the graph of a parabola can be translated. If a parabola is translated 
units horizontally and  units vertically, the vertex will be . This translation results in the standard form
of the equation we saw previously with  replaced by  and  replaced by .

To graph parabolas with a vertex  other than the origin, we use the standard form 
 for parabolas that have an axis of symmetry parallel to the x-axis, and 
 for parabolas that have an axis of symmetry parallel to the y-axis. These standard

forms are given below, along with their general graphs and key features.
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HOW TO: GIVEN A STANDARD FORM EQUATION FOR A PARABOLA
CENTERED AT (H, K), SKETCH THE GRAPH.

1. Determine which of the standard forms applies to the given equation:  or 
.

2. Use the standard form identified in Step 1 to determine the vertex, axis of symmetry, focus, equation
of the directrix, and endpoints of the latus rectum.

1. If the equation is in the form , then:
use the given equation to identify  and  for the vertex, 
use the value of  to determine the axis of symmetry, 
set  equal to the coefficient of  in the given equation to solve for . If , the
parabola opens right. If , the parabola opens left.
use , and  to find the coordinates of the focus, 
use  and  to find the equation of the directrix, 
use , and  to find the endpoints of the latus rectum, 

2. If the equation is in the form , then:
use the given equation to identify  and  for the vertex, 
use the value of  to determine the axis of symmetry, 
set  equal to the coefficient of  in the given equation to solve for . If , the
parabola opens up. If , the parabola opens down.
use , and  to find the coordinates of the focus, 
use  and  to find the equation of the directrix, 
use , and  to find the endpoints of the latus rectum, 

3. Plot the vertex, axis of symmetry, focus, directrix, and latus rectum, and draw a smooth curve to form
the parabola.

EXAMPLE 5: GRAPHING A PARABOLA WITH VERTEX (H, K) AND AXIS OF
SYMMETRY PARALLEL TO THE X-AXIS

Graph . Identify and label the vertex, axis of symmetry, focus, directrix, and
endpoints of the latus rectum.
Answer
The standard form that applies to the given equation is . Thus, the axis of symmetry
is parallel to the x-axis. It follows that:

the vertex is 
the axis of symmetry is 

, so . Since , the parabola opens left.
the coordinates of the focus are 
the equation of the directrix is 
the endpoints of the latus rectum are , or  and 

Next we plot the vertex, axis of symmetry, focus, directrix, and latus rectum, and draw a smooth curve to
form the parabola.
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Figure 10

Try It

Graph . Identify and label the vertex, axis of symmetry, focus, directrix, and endpoints
of the latus rectum.
Answer

Vertex: ; Axis of symmetry: ; Focus: ; Directrix: ; Endpoints of the latus
rectum:  and .

1156



EXAMPLE 6: GRAPHING A PARABOLA FROM AN EQUATION GIVEN IN
GENERAL FORM

Graph . Identify and label the vertex, axis of symmetry, focus, directrix, and
endpoints of the latus rectum.
Answer
Start by writing the equation of the parabola in standard form. The standard form that applies to the given
equation is . Thus, the axis of symmetry is parallel to the y-axis. To express the
equation of the parabola in this form, we begin by isolating the terms that contain the variable  in order to
complete the square.

It follows that:

the vertex is 
the axis of symmetry is 
since  and so the parabola opens up
the coordinates of the focus are 
the equation of the directrix is 
the endpoints of the latus rectum are , or  and 

Next we plot the vertex, axis of symmetry, focus, directrix, and latus rectum, and draw a smooth curve to
form the parabola.
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Figure 11

An interactive or media element has been excluded from this version of the text. You can view it online
here: https://courses.lumenlearning.com/precalculus/?p=14700

TRY IT

Try It

Graph . Identify and label the vertex, axis of symmetry, focus, directrix, and
endpoints of the latus rectum.
Answer

Vertex: ; Axis of symmetry: ; Focus: ; Directrix: ; Endpoints of the latus
rectum:  and .
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EXAMPLE 7: SOLVING APPLIED PROBLEMS INVOLVING PARABOLAS

A cross-section of a design for a travel-sized solar fire starter is shown in Figure 13. The sun’s rays reflect
off the parabolic mirror toward an object attached to the igniter. Because the igniter is located at the focus
of the parabola, the reflected rays cause the object to burn in just seconds.

1. Find the equation of the parabola that models the fire starter. Assume that the vertex of the parabolic
mirror is the origin of the coordinate plane.

2. Use the equation found in part (a) to find the depth of the fire starter.

Solving Applied Problems Involving Parabolas

As we mentioned at the beginning of the section, parabolas are used to design many objects we use every
day, such as telescopes, suspension bridges, microphones, and radar equipment. Parabolic mirrors, such as
the one used to light the Olympic torch, have a very unique reflecting property. When rays of light parallel to
the parabola’s axis of symmetry are directed toward any surface of the mirror, the light is reflected directly
to the focus. This is why the Olympic torch is ignited when it is held at the focus of the parabolic mirror.

Figure 12. Reflecting property of parabolas

Parabolic mirrors have the ability to focus the sun’s energy to a single point, raising the temperature
hundreds of degrees in a matter of seconds. Thus, parabolic mirrors are featured in many low-cost, energy
efficient solar products, such as solar cookers, solar heaters, and even travel-sized fire starters.
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Figure 13. Cross-section of a travel-sized solar fire starter

Answer

1. The vertex of the dish is the origin of the coordinate plane, so the parabola will take the standard form
, where . The igniter, which is the focus, is 1.7 inches above the vertex of the dish.

Thus we have .

2. The dish extends  inches on either side of the origin. We can substitute 2.25 for  in the
equation from part (a) to find the depth of the dish.

The dish is about 0.74 inches deep.

TRY IT

Try It

Balcony-sized solar cookers have been designed for families living in India. The top of a dish has a
diameter of 1600 mm. The sun’s rays reflect off the parabolic mirror toward the “cooker,” which is placed
320 mm from the base.

a. Find an equation that models a cross-section of the solar cooker. Assume that the vertex of the
parabolic mirror is the origin of the coordinate plane, and that the parabola opens to the right (i.e.,
has the x-axis as its axis of symmetry).

b. Use the equation found in part (a) to find the depth of the cooker.
Answer

a. 
b. The depth of the cooker is 500 mm
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directrix

focus (of a parabola)

latus rectum

parabola

An interactive or media element has been excluded from this version of the text. You can view it online
here: https://courses.lumenlearning.com/precalculus/?p=14700

Key Equations

Parabola, vertex at origin, axis of symmetry on x-axis

Parabola, vertex at origin, axis of symmetry on y-axis

Parabola, vertex at , axis of symmetry on x-axis

Parabola, vertex at , axis of symmetry on y-axis

Key Concepts

A parabola is the set of all points  in a plane that are the same distance from a fixed line, called
the directrix, and a fixed point (the focus) not on the directrix.
The standard form of a parabola with vertex  and the x-axis as its axis of symmetry can be used to
graph the parabola. If , the parabola opens right. If , the parabola opens left.
The standard form of a parabola with vertex  and the y-axis as its axis of symmetry can be used to
graph the parabola. If , the parabola opens up. If , the parabola opens down.
When given the focus and directrix of a parabola, we can write its equation in standard form.
The standard form of a parabola with vertex  and axis of symmetry parallel to the x-axis can be
used to graph the parabola. If , the parabola opens right. If , the parabola opens left.
The standard form of a parabola with vertex  and axis of symmetry parallel to the y-axis can be
used to graph the parabola. If , the parabola opens up. If , the parabola opens down.
Real-world situations can be modeled using the standard equations of parabolas. For instance, given
the diameter and focus of a cross-section of a parabolic reflector, we can find an equation that models
its sides.

Glossary

a line perpendicular to the axis of symmetry of a parabola; a line such that the ratio of the distance
between the points on the conic and the focus to the distance to the directrix is constant

a fixed point in the interior of a parabola that lies on the axis of symmetry

the line segment that passes through the focus of a parabola parallel to the directrix, with
endpoints on the parabola

the set of all points  in a plane that are the same distance from a fixed line, called the
directrix, and a fixed point (the focus) not on the directrix
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Learning Outcomes

Identify nondegenerate conic sections given their general form equations.
Write equations of rotated conics in standard form.
Identify conics without rotating axes.

As we have seen, conic sections are formed when a plane intersects two right circular cones aligned tip to
tip and extending infinitely far in opposite directions, which we also call a cone. The way in which we slice
the cone will determine the type of conic section formed at the intersection. A circle is formed by slicing a
cone with a plane perpendicular to the axis of symmetry of the cone. An ellipse is formed by slicing a single
cone with a slanted plane not perpendicular to the axis of symmetry. A parabola is formed by slicing the
plane through the top or bottom of the double-cone, whereas a hyperbola is formed when the plane slices
both the top and bottom of the cone.

Figure 1. The nondegenerate conic sections

Ellipses, circles, hyperbolas, and parabolas are sometimes called the nondegenerate conic sections, in
contrast to the degenerate conic sections, which are shown in Figure 2. A degenerate conic results when
a plane intersects the double cone and passes through the apex. Depending on the angle of the plane, three
types of degenerate conic sections are possible: a point, a line, or two intersecting lines.
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Figure 2. Degenerate conic sections

Identifying Nondegenerate Conics in General Form

In previous sections of this chapter, we have focused on the standard form equations for nondegenerate
conic sections. In this section, we will shift our focus to the general form equation, which can be used for any
conic. The general form is set equal to zero, and the terms and coefficients are given in a particular order, as
shown below.

where , and  are not all zero. We can use the values of the coefficients to identify which type conic is
represented by a given equation.

You may notice that the general form equation has an  term that we have not seen in any of the standard
form equations. As we will discuss later, the  term rotates the conic whenever  is not equal to zero.
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A GENERAL NOTE: GENERAL FORM OF CONIC SECTIONS

A nondegenerate conic section has the general form

where , and  are not all zero.
The table below summarizes the different conic sections where , and  and  are nonzero real
numbers. This indicates that the conic has not been rotated.

ellipse

circle

hyperbola , where  and 
are positive

parabola

HOW TO: GIVEN THE EQUATION OF A CONIC, IDENTIFY THE TYPE OF
CONIC.

1. Rewrite the equation in the general form, .
2. Identify the values of  and  from the general form.

1. If  and  are nonzero, have the same sign, and are not equal to each other, then the graph is
an ellipse.

2. If  and  are equal and nonzero and have the same sign, then the graph is a circle.
3. If  and  are nonzero and have opposite signs, then the graph is a hyperbola.
4. If either  or  is zero, then the graph is a parabola.

EXAMPLE 1: IDENTIFYING A CONIC FROM ITS GENERAL FORM

Identify the graph of each of the following nondegenerate conic sections.

1. 
2. 

Conic Sections Example

ellipse

circle

hyperbola

parabola

one line

intersecting lines

parallel lines

a point

no graph
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3. 
4. 

Answer

1. Rewriting the general form, we have

 and , so we observe that  and  have opposite signs. The graph of this equation is a
hyperbola.

2. Rewriting the general form, we have

 and . We can determine that the equation is a parabola, since  is zero.
3. Rewriting the general form, we have

 and . Because , the graph of this equation is a circle.
4. Rewriting the general form, we have

 and . Because  and , the graph of this equation is an ellipse.

Try It

Identify the graph of each of the following nondegenerate conic sections.

1. 
2. 

Answer

1. hyperbola
2. ellipse

Finding a New Representation of the Given Equation after
Rotating through a Given Angle

Until now, we have looked at equations of conic sections without an  term, which aligns the graphs with
the x– and y-axes. When we add an  term, we are rotating the conic about the origin. If the x– and y-axes
are rotated through an angle, say , then every point on the plane may be thought of as having two
representations:  on the Cartesian plane with the original x-axis and y-axis, and  on the new
plane defined by the new, rotated axes, called the x’-axis and y’-axis.
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Figure 3. The graph of the rotated ellipse 

We will find the relationships between  and  on the Cartesian plane with  and  on the new rotated
plane.
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Figure 4. The Cartesian plane with x- and y-axes and the resulting x′− and y′−axes formed by a rotation by an angle .

The original coordinate x– and y-axes have unit vectors  and . The rotated coordinate axes have unit
vectors  and . The angle  is known as the angle of rotation. We may write the new unit vectors in
terms of the original ones.
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A GENERAL NOTE: EQUATIONS OF ROTATION

If a point  on the Cartesian plane is represented on a new coordinate plane where the axes of
rotation are formed by rotating an angle  from the positive x-axis, then the coordinates of the point with
respect to the new axes are . We can use the following equations of rotation to define the
relationship between  and 

Figure 5. Relationship between the old and new coordinate planes.

Consider a vector  in the new coordinate plane. It may be represented in terms of its coordinate axes.

Because , we have representations of  and  in terms of the new coordinate system.
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HOW TO: GIVEN THE EQUATION OF A CONIC, FIND A NEW
REPRESENTATION AFTER ROTATING THROUGH AN ANGLE.

1. Find  and  where  and .
2. Substitute the expression for  and  into in the given equation, then simplify.
3. Write the equations with  and  in standard form.

EXAMPLE 2: FINDING A NEW REPRESENTATION OF AN EQUATION AFTER
ROTATING THROUGH A GIVEN ANGLE

Find a new representation of the equation  after rotating through an angle of 
.

Answer
Find  and , where  and .
Because ,

and

Substitute  and  into .

Simplify.

Write the equations with  and  in the standard form.
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This equation is an ellipse. Figure 6 shows the graph.

Figure 6

Writing Equations of Rotated Conics in Standard Form

Now that we can find the standard form of a conic when we are given an angle of rotation, we will learn how
to transform the equation of a conic given in the form  into standard
form by rotating the axes. To do so, we will rewrite the general form as an equation in the  and 
coordinate system without the  term, by rotating the axes by a measure of  that satisfies

We have learned already that any conic may be represented by the second degree equation

where , and  are not all zero. However, if , then we have an  term that prevents us from
rewriting the equation in standard form. To eliminate it, we can rotate the axes by an acute angle  where 

.

If , then  is in the first quadrant, and  is between .
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HOW TO: GIVEN AN EQUATION FOR A CONIC IN THE  SYSTEM,
REWRITE THE EQUATION WITHOUT THE  TERM IN TERMS OF 

AND , WHERE THE  AND  AXES ARE ROTATIONS OF THE
STANDARD AXES BY  DEGREES.

1. Find .
2. Find  and .
3. Substitute  and  into  and .
4. Substitute the expression for  and  into in the given equation, and then simplify.
5. Write the equations with  and  in the standard form with respect to the rotated axes.

EXAMPLE 3: REWRITING AN EQUATION WITH RESPECT TO THE X′ AND Y′
AXES WITHOUT THE X′Y′ TERM

Rewrite the equation  in the  system without an  term.
Answer
First, we find .

If , then  is in the second quadrant, and  is between .
If , then .
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Figure 7

So the hypotenuse is

Next, we find  and .
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Substitute the values of  and  into  and .

and

Substitute the expressions for  and  into in the given equation, and then simplify.
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Write the equations with  and  in the standard form with respect to the new coordinate system.

Figure 8 shows the graph of the ellipse.

Figure 8

EXAMPLE 4: GRAPHING AN EQUATION THAT HAS NO X′Y′ TERMS

Graph the following equation relative to the  system:

Answer
First, we find .

Try It

Rewrite the  in the  system without the  term.
Answer
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Because , we can draw a reference triangle as in Figure 9.

Figure 9
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Thus, the hypotenuse is

Next, we find  and . We will use half-angle identities.

Now we find  and .

and

Now we substitute  and  into .
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Figure 10 shows the graph of the hyperbola .

Figure 10
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A GENERAL NOTE: USING THE DISCRIMINANT TO IDENTIFY A CONIC

If the equation  is transformed by rotating axes into the equation 
, then .

The equation  is an ellipse, a parabola, or a hyperbola, or a
degenerate case of one of these.
If the discriminant, , is

, the conic section is an ellipse
, the conic section is a parabola
, the conic section is a hyperbola

EXAMPLE 5: IDENTIFYING THE CONIC WITHOUT ROTATING AXES

Identify the conic for each of the following without rotating axes.

1. 
2. 

Answer

1. Let’s begin by determining , and .

Now, we find the discriminant.

Therefore,  represents an ellipse.
2. Again, let’s begin by determining , and .

Now, we find the discriminant.

Identifying Conics without Rotating Axes

Now we have come full circle. How do we identify the type of conic described by an equation? What
happens when the axes are rotated? Recall, the general form of a conic is

If we apply the rotation formulas to this equation we get the form

It may be shown that . The expression does not vary after rotation, so we call
the expression invariant. The discriminant, , is invariant and remains unchanged after rotation.
Because the discriminant remains unchanged, observing the discriminant enables us to identify the conic
section.
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angle of rotation

degenerate conic sections

nondegenerate conic section

Therefore,  represents an ellipse.

Try It

Identify the conic for each of the following without rotating axes.

1. 
2. 

Answer

1. hyperbola
2. ellipse

Key Equations

General Form equation of a conic section

Rotation of a conic section

Angle of rotation

Key Concepts

Four basic shapes can result from the intersection of a plane with a pair of right circular cones
connected tail to tail. They include an ellipse, a circle, a hyperbola, and a parabola.
A nondegenerate conic section has the general form  where 

 and  are not all zero. The values of , and  determine the type of conic.
Equations of conic sections with an  term have been rotated about the origin.
The general form can be transformed into an equation in the  and  coordinate system without the 

 term.
An expression is described as invariant if it remains unchanged after rotating. Because the discriminant
is invariant, observing it enables us to identify the conic section.

Glossary

an acute angle formed by a set of axes rotated from the Cartesian plane where, if 
, then  is between ; if , then  is between ; and if 

, then 

any of the possible shapes formed when a plane intersects a double cone
through the apex. Types of degenerate conic sections include a point, a line, and intersecting lines.

a shape formed by the intersection of a plane with a double right cone such
that the plane does not pass through the apex; nondegenerate conics include circles, ellipses,
hyperbolas, and parabolas
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CONIC SECTIONS IN POLAR COORDINATES

Learning Outcomes

Identify a conic in polar form.
Graph the polar equations of conics.
Define conics in terms of a focus and a directrix.

Figure 1. Planets orbiting the sun follow elliptical paths. (credit: NASA Blueshift, Flickr)

Most of us are familiar with orbital motion, such as the motion of a planet around the sun or an electron
around an atomic nucleus. Within the planetary system, orbits of planets, asteroids, and comets around a
larger celestial body are often elliptical. Comets, however, may take on a parabolic or hyperbolic orbit
instead. And, in reality, the characteristics of the planets’ orbits may vary over time. Each orbit is tied to the
location of the celestial body being orbited and the distance and direction of the planet or other object from
that body. As a result, we tend to use polar coordinates to represent these orbits.

In an elliptical orbit, the periapsis is the point at which the two objects are closest, and the apoapsis is the
point at which they are farthest apart. Generally, the velocity of the orbiting body tends to increase as it
approaches the periapsis and decrease as it approaches the apoapsis. Some objects reach an escape
velocity, which results in an infinite orbit. These bodies exhibit either a parabolic or a hyperbolic orbit about a
body; the orbiting body breaks free of the celestial body’s gravitational pull and fires off into space. Each of
these orbits can be modeled by a conic section in the polar coordinate system.

Identifying a Conic in Polar Form

Any conic may be determined by three characteristics: a single focus, a fixed line called the directrix, and
the ratio of the distances of each to a point on the graph. Consider the parabola  shown in
Figure 2.
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A GENERAL NOTE: THE POLAR EQUATION FOR A CONIC

For a conic with a focus at the origin, if the directrix is , where  is a positive real number, and the
eccentricity is a positive real number , the conic has a polar equation

For a conic with a focus at the origin, if the directrix is , where  is a positive real number, and the
eccentricity is a positive real number , the conic has a polar equation

Figure 2

In The Parabola, we learned how a parabola is defined by the focus (a fixed point) and the directrix (a fixed
line). In this section, we will learn how to define any conic in the polar coordinate system in terms of a fixed
point, the focus  at the pole, and a line, the directrix, which is perpendicular to the polar axis.

If  is a fixed point, the focus, and  is a fixed line, the directrix, then we can let  be a fixed positive
number, called the eccentricity, which we can define as the ratio of the distances from a point on the graph
to the focus and the point on the graph to the directrix. Then the set of all points  such that  is a
conic. In other words, we can define a conic as the set of all points  with the property that the ratio of the
distance from  to  to the distance from  to  is equal to the constant .

For a conic with eccentricity ,
if , the conic is an ellipse
if , the conic is a parabola
if , the conic is an hyperbola

With this definition, we may now define a conic in terms of the directrix, , the eccentricity , and the
angle . Thus, each conic may be written as a polar equation, an equation written in terms of  and .
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HOW TO: GIVEN THE POLAR EQUATION FOR A CONIC, IDENTIFY THE
TYPE OF CONIC, THE DIRECTRIX, AND THE ECCENTRICITY.

1. Multiply the numerator and denominator by the reciprocal of the constant in the denominator to rewrite
the equation in standard form.

2. Identify the eccentricity  as the coefficient of the trigonometric function in the denominator.
3. Compare  with 1 to determine the shape of the conic.
4. Determine the directrix as  if cosine is in the denominator and  if sine is in the

denominator. Set  equal to the numerator in standard form to solve for  or .

EXAMPLE 1: IDENTIFYING A CONIC GIVEN THE POLAR FORM

For each of the following equations, identify the conic with focus at the origin, the directrix, and the
eccentricity.

1. 
2. 
3. 

Answer
For each of the three conics, we will rewrite the equation in standard form. Standard form has a 1 as the
constant in the denominator. Therefore, in all three parts, the first step will be to multiply the numerator
and denominator by the reciprocal of the constant of the original equation, , where  is that constant.

1. Multiply the numerator and denominator by .

Because  is in the denominator, the directrix is . Comparing to standard form, note that 
. Therefore, from the numerator,

Since , the conic is an ellipse. The eccentricity is  and the directrix is .
2. Multiply the numerator and denominator by .
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Because  is in the denominator, the directrix is . Comparing to standard form, .
Therefore, from the numerator,

Since , the conic is a hyperbola. The eccentricity is  and the directrix is .
3. Multiply the numerator and denominator by .

Because sine is in the denominator, the directrix is . Comparing to standard form, .
Therefore, from the numerator,

Because , the conic is a parabola. The eccentricity is  and the directrix is .

Try It

Identify the conic with focus at the origin, the directrix, and the eccentricity for .
Answer

ellipse; 

Graphing the Polar Equations of Conics

When graphing in Cartesian coordinates, each conic section has a unique equation. This is not the case
when graphing in polar coordinates. We must use the eccentricity of a conic section to determine which type
of curve to graph, and then determine its specific characteristics. The first step is to rewrite the conic in
standard form as we have done in the previous example. In other words, we need to rewrite the equation so
that the denominator begins with 1. This enables us to determine  and, therefore, the shape of the curve.
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EXAMPLE 2: GRAPHING A PARABOLA IN POLAR FORM

Graph .
Answer
First, we rewrite the conic in standard form by multiplying the numerator and denominator by the
reciprocal of 3, which is .

Because , we will graph a parabola with a focus at the origin. The function has a , and there is
an addition sign in the denominator, so the directrix is .

The directrix is .
Plotting a few key points as in the table below will enable us to see the vertices.

A B C D

undefined

The next step is to substitute values for  and solve for  to plot a few key points. Setting  equal to ,
and  provides the vertices so we can create a rough sketch of the graph.
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Figure 3

Analysis of the Solution

We can check our result with a graphing utility.
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Figure 4

EXAMPLE 3: GRAPHING A HYPERBOLA IN POLAR FORM

Graph .
Answer
First, we rewrite the conic in standard form by multiplying the numerator and denominator by the
reciprocal of 2, which is .

Because , so we will graph a hyperbola with a focus at the origin. The function has a 
term and there is a subtraction sign in the denominator, so the directrix is .
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The directrix is .
Plotting a few key points as in the table below will enable us to see the vertices.

A B C D

Figure 5

EXAMPLE 4: GRAPHING AN ELLIPSE IN POLAR FORM
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Graph .
Answer
First, we rewrite the conic in standard form by multiplying the numerator and denominator by the
reciprocal of 5, which is .

Because , so we will graph an ellipse with a focus at the origin. The function has a , and
there is a subtraction sign in the denominator, so the directrix is .

The directrix is .
Plotting a few key points as in the table below will enable us to see the vertices.

A B C D
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Figure 6

Analysis of the Solution

We can check our result using a graphing utility.
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Figure 7.  graphed on a viewing window of  by  and .

Try It

Graph .
Answer
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HOW TO: GIVEN THE FOCUS, ECCENTRICITY, AND DIRECTRIX OF A
CONIC, DETERMINE THE POLAR EQUATION.

1. Determine whether the directrix is horizontal or vertical. If the directrix is given in terms of , we use
the general polar form in terms of sine. If the directrix is given in terms of , we use the general polar
form in terms of cosine.

2. Determine the sign in the denominator. If , use subtraction. If , use addition.
3. Write the coefficient of the trigonometric function as the given eccentricity.
4. Write the absolute value of  in the numerator, and simplify the equation.

EXAMPLE 5: FINDING THE POLAR FORM OF A VERTICAL CONIC GIVEN A
FOCUS AT THE ORIGIN AND THE ECCENTRICITY AND DIRECTRIX

Find the polar form of the conic given a focus at the origin,  and directrix .
Answer
The directrix is , so we know the trigonometric function in the denominator is sine.
Because , so we know there is a subtraction sign in the denominator. We use the
standard form of

and  and .
Therefore,

De�ning Conics in Terms of a Focus and a Directrix

So far we have been using polar equations of conics to describe and graph the curve. Now we will work in
reverse; we will use information about the origin, eccentricity, and directrix to determine the polar equation.
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EXAMPLE 6: FINDING THE POLAR FORM OF A HORIZONTAL CONIC
GIVEN A FOCUS AT THE ORIGIN AND THE ECCENTRICITY AND DIRECTRIX

Find the polar form of a conic given a focus at the origin, , and directrix .
Answer
Because the directrix is , we know the function in the denominator is cosine. Because ,
so we know there is an addition sign in the denominator. We use the standard form of

and  and .
Therefore,

EXAMPLE 7: CONVERTING A CONIC IN POLAR FORM TO RECTANGULAR
FORM

Convert the conic  to rectangular form.
Answer
We will rearrange the formula to use the identities .

Try It

Find the polar form of the conic given a focus at the origin, , and directrix .
Answer

1192



eccentricity

polar equation

Try It

Convert the conic to rectangular form.
Answer

Key Concepts

Any conic may be determined by a single focus, the corresponding eccentricity, and the directrix. We
can also define a conic in terms of a fixed point, the focus at the pole, and a line, the directrix,
which is perpendicular to the polar axis.
A conic is the set of all points , where eccentricity  is a positive real number. Each conic may
be written in terms of its polar equation.
The polar equations of conics can be graphed.
Conics can be defined in terms of a focus, a directrix, and eccentricity.
We can use the identities , and to convert the equation for a
conic from polar to rectangular form.

Glossary

the ratio of the distances from a point  on the graph to the focus  and to the directrix
represented by , where  is a positive real number

an equation of a curve in polar coordinates  and
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MODULE 12: INTRODUCTION TO
CALCULUS

FINDING LIMITS: NUMERICAL AND
GRAPHICAL APPROACHES

LEARNING OUTCOMES

Find a limit using a graph.
Find a limit using a table.

Understanding Limit Notation

We have seen how a sequence can have a limit, a value that the sequence of terms moves toward as the
nu mber of terms increases. For example, the terms of the sequence

.

gets closer and closer to 0. A sequence is one type of function, but functions that are not sequences can
also have limits. We can describe the behavior of the function as the input values get close to a specific
value. If the limit of a function , then as the input  gets closer and closer to , the output y-
coordinate gets closer and closer to . We say that the output “approaches” .

Figure 1 provides a visual representation of the mathematical concept of limit. As the input value
approaches , the output value  approaches .
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Figure 1. The output (y-coordinate) approaches  as the input (x-coordinate) approaches .

We write the equation of a limit as
.

This notation indicates that as  approaches  both from the left of  and the right of , the output
value approaches .

Consider the function
.

We can factor the function as shown.

Notice that  cannot be 7, or we would be dividing by 0, so 7 is not in the domain of the original function. In
order to avoid changing the function when we simplify, we set the same condition, , for the simplified
function. We can represent the function graphically as shown in Figure 2.
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Figure 2. Because 7 is not allowed as an input, there is no point at .

What happens at  is completely different from what happens at points close to  on either side.
The notation

indicates that as the input  approaches 7 from either the left or the right, the output approaches 8. The
output can get as close to 8 as we like if the input is sufficiently near 7.

What happens at  When , there is no corresponding output. We write this as

This notation indicates that 7 is not in the domain of the function. We had already indicated this when we
wrote the function as

.
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A GENERAL NOTE: THE LIMIT OF A FUNCTION

A quantity  is the limit of a function  as  approaches  if, as the input values of  approach  (but
do not equal ), the corresponding output values of  get closer to . Note that the value of the limit is
not affected by the output value of  at . Both  and  must be real numbers. We write it as

EXAMPLE 1: UNDERSTANDING THE LIMIT OF A FUNCTION

For the following limit, define , and .

Answer
First, we recognize the notation of a limit. If the limit exists, as  approaches , we write

.

We are given
.

This means that .

Analysis of the Solution

Recall that  is a line with no breaks. As the input values approach 2, the output values will get
close to 11. This may be phrased with the equation , which means that as  nears 2
(but is not exactly 2), the output of the function  gets as close as we want to , or
11, which is the limit , as we take values of  sufficiently near 2 but not at .

Notice that the limit of a function can exist even when  is not defined at . Much of our subsequent
work will be determining limits of functions as  nears , even though the output at  does not exist.

Try It

For the following limit, define , and .

Answer

, , and .

Understanding Left-Hand Limits and Right-Hand Limits

We can approach the input of a function from either side of a value—from the left or the right. Figure
3 shows the values of

as described earlier and depicted in Figure 2.
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Figure 3

Values described as “from the left” are less than the input value 7 and would therefore appear to the left of
the value on a number line. The input values that approach 7 from the left in Figure 3 are , , and 

. The corresponding outputs are , and . These values are getting closer to 8. The limit of
values of  as  approaches from the left is known as the left-hand limit. For this function, 8 is the left-
hand limit of the function  as  approaches 7.

Values described as “from the right” are greater than the input value 7 and would therefore appear to the
right of the value on a number line. The input values that approach 7 from the right in Figure 3 are , ,
and . The corresponding outputs are , , and . These values are getting closer to 8. The
limit of values of  as  approaches from the right is known as the right-hand limit. For this function, 8 is
also the right-hand limit of the function  as  approaches 7.

Figure 3 shows that we can get the output of the function within a distance of 0.1 from 8 by using an input
within a distance of 0.1 from 7. In other words, we need an input  within the interval  to
produce an output value of  within the interval .

We also see that we can get output values of  successively closer to 8 by selecting input values closer
to 7. In fact, we can obtain output values within any specified interval if we choose appropriate input values.

Figure 4 provides a visual representation of the left- and right-hand limits of the function. From the graph of 
, we observe the output can get infinitesimally close to  as  approaches 7 from the left and as 

approaches 7 from the right.

To indicate the left-hand limit, we write
.

To indicate the right-hand limit, we write
.
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A GENERAL NOTE: LEFT- AND RIGHT-HAND LIMITS

The left-hand limit of a function  as  approaches  from the left is equal to , denoted by
.

The values of  can get as close to the limit  as we like by taking values of  sufficiently close to 
such that  and .
The right-hand limit of a function , as  approaches  from the right, is equal to , denoted by

.

The values of  can get as close to the limit  as we like by taking values of  sufficiently close to 
but greater than . Both  and  are real numbers.

Figure 4. The left- and right-hand limits are the same for this function.
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A GENERAL NOTE: THE TWO-SIDED LIMIT OF FUNCTION AS X
APPROACHES A

The limit of a function , as  approaches , is equal to , that is,

if and only if
.

In other words, the left-hand limit of a function  as  approaches  is equal to the right-hand limit of
the same function as  approaches . If such a limit exists, we refer to the limit as a two-sided limit.
Otherwise we say the limit does not exist.

Understanding Two-Sided Limits

In the previous example, the left-hand limit and right-hand limit as  approaches  are equal. If the left- and
right-hand limits are equal, we say that the function  has a two-sided limit as  approaches . More
commonly, we simply refer to a two-sided limit as a limit. If the left-hand limit does not equal the right-hand
limit, or if one of them does not exist, we say the limit does not exist.

Finding a Limit Using a Graph

To visually determine if a limit exists as  approaches , we observe the graph of the function when  is very
near to . In Figure 5 we observe the behavior of the graph on both sides of .
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HOW TO: GIVEN A FUNCTION , USE A GRAPH TO FIND THE LIMITS
AND A FUNCTION VALUE AS  APPROACHES .

1. Examine the graph to determine whether a left-hand limit exists.
2. Examine the graph to determine whether a right-hand limit exists.

Figure 5

To determine if a left-hand limit exists, we observe the branch of the graph to the left of , but near 
. This is where . We see that the outputs are getting close to some real number  so there is a left-
hand limit.

To determine if a right-hand limit exists, observe the branch of the graph to the right of , but near 
. This is where . We see that the outputs are getting close to some real number , so there is a

right-hand limit.

If the left-hand limit and the right-hand limit are the same, as they are in Figure 5, then we know that the
function has a two-sided limit. Normally, when we refer to a “limit,” we mean a two-sided limit, unless we call
it a one-sided limit.

Finally, we can look for an output value for the function  when the input value  is equal to . The
coordinate pair of the point would be . If such a point exists, then  has a value. If the point
does not exist, as in Figure 5, then we say that  does not exist.
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3. If the two one-sided limits exist and are equal, then there is a two-sided limit—what we normally call a
“limit.”

4. If there is a point at , then  is the corresponding function value.

EXAMPLE 2: FINDING A LIMIT USING A GRAPH

1. Determine the following limits and function value for the function  shown in Figure 6.
1. 

2. 

3. 
4. 

Figure 6
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2. Determine the following limits and function value for the function  shown in Figure 7.
1. 

2. 

3. 
4. 

Figure 7

Answer
1. Looking at Figure 6:

1. ; when , but infinitesimally close to 2, the output values get close to 

.
2. ; when , but infinitesimally close to 2, the output values approach .

3.  does not exist because ; the left and right-hand limits are not

equal.
4.  because the graph of the function  passes through the point  or .

2. Looking at Figure 7:
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1. ; when  but infinitesimally close to 2, the output values approach .

2. ; when  but infinitesimally close to 2, the output values approach .

3.  because ; the left and right-hand limits are equal.

4.  because the graph of the function  passes through the point  or .

Try It

Using the graph of the function  shown in Figure 8, estimate the following limits.

Figure 8
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An interactive or media element has been excluded from this version of the text. You can view it online
here: https://courses.lumenlearning.com/precalculus/?p=14936

TRY IT

HOW TO: GIVEN A FUNCTION , USE A TABLE TO FIND THE LIMIT AS 
APPROACHES  AND THE VALUE OF , IF IT EXISTS.

1. Choose several input values that approach  from both the left and right. Record them in a table.
2. Evaluate the function at each input value. Record them in the table.
3. Determine if the table values indicate a left-hand limit and a right-hand limit.
4. If the left-hand and right-hand limits exist and are equal, there is a two-sided limit.
5. Replace  with  to find the value of .

Answer

a. 0; b. 2; c. does not exist; d. ; e. 0; f. does not exist; g. 4; h. 4; i. 4

Finding a Limit Using a Table

Creating a table is a way to determine limits using numeric information. We create a table of values in which
the input values of  approach  from both sides. Then we determine if the output values get closer and
closer to some real value, the limit .

Let’s consider an example using the following function:

To create the table, we evaluate the function at values close to . We use some input values less than 5
and some values greater than 5 as in Figure 9. The table values show that when  but nearing 5, the
corresponding output gets close to 75. When  but nearing 5, the corresponding output also gets close
to 75.

Figure 9

Because
,

then
.

Remember that  does not exist.
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EXAMPLE 3: FINDING A LIMIT USING A TABLE

Numerically estimate the limit of the following expression by setting up a table of values on both sides of
the limit.

Answer
We can estimate the value of a limit, if it exists, by evaluating the function at values near . We
cannot find a function value for  directly because the result would have a denominator equal to 0,
and thus would be undefined.

We create Figure 10 by choosing several input values close to , with half of them less than 
and half of them greater than . Note that we need to be sure we are using radian mode. We evaluate
the function at each input value to complete the table.
The table values indicate that when  but approaching 0, the corresponding output nears .
When  but approaching 0, the corresponding output also nears .

Figure 10

Because
,

then
.

Q & A

IS IT POSSIBLE TO CHECK OUR ANSWER USING A GRAPHING UTILITY?

Yes. We previously used a table to find a limit of 75 for the function  as  approaches 5. To
check, we graph the function on a viewing window as shown in Figure 11. A graphical check shows both
branches of the graph of the function get close to the output 75 as  nears 5. Furthermore, we can use the
‘trace’ feature of a graphing calculator. By appraoching  we may numerically observe the
corresponding outputs getting close to .
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Figure 11

An interactive or media element has been excluded from this version of the text. You can view it online
here: https://courses.lumenlearning.com/precalculus/?p=14936

TRY IT

Q & A

IS ONE METHOD FOR DETERMINING A LIMIT BETTER THAN THE OTHER?

Try It

Numerically estimate the limit of the following function by making a table:

Answer
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No. Both methods have advantages. Graphing allows for quick inspection. Tables can be used when
graphical utilities aren’t available, and they can be calculated to a higher precision than could be seen with
an unaided eye inspecting a graph.

EXAMPLE 4: USING A GRAPHING UTILITY TO DETERMINE A LIMIT

With the use of a graphing utility, if possible, determine the left- and right-hand limits of the following
function as  approaches 0. If the function has a limit as  approaches 0, state it. If not, discuss why there
is no limit.

Answer
We can use a graphing utility to investigate the behavior of the graph close to . Centering around 

, we choose two viewing windows such that the second one is zoomed in closer to  than the
first one. The result would resemble Figure 12 for  by .

Figure 12

The result would resemble Figure 13 for  by .
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Figure 13

Even closer to zero, we are even less able to distinguish any limits.The closer we get to 0, the greater the
swings in the output values are. That is not the behavior of a function with either a left-hand limit or a right-
hand limit. And if there is no left-hand limit or right-hand limit, there certainly is no limit to the function 
as  approaches 0.We write

.

.

.

Try It

Numerically estimate the following limit: .

Answer

does not exist

Key Concepts

A function has a limit if the output values approach some value  as the input values approach some
quantity .
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left-hand limit

limit

right-hand limit

two-sided limit

A shorthand notation is used to describe the limit of a function according to the form ,
which indicates that as  approaches , both from the left of  and the right of , the output
value gets close to .
A function has a left-hand limit if  approaches  as  approaches  where . A function has a
right-hand limit if  approaches  as  approaches  where .
A two-sided limit exists if the left-hand limit and the right-hand limit of a function are the same. A function
is said to have a limit if it has a two-sided limit.
A graph provides a visual method of determining the limit of a function.
If the function has a limit as  approaches , the branches of the graph will approach the same 
coordinate near  from the left and the right.
A table can be used to determine if a function has a limit. The table should show input values that
approach  from both directions so that the resulting output values can be evaluated. If the output
values approach some number, the function has a limit.
A graphing utility can also be used to find a limit.

Glossary

the limit of values of  as  approaches from  the left, denoted . The

values of  can get as close to the limit  as we like by taking values of  sufficiently close to  such
that  and . Both  and  are real numbers.

when it exists, the value, , that the output of a function  approaches as the input  gets closer
and closer to  but does not equal . The value of the output, , can get as close to  as we choose
to make it by using input values of  sufficiently near to , but not necessarily at . Both  and 

 are real numbers, and  is denoted .

the limit of values of  as  approaches  from the right, denoted . The

values of  can get as close to the limit  as we like by taking values of  sufficiently close to 
where , and . Both  and  are real numbers.

the limit of a function , as  approaches , is equal to , that is,  if and
only if .
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FINDING LIMITS: PROPERTIES OF LIMITS

LEARNING OUTCOMES

Find the limit of a sum, a difference, and a product.
Find the limit of a polynomial.
Find the limit of a power or a root.
Find the limit of a quotient.
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A GENERAL NOTE: PROPERTIES OF LIMITS

Let , and  represent real numbers, and  and  be functions, such that  and 
. For limits that exist and are finite, the properties of limits are summarized in the table

below.

Constant, k

Constant times a function

Sum of functions

Difference of functions

Product of functions

Quotient of functions

Function raised to an exponent , where  is a positive
integer

nth root of a function, where n is a positive
integer

Polynomial function

EXAMPLE 1: EVALUATING THE LIMIT OF A FUNCTION ALGEBRAICALLY

Evaluate .

Answer

Finding the Limit of a Sum, a Di�erence, and a Product

Graphing a function or exploring a table of values to determine a limit can be cumbersome and time-
consuming. When possible, it is more efficient to use the properties of limits, which is a collection of
theorems for finding limits.

Knowing the properties of limits allows us to compute limits directly. We can add, subtract, multiply, and
divide the limits of functions as if we were performing the operations on the functions themselves to find the
limit of the result. Similarly, we can find the limit of a function raised to a power by raising the limit to that
power. We can also find the limit of the root of a function by taking the root of the limit. Using these
operations on limits, we can find the limits of more complex functions by finding the limits of their simpler
component functions.
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An interactive or media element has been excluded from this version of the text. You can view it online
here: https://courses.lumenlearning.com/precalculus/?p=14945

TRY IT

HOW TO: GIVEN A FUNCTION CONTAINING A POLYNOMIAL, FIND ITS
LIMIT.

1. Use the properties of limits to break up the polynomial into individual terms.
2. Find the limits of the individual terms.
3. Add the limits together.
4. Alternatively, evaluate the function for  .

EXAMPLE 2: EVALUATING THE LIMIT OF A FUNCTION ALGEBRAICALLY

Evaluate .

Answer

Try It

Evaluate the following limit: .

Answer

26

Finding the Limit of a Polynomial

Not all functions or their limits involve simple addition, subtraction, or multiplication. Some may include
polynomials. Recall that a polynomial is an expression consisting of the sum of two or more terms, each of
which consists of a constant and a variable raised to a nonnegative integral power. To find the limit of a
polynomial function, we can find the limits of the individual terms of the function, and then add them
together. Also, the limit of a polynomial function as  approaches  is equivalent to simply evaluating the
function for  .

Try It

Evaluate .
Answer

59

1212



EXAMPLE 3: EVALUATING THE LIMIT OF A POLYNOMIAL ALGEBRAICALLY

Evaluate .

Answer

An interactive or media element has been excluded from this version of the text. You can view it online
here: https://courses.lumenlearning.com/precalculus/?p=14945

TRY IT

EXAMPLE 4: EVALUATING A LIMIT OF A POWER

Evaluate .

Answer
We will take the limit of the function as  approaches 2 and raise the result to the 5th power.

Try It

Evaluate the following limit: .

Answer

10

Finding the Limit of a Power or a Root

When a limit includes a power or a root, we need another property to help us evaluate it. The square of the
limit of a function equals the limit of the square of the function; the same goes for higher powers. Likewise,
the square root of the limit of a function equals the limit of the square root of the function; the same holds
true for higher roots.

Try It

Evaluate the following limit: .

Answer
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Q & A

IF WE CAN’T DIRECTLY APPLY THE PROPERTIES OF A LIMIT, FOR
EXAMPLE IN  , CAN WE STILL DETERMINE THE LIMIT OF

THE FUNCTION AS  APPROACHES  ?

Yes. Some functions may be algebraically rearranged so that one can evaluate the limit of a simplified
equivalent form of the function.

HOW TO: GIVEN THE LIMIT OF A FUNCTION IN QUOTIENT FORM, USE
FACTORING TO EVALUATE IT.

1. Factor the numerator and denominator completely.
2. Simplify by dividing any factors common to the numerator and denominator.
3. Evaluate the resulting limit, remembering to use the correct domain.

EXAMPLE 5: EVALUATING THE LIMIT OF A QUOTIENT BY FACTORING

Evaluate .

Answer
Factor where possible, and simplify.

Analysis of the Solution

When the limit of a rational function cannot be evaluated directly, factored forms of the numerator and
denominator may simplify to a result that can be evaluated.
Notice, the function

-64

Finding the Limit of a Quotient

Finding the limit of a function expressed as a quotient can be more complicated. We often need to rewrite
the function algebraically before applying the properties of a limit. If the denominator evaluates to 0 when we
apply the properties of a limit directly, we must rewrite the quotient in a different form. One approach is to
write the quotient in factored form and simplify.
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is equivalent to the function
.

Notice that the limit exists even though the function is not defined at .

An interactive or media element has been excluded from this version of the text. You can view it online
here: https://courses.lumenlearning.com/precalculus/?p=14945

TRY IT

EXAMPLE 6: EVALUATING THE LIMIT OF A QUOTIENT BY FINDING THE
LCD

Evaluate .

Answer
Find the LCD for the denominators of the two terms in the numerator, and convert both fractions to have
the LCD as their denominator.

Try It

Evaluate the following limit: .

Answer

-3
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Figure 3

Analysis of the Solution

When determining the limit of a rational function that has terms added or subtracted in either the
numerator or denominator, the first step is to find the common denominator of the added or subtracted
terms; then, convert both terms to have that denominator, or simplify the rational function by multiplying
numerator and denominator by the least common denominator. Then check to see if the resulting
numerator and denominator have any common factors.

HOW TO: GIVEN A LIMIT OF A FUNCTION CONTAINING A ROOT, USE A
CONJUGATE TO EVALUATE.

1. If the quotient as given is not in indeterminate  form, evaluate directly.

Try It

Evaluate .

Answer
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2. Otherwise, rewrite the sum (or difference) of two quotients as a single quotient, using the least
common denominator (LCD).

3. If the numerator includes a root, rationalize the numerator; multiply the numerator and denominator by
the conjugate of the numerator. Recall that  are conjugates.

4. Simplify.
5. Evaluate the resulting limit.

EXAMPLE 7: EVALUATING A LIMIT CONTAINING A ROOT USING A
CONJUGATE

Evaluate .

Answer

Analysis of the Solution

When determining a limit of a function with a root as one of two terms where we cannot evaluate directly,
think about multiplying the numerator and denominator by the conjugate of the terms.

An interactive or media element has been excluded from this version of the text. You can view it online
here: https://courses.lumenlearning.com/precalculus/?p=14945

TRY IT

Try It

Evaluate the following limit: .

Answer
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EXAMPLE 8: EVALUATING THE LIMIT OF A QUOTIENT OF A FUNCTION BY
FACTORING

Evaluate .

Answer

Analysis of the Solution

Multiplying by a conjugate would expand the numerator; look instead for factors in the numerator. Four is a
perfect square so that the numerator is in the form

and may be factored as
.

HOW TO: GIVEN A QUOTIENT WITH ABSOLUTE VALUES, EVALUATE ITS
LIMIT.

1. Try factoring or finding the LCD.
2. If the limit cannot be found, choose several values close to and on either side of the input where the

function is undefined.
3. Use the numeric evidence to estimate the limits on both sides.

EXAMPLE 9: EVALUATING THE LIMIT OF A QUOTIENT WITH ABSOLUTE
VALUES

Evaluate .

Answer

Try It

Evaluate the following limit: .

Answer
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properties of limits

The function is undefined at , so we will try values close to 7 from the left and the right.
Left-hand limit: 

Right-hand limit: 
Since the left- and right-hand limits are not equal, there is no limit.

Try It

Evaluate .

Answer

-1

Key Concepts

The properties of limits can be used to perform operations on the limits of functions rather than the
functions themselves.
The limit of a polynomial function can be found by finding the sum of the limits of the individual terms.
The limit of a function that has been raised to a power equals the same power of the limit of the
function. Another method is direct substitution.
The limit of the root of a function equals the corresponding root of the limit of the function.
One way to find the limit of a function expressed as a quotient is to write the quotient in factored form
and simplify.
Another method of finding the limit of a complex fraction is to find the LCD.
A limit containing a function containing a root may be evaluated using a conjugate.
The limits of some functions expressed as quotients can be found by factoring.
One way to evaluate the limit of a quotient containing absolute values is by using numeric evidence.
Setting it up piecewise can also be useful.

Glossary

a collection of theorems for finding limits of functions by performing mathematical
operations on the limits
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CONTINUITY

LEARNING OUTCOMES

Determine whether a function is continuous at a number.
Determine the input values for which a function is discontinuous.
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Let’s consider a specific example of temperature in terms of date and location, such as June 27, 2013, in
Phoenix, AZ. The graph in Figure 1 indicates that, at 2 a.m., the temperature was  . By 2 p.m. the
temperature had risen to  and by 4 p.m. it was  Sometime between 2 a.m. and 4 p.m., the
temperature outside must have been exactly  In fact, any temperature between  and 
occurred at some point that day. This means all real numbers in the output between  and  are
generated at some point by the function according to the intermediate value theorem,

Look again at Figure 1. There are no breaks in the function’s graph for this 24-hour period. At no point did
the temperature cease to exist, nor was there a point at which the temperature jumped instantaneously by
several degrees. A function that has no holes or breaks in its graph is known as a continuous function.
Temperature as a function of time is an example of a continuous function.

If temperature represents a continuous function, what kind of function would not be continuous? Consider an
example of dollars expressed as a function of hours of parking. Let’s create the function , where  is
the output representing cost in dollars for parking  number of hours.

Suppose a parking garage charges $4.00 per hour or fraction of an hour, with a $24 per day maximum
charge. Park for two hours and five minutes and the charge is $12. Park an additional hour and the charge is
$16. We can never be charged $13, $14, or $15. There are real numbers between 12 and 16 that the
function never outputs. There are breaks in the function’s graph for this 24-hour period, points at which the
price of parking jumps instantaneously by several dollars.

Figure 2. Parking-garage charges form a discontinuous function.

A function that remains level for an interval and then jumps instantaneously to a higher value is called a
stepwise function. This function is an example.

A function that has any hole or break in its graph is known as a discontinuous function. A stepwise
function, such as parking-garage charges as a function of hours parked, is an example of a discontinuous
function.

So how can we decide if a function is continuous at a particular number? We can check three different
conditions. Let’s use the function  represented in Figure 3 as an example.
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Figure 3

Condition 1 According to Condition 1, the function  defined at  must exist. In other words, there is
a y-coordinate at  as in Figure 4.

Figure 4

Condition 2 According to Condition 2, at  the limit, written , must exist. This means that at 
 the left-hand limit must equal the right-hand limit. Notice as the graph of  in Figure 3 approaches 
 from the left and right, the same y-coordinate is approached. Therefore, Condition 2 is satisfied.

However, there could still be a hole in the graph at  .

Condition 3 According to Condition 3, the corresponding  coordinate at  fills in the hole in the graph
of . This is written .
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Satisfying all three conditions means that the function is continuous. All three conditions are satisfied for the
function represented in Figure 5 so the function is continuous as .

Figure 5. All three conditions are satisfied. The function is continuous at  .

Figure 6 through Figure 9 provide several examples of graphs of functions that are not continuous at 
and the condition or conditions that fail.

Figure 6. Condition 2 is satisfied. Conditions 1 and 3 both fail.
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Figure 7. Conditions 1 and 2 are both satisfied. Condition 3 fails.

Figure 8. Condition 1 is satisfied. Conditions 2 and 3 fail.
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A GENERAL NOTE: DEFINITION OF CONTINUITY

A function  is continuous at  provided all three of the following conditions hold true:
Condition 1:  exists.
Condition 2:  exists at .

Condition 2: .

If a function  is not continuous at , the function is discontinuous at  .

Figure 9. Conditions 1, 2, and 3 all fail.

Identifying Discontinuities

Discontinuity can occur in different ways. We saw in the previous section that a function could have a left-
hand limit and a right-hand limit even if they are not equal. If the left- and right-hand limits exist but are
different, the graph “jumps” at  . The function is said to have a jump discontinuity.

As an example, look at the graph of the function  in Figure 10. Notice as  approaches  how the
output approaches different values from the left and from the right.

1224



 A GENERAL NOTE: JUMP DISCONTINUITY

A function  has a jump discontinuity at  if the left- and right-hand limits both exist but are not
equal:  .

Figure 10. Graph of a function with a jump discontinuity.

Identifying Removable Discontinuity

Some functions have a discontinuity, but it is possible to redefine the function at that point to make it
continuous. This type of function is said to have a removable discontinuity. Let’s look at the function 

 represented by the graph in Figure 11. The function has a limit. However, there is a hole at  .
The hole can be filled by extending the domain to include the input  and defining the corresponding
output of the function at that value as the limit of the function at  .
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A GENERAL NOTE: REMOVABLE DISCONTINUITY

A function  has a removable discontinuity at  if the limit, , exists, but either

1.  does not exist or
2. , the value of the function at  does not equal the limit, .

EXAMPLE 1: IDENTIFYING DISCONTINUITIES

Identify all discontinuities for the following functions as either a jump or a removable discontinuity.

1. 

2. 

Answer

1. Notice that the function is defined everywhere except at .Thus,  does not exist, Condition 2
is not satisfied. Since Condition 1 is satisfied, the limit as  approaches 5 is 8, and Condition 2 is not
satisfied.This means there is a removable discontinuity at .

2. Condition 2 is satisfied because .Notice that the function is a piecewise function, and for
each piece, the function is defined everywhere on its domain. Let’s examine Condition 1 by
determining the left- and right-hand limits as  approaches 2.Left-hand limit: 

. The left-hand limit exists.Right-hand limit: . The right-hand limit exists. But

.

So,  does not exist, and Condition 2 fails: There is no removable discontinuity. However,
since both left- and right-hand limits exist but are not equal, the conditions are satisfied for a jump

Figure 11. Graph of function  with a removable discontinuity at  .
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discontinuity at .

A GENERAL NOTE: EXAMPLES OF CONTINUOUS FUNCTIONS

The following functions are continuous everywhere:

Polynomial functions Ex: 

Exponential functions Ex: 

Sine functions Ex: 

Cosine functions Ex: 

The following functions are continuous everywhere they are defined on their domain:

Logarithmic functions Ex:  , 

Tangent functions Ex: , ,  is an integer

Rational functions Ex: , 

HOW TO: GIVEN A FUNCTION , DETERMINE IF THE FUNCTION IS
CONTINUOUS AT .

1. Check Condition 1:  exists.
2. Check Condition 2:  exists at .
3. Check Condition 3: .

Try It

Identify all discontinuities for the following functions as either a jump or a removable discontinuity.

a. 

b. 

Answer

a. removable discontinuity at ;
b. jump discontinuity at 

Recognizing Continuous and Discontinuous Real-Number
Functions

Many of the functions we have encountered in earlier chapters are continuous everywhere. They never have
a hole in them, and they never jump from one value to the next. For all of these functions, the limit of 
as  approaches  is the same as the value of  when . So . There are some
functions that are continuous everywhere and some that are only continuous where they are defined on their
domain because they are not defined for all real numbers.
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4. If all three conditions are satisfied, the function is continuous at . If any one of the conditions is
not satisfied, the function is not continuous at .

EXAMPLE 2: DETERMINING WHETHER A PIECEWISE FUNCTION IS
CONTINUOUS AT A GIVEN NUMBER

Determine whether the function  is continuous at

1. 
2. 

Answer
To determine if the function  is continuous at , we will determine if the three conditions of continuity
are satisfied at  .

1. Condition 1: Does  exist?

Condition 2: Does  exist?

To the left of , ; to the right of , . We need to evaluate the left- and
right-hand limits as  approaches 1.

Left-hand limit: 

Right-hand limit: 

Because ,  does not exist.

There is no need to proceed further. Condition 2 fails at . If any of the conditions of continuity
are not satisfied at , the function  is not continuous at .

2. Condition 1: Does  exist?

Condition 2: Does  exist?

To the left of , ; to the right of , . We need to evaluate the left-
and right-hand limits as  approaches .

Left-hand limit: 

Right-hand limit: 

Because  exists,

.
Condition 3: Is 
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Because all three conditions of continuity are satisfied at , the function  is continuous at 
.

EXAMPLE 3: DETERMINING WHETHER A RATIONAL FUNCTION IS
CONTINUOUS AT A GIVEN NUMBER

Determine whether the function  is continuous at .
Answer
To determine if the function  is continuous at , we will determine if the three conditions of continuity
are satisfied at .
Condition 1:

There is no need to proceed further. Condition 2 fails at . If any of the conditions of continuity are not
satisfied at , the function  is not continuous at .

Analysis of the Solution

See Figure 12. Notice that for Condition 2 we have

At , there exists a removable discontinuity.

Try It

Determine whether the function  is continuous at .

Answer

yes
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Figure 12

Try It

Determine whether the function  is continuous at . If not, state the type of
discontinuity.
Answer

No, the function is not continuous at . There exists a removable discontinuity at .
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An interactive or media element has been excluded from this version of the text. You can view it online
here: https://courses.lumenlearning.com/precalculus/?p=14966

TRY IT

HOW TO: GIVEN A PIECEWISE FUNCTION, DETERMINE WHETHER IT IS
CONTINUOUS AT THE BOUNDARY POINTS.

1. For each boundary point  of the piecewise function, determine the left- and right-hand limits as 
approaches , as well as the function value at .

2. Check each condition for each value to determine if all three conditions are satisfied.
3. Determine whether each value satisfies condition 1:  exists.
4. Determine whether each value satisfies condition 2:  exists.
5. Determine whether each value satisfies condition 3: .
6. If all three conditions are satisfied, the function is continuous at . If any one of the conditions

fails, the function is not continuous at .

EXAMPLE 4: DETERMINING THE INPUT VALUES FOR WHICH A PIECEWISE
FUNCTION IS DISCONTINUOUS

Determine whether the function  is discontinuous for any real numbers.

Answer
The piecewise function is defined by three functions, which are all polynomial functions,  on 

,  on , and  on . Polynomial functions are continuous
everywhere. Any discontinuities would be at the boundary points,  and .
At , let us check the three conditions of continuity.
Condition 1:

Determining the Input Values for Which a Function Is
Discontinuous

Now that we can identify continuous functions, jump discontinuities, and removable discontinuities, we will
look at more complex functions to find discontinuities. Here, we will analyze a piecewise function to
determine if any real numbers exist where the function is not continuous. A piecewise function may have
discontinuities at the boundary points of the function as well as within the functions that make it up.

To determine the real numbers for which a piecewise function composed of polynomial functions is not
continuous, recall that polynomial functions themselves are continuous on the set of real numbers. Any
discontinuity would be at the boundary points. So we need to explore the three conditions of continuity at the
boundary points of the piecewise function.
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Condition 2: Because a different function defines the output left and right of , does 

Left-hand limit: 

Right-hand limit: 

Because  , 

.
Condition 3:

Because all three conditions are satisfied at , the function  is continuous at .
At , let us check the three conditions of continuity.
Condition 2: Because a different function defines the output left and right of , does 

Left-hand limit: 

Right-hand limit: 

Because  , , so  does not exist.

.
Because one of the three conditions does not hold at , the function  is discontinuous at .

Analysis of the Solution

At , there exists a jump discontinuity. Notice that the function is continuous at .
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Figure 13. Graph is continuous at  but shows a jump discontinuity at .

TRY IT

Try It

Determine where the function

is discontinuous.
Answer
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An interactive or media element has been excluded from this version of the text. You can view it online
here: https://courses.lumenlearning.com/precalculus/?p=14966

HOW TO: GIVEN A PIECEWISE FUNCTION, DETERMINE WHETHER IT IS
CONTINUOUS.

1. Determine whether each component function of the piecewise function is continuous. If there are
discontinuities, do they occur within the domain where that component function is applied?

2. For each boundary point  of the piecewise function, determine if each of the three conditions
hold.

EXAMPLE 5: DETERMINING WHETHER A PIECEWISE FUNCTION IS
CONTINUOUS

Determine whether the function below is continuous. If it is not, state the location and type of each
discontinuity.

Answer
The two functions composing this piecewise function are  on  and  on 
. The sine function and all polynomial functions are continuous everywhere. Any discontinuities would be
at the boundary point,
At , let us check the three conditions of continuity.
Condition 1:

Because all three conditions are not satisfied at , the function  is discontinuous at .

Analysis of the Solution

There exists a removable discontinuity at ; , thus the limit exists and is finite, but 
does not exist.

Determining Whether a Function Is Continuous

To determine whether a piecewise function is continuous or discontinuous, in addition to checking the
boundary points, we must also check whether each of the functions that make up the piecewise function is
continuous.
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continuous function

discontinuous function

Figure 14. Function has removable discontinuity at 0.

Key Concepts

A continuous function can be represented by a graph without holes or breaks.
A function whose graph has holes is a discontinuous function.
A function is continuous at a particular number if three conditions are met:

Condition 1:  exists.
Condition 2:  exists at .
Condition 3: .

A function has a jump discontinuity if the left- and right-hand limits are different, causing the graph to
“jump.”
A function has a removable discontinuity if it can be redefined at its discontinuous point to make it
continuous.
Some functions, such as polynomial functions, are continuous everywhere. Other functions, such as
logarithmic functions, are continuous on their domain.
For a piecewise function to be continuous each piece must be continuous on its part of the domain and
the function as a whole must be continuous at the boundaries.

Glossary

a function that has no holes or breaks in its graph

a function that is not continuous at 
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jump discontinuity

removable discontinuity

a point of discontinuity in a function  at  where both the left and right-hand
limits exist, but 

a point of discontinuity in a function  where the function is discontinuous, but
can be redefined to make it continuous
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DERIVATIVES

LEARNING OUTCOMES

Find the derivative of a function.
Find instantaneous rates of change.
Find an equation of the tangent line to the graph of a function at a point.
Find the instantaneous velocity of a particle.

Finding the Average Rate of Change of a Function

The functions describing the examples above involve a change over time. Change divided by time is one
example of a rate. The rates of change in the previous examples are each different. In other words, some
changed faster than others. If we were to graph the functions, we could compare the rates by determining
the slopes of the graphs.

A tangent line to a curve is a line that intersects the curve at only a single point but does not cross it there.
(The tangent line may intersect the curve at another point away from the point of interest.) If we zoom in on
a curve at that point, the curve appears linear, and the slope of the curve at that point is close to the slope
of the tangent line at that point.

Figure 1 represents the function . We can see the slope at various points along the curve.

slope at  is 8
slope at  is –1
slope at  is 8
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Figure 1

Graph showing tangents to curve at –2, –1, and 2.

Let’s imagine a point on the curve of function  at  as shown in Figure 2. The coordinates of the point
are . Connect this point with a second point on the curve a little to the right of , with an x-
value increased by some small real number . The coordinates of this second point are 
for some positive-value .
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A GENERAL NOTE: THE AVERAGE RATE OF CHANGE BETWEEN TWO
POINTS ON A CURVE

The average rate of change (AROC) between two points  and  on the curve
of  is the slope of the line connecting the two points and is given by

EXAMPLE 1: FINDING THE AVERAGE RATE OF CHANGE

Find the average rate of change connecting the points  and .
Answer
We know the average rate of change connecting two points may be given by

Figure 2. Connecting point  with a point just beyond allows us to measure a slope close to that of a tangent line at .

We can calculate the slope of the line connecting the two points  and , called a
secant line, by applying the slope formula,

We use the notation  to represent the slope of the secant line connecting two points.

The slope  equals the average rate of change between two points  and .
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.
If one point is , or , then .
The value  is the displacement from  to , which equals .
For the other point,  is the y-coordinate at , which is  or , so 

.

Try It

Find the average rate of change connecting the points  and .
Answer

3

Understanding the Instantaneous Rate of Change

Now that we can find the average rate of change, suppose we make  in Figure 3 smaller and smaller. Then
 will approach  as  gets smaller, getting closer and closer to 0. Likewise, the second point 

 will approach the first point, . As a consequence, the connecting line between
the two points, called the secant line, will get closer and closer to being a tangent to the function at ,
and the slope of the secant line will get closer and closer to the slope of the tangent at .
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A GENERAL NOTE: DEFINITION OF INSTANTANEOUS RATE OF CHANGE
AND DERIVATIVE

The derivative, or instantaneous rate of change, of a function  at , is given by

Figure 3

The connecting line between two points moves closer to being a tangent line at .

Because we are looking for the slope of the tangent at , we can think of the measure of the slope of
the curve of a function  at a given point as the rate of change at a particular instant. We call this slope the
instantaneous rate of change, or the derivative of the function at . Both can be found by finding the
limit of the slope of a line connecting the point at  with a second point infinitesimally close along the
curve. For a function  both the instantaneous rate of change of the function and the derivative of the
function at  are written as , and we can define them as a two-sided limit that has the same
value whether approached from the left or the right.

The expression by which the limit is found is known as the difference quotient.
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The expression  is called the difference quotient.
We use the difference quotient to evaluate the limit of the rate of change of the function as  approaches
0.

A GENERAL NOTE: NOTATIONS FOR THE DERIVATIVE

The equation of the derivative of a function  is written as , where . The notation 
 is read as ” . ” Alternate notations for the derivative include the following:

The expression  is now a function of  ; this function gives the slope of the curve  at any
value of . The derivative of a function  at a point  is denoted .

HOW TO: GIVEN A FUNCTION , FIND THE DERIVATIVE BY APPLYING THE
DEFINITION OF THE DERIVATIVE.

1. Calculate .
2. Calculate .
3. Substitute and simplify .

4. Evaluate the limit if it exists: .

EXAMPLE 2: FINDING THE DERIVATIVE OF A POLYNOMIAL FUNCTION

Find the derivative of the function  at .
Answer
We have:

Substitute  and .

The derivative of a function can be interpreted in different ways. It can be observed as the behavior of a
graph of the function or calculated as a numerical rate of change of the function.

The derivative of a function  at a point  is the slope of the tangent line to the curve  at 
. The derivative of  at  is written .

The derivative  measures how the curve changes at the point .
The derivative  may be thought of as the instantaneous rate of change of the function  at 

.
If a function measures distance as a function of time, then the derivative measures the instantaneous
velocity at time .
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An interactive or media element has been excluded from this version of the text. You can view it online
here: https://courses.lumenlearning.com/precalculus/?p=14993

TRY IT

EXAMPLE 3: FINDING THE DERIVATIVE OF A RATIONAL FUNCTION

Find the derivative of the function  at .
Answer

Try It

Find the derivative of the function  at .
Answer

Finding Derivatives of Rational Functions

To find the derivative of a rational function, we will sometimes simplify the expression using algebraic
techniques we have already learned.
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An interactive or media element has been excluded from this version of the text. You can view it online
here: https://courses.lumenlearning.com/precalculus/?p=14993

TRY IT

EXAMPLE 4: FINDING THE DERIVATIVE OF A FUNCTION WITH A ROOT

Find the derivative of the function  at .
Answer
We have

Try It

Find the derivative of the function  at .
Answer

Finding Derivatives of Functions with Roots

To find derivatives of functions with roots, we use the methods we have learned to find limits of functions
with roots, including multiplying by a conjugate.
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Multiply the numerator and denominator by the conjugate: .

An interactive or media element has been excluded from this version of the text. You can view it online
here: https://courses.lumenlearning.com/precalculus/?p=14993

TRY IT

Try It

Find the derivative of the function  at .
Answer

Finding Instantaneous Rates of Change

Many applications of the derivative involve determining the rate of change at a given instant of a function
with the independent variable time—which is why the term instantaneous is used. Consider the height of a
ball tossed upward with an initial velocity of 64 feet per second, given by , where 
is measured in seconds and  is measured in feet. We know the path is that of a parabola. The derivative
will tell us how the height is changing at any given point in time. The height of the ball is shown in Figure
4 as a function of time. In physics, we call this the “s–t graph.”
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Figure 4
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EXAMPLE 5: FINDING THE INSTANTANEOUS RATE OF CHANGE

Using the function above, , what is the instantaneous velocity of the ball at 1
second and 3 seconds into its flight?
Answer
The velocity at  and  is the instantaneous rate of change of distance per time, or velocity. Notice
that the initial height is 6 feet. To find the instantaneous velocity, we find the derivative and evaluate it at 

 and 

For any value of  tells us the velocity at that value of .
Evaluate  and .

The velocity of the ball after 1 second is 32 feet per second, as it is on the way up.
The velocity of the ball after 3 seconds is  feet per second, as it is on the way down.

HOW TO: GIVEN A GRAPH OF A FUNCTION , FIND THE
INSTANTANEOUS RATE OF CHANGE OF THE FUNCTION AT .

1. Locate  on the graph of the function .
2. Draw a tangent line, a line that goes through  at  and at no other point in that section of the

curve. Extend the line far enough to calculate its slope as
.

Try It

The position of the ball is given by . What is its velocity 2 seconds into flight?
Answer

0

Using Graphs to Find Instantaneous Rates of Change

We can estimate an instantaneous rate of change at  by observing the slope of the curve of the
function  at . We do this by drawing a line tangent to the function at  and finding its slope.
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EXAMPLE 6: ESTIMATING THE DERIVATIVE AT A POINT ON THE GRAPH
OF A FUNCTION

From the graph of the function  presented in Figure 5, estimate each of the following:

1. 
2. 
3. 
4. 

Figure 5

Answer
To find the functional value, , find the y-coordinate at .
To find the derivative at , , draw a tangent line at , and estimate the slope of that
tangent line.
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Figure 6

1.  is the y-coordinate at . The point has coordinates , thus .
2.  is the y-coordinate at . The point has coordinates , thus .
3.  is found by estimating the slope of the tangent line to the curve at . The tangent line to

the curve at  appears horizontal. Horizontal lines have a slope of 0, thus .
4.  is found by estimating the slope of the tangent line to the curve at . Observe the path of

the tangent line to the curve at . As the  value moves one unit to the right, the  value moves
up four units to another point on the line. Thus, the slope is 4, so .

Try It

Using the graph of the function  shown in Figure 7, estimate: , , , and 
.
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Figure 7

Answer

Using Instantaneous Rates of Change to Solve Real-World
Problems

Another way to interpret an instantaneous rate of change at  is to observe the function in a real-world
context. The unit for the derivative of a function  is
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EXAMPLE 7: FINDING A MARGINAL COST

The cost in dollars of producing  laptop computers in dollars is . At the point where
200 computers have been produced, what is the approximate cost of producing the 201st unit?
Answer
If  describes the cost of producing  computers,  will describe the marginal cost.
We need to find the derivative. For purposes of calculating the derivative, we can use the following
functions:

The marginal cost of producing the 201st unit will be approximately $300.

EXAMPLE 8: INTERPRETING A DERIVATIVE IN CONTEXT

A car leaves an intersection. The distance it travels in miles is given by the function , where 
represents hours. Explain the following notations:

1. 
2. 
3. 
4. 

Such a unit shows by how many units the output changes for each one-unit change of input. The
instantaneous rate of change at a given instant shows the same thing: the units of change of output per one-
unit change of input.

One example of an instantaneous rate of change is a marginal cost. For example, suppose the production
cost for a company to produce  items is given by , in thousands of dollars. The derivative function
tells us how the cost is changing for any value of  in the domain of the function. In other words,  is
interpreted as a marginal cost, the additional cost in thousands of dollars of producing one more item when

 items have been produced. For example,  is the approximate additional cost in thousands of
dollars of producing the 12th item after 11 items have been produced.  means that when 11
items have been produced, producing the 12th item would increase the total cost by approximately
$2,500.00.
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Answer
First we need to evaluate the function  and the derivative of the function , and distinguish
between the two. When we evaluate the function , we are finding the distance the car has traveled in 
hours. When we evaluate the derivative , we are finding the speed of the car after  hours.

1.  means that in zero hours, the car has traveled zero miles.
2.  means that one hour into the trip, the car is traveling 60 miles per hour.
3.  means that one hour into the trip, the car has traveled 70 miles. At some point during the

first hour, then, the car must have been traveling faster than it was at the 1-hour mark.
4.  means that two hours and thirty minutes into the trip, the car has traveled 150 miles.

Try It

A runner runs along a straight east-west road. The function  gives how many feet eastward of her
starting point she is after  seconds. Interpret each of the following as it relates to the runner.

a. 

b. 

c. 

d. 

e. 
Answer

a. After zero seconds, she has traveled 0 feet.
b. After 10 seconds, she has traveled 150 feet east.
c. After 10 seconds, she is moving eastward at a rate of 15 ft/sec.
d. After 20 seconds, she is moving westward at a rate of 10 ft/sec.
e. After 40 seconds, she is 100 feet westward of her starting point.

Finding Points Where a Function’s Derivative Does Not Exist

To understand where a function’s derivative does not exist, we need to recall what normally happens when a
function  has a derivative at  . Suppose we use a graphing utility to zoom in on  . If the
function  is differentiable, that is, if it is a function that can be differentiated, then the closer one zooms
in, the more closely the graph approaches a straight line. This characteristic is called linearity.

Look at the graph in Figure 8. The closer we zoom in on the point, the more linear the curve appears.
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Figure 8

We might presume the same thing would happen with any continuous function, but that is not so. The
function , for example, is continuous at , but not differentiable at . As we zoom in
close to 0 in Figure 9, the graph does not approach a straight line. No matter how close we zoom in, the
graph maintains its sharp corner.
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Figure 9. Graph of the function , with x-axis from –0.1 to 0.1 and y-axis from –0.1 to 0.1.

We zoom in closer by narrowing the range to produce Figure 10 and continue to observe the same shape.
This graph does not appear linear at .
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Figure 10. Graph of the function , with x-axis from –0.001 to 0.001 and y-axis from—0.001 to 0.001.

What are the characteristics of a graph that is not differentiable at a point? Here are some examples in
which function  is not differentiable at .

In Figure 11, we see the graph of

.

Notice that, as  approaches 2 from the left, the left-hand limit may be observed to be 4, while as 
approaches 2 from the right, the right-hand limit may be observed to be 6. We see that it has a discontinuity
at .
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Figure 11

The graph of  has a discontinuity at .

In Figure 12, we see the graph of . We see that the graph has a corner point at .

Figure 12. The graph of  has a corner point at  .

The graph of  has a corner point at  .

In Figure 13, we see that the graph of  has a cusp at . A cusp has a unique feature. Moving
away from the cusp, both the left-hand and right-hand limits approach either infinity or negative infinity.
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Notice the tangent lines as  approaches 0 from both the left and the right appear to get increasingly
steeper, but one has a negative slope, the other has a positive slope.

Figure 13. The graph of  has a cusp at .

In Figure 14, we see that the graph of  has a vertical tangent at . Recall that vertical
tangents are vertical lines, so where a vertical tangent exists, the slope of the line is undefined. This is why
the derivative, which measures the slope, does not exist there.

Figure 14. The graph of  has a vertical tangent at .
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A GENERAL NOTE: DIFFERENTIABILITY

A function  is differentiable at  if the derivative exists at , which means that  exists.
There are four cases for which a function  is not differentiable at a point .

1. When there is a discontinuity at .
2. When there is a corner point at .
3. When there is a cusp at .
4. Any other time when there is a vertical tangent at .

EXAMPLE 9: DETERMINING WHERE A FUNCTION IS CONTINUOUS AND
DIFFERENTIABLE FROM A GRAPH

Using Figure 15, determine where the function is

1. continuous
2. discontinuous
3. differentiable
4. not differentiable

At the points where the graph is discontinuous or not differentiable, state why.
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Figure 15

Answer
The graph of  is continuous on . The graph of  has a removable
discontinuity at  and a jump discontinuity at .
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Figure 16. Three intervals where the function is continuous

The graph of is differentiable on . The graph of  is
not differentiable at  because it is a point of discontinuity, at  because of a sharp corner, at 

 because it is a point of discontinuity, and at  because of a sharp corner.
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Figure 17. Five intervals where the function is differentiable

Try It

Determine where the function  shown in Figure 18 is continuous and differentiable from the
graph.
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Figure 18

Answer

The graph of  is continuous on . The graph of  is discontinuous at  and 
. The graph of  is differentiable on . The graph of  is not differentiable at
 and .

Finding an Equation of a Line Tangent to the Graph of a
Function

The equation of a tangent line to a curve of the function  at  is derived from the point-slope form
of a line, . The slope of the line is the slope of the curve at  and is therefore equal
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A GENERAL NOTE: THE EQUATION OF A LINE TANGENT TO A CURVE OF
THE FUNCTION F

The equation of a line tangent to the curve of a function  at a point  is

HOW TO: GIVEN A FUNCTION , FIND THE EQUATION OF A LINE
TANGENT TO THE FUNCTION AT .

1. Find the derivative of  at  using .
2. Evaluate the function at . This is .
3. Substitute  and  into .
4. Write the equation of the tangent line in the form .

EXAMPLE 10: FINDING THE EQUATION OF A LINE TANGENT TO A
FUNCTION AT A POINT

Find the equation of a line tangent to the curve  at .
Answer
Using:

Substitute  and .

to , the derivative of  at . The coordinate pair of the point on the line at  is .

If we substitute into the point-slope form, we have

The equation of the tangent line is
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Equation of tangent line at 

Analysis of the Solution

We can use a graphing utility to graph the function and the tangent line. In so doing, we can observe the
point of tangency at  as shown in Figure 19.
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Figure 19. Graph confirms the point of tangency at .

Try It

Find the equation of a tangent line to the curve of the function  at .
Answer

Finding the Instantaneous Speed of a Particle

If a function measures position versus time, the derivative measures displacement versus time, or the speed
of the object. A change in speed or direction relative to a change in time is known as velocity. The velocity
at a given instant is known as instantaneous velocity.

In trying to find the speed or velocity of an object at a given instant, we seem to encounter a contradiction.
We normally define speed as the distance traveled divided by the elapsed time. But in an instant, no
distance is traveled, and no time elapses. How will we divide zero by zero? The use of a derivative solves
this problem. A derivative allows us to say that even while the object’s velocity is constantly changing, it has
a certain velocity at a given instant. That means that if the object traveled at that exact velocity for a unit of
time, it would travel the specified distance.

1264



A GENERAL NOTE: INSTANTANEOUS VELOCITY

Let the function  represent the position of an object at time . The instantaneous velocity or velocity
of the object at time  is given by

EXAMPLE 11: FINDING THE INSTANTANEOUS VELOCITY

A ball is tossed upward from a height of 200 feet with an initial velocity of 36 ft/sec. If the height of the ball
in feet after  seconds is given by , find the instantaneous velocity of the ball at 

.
Answer
First, we must find the derivative  . Then we evaluate the derivative at , using 

 and .

Analysis of the Solution

This result means that at time  seconds, the ball is dropping at a rate of 28 ft/sec.

Try It

A fireworks rocket is shot upward out of a pit 12 ft below the ground at a velocity of 60 ft/sec. Its height in
feet after  seconds is given by . What is its instantaneous velocity after 4 seconds?
Answer

–68 ft/sec, it is dropping back to Earth at a rate of 68 ft/s

Key Equations
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average rate of change

derivative

differentiable

instantaneous rate of change

instantaneous velocity

secant line

tangent line

average rate of change

derivative of a function

Key Concepts

The slope of the secant line connecting two points is the average rate of change of the function between
those points.
The derivative, or instantaneous rate of change, is a measure of the slope of the curve of a function at a
given point, or the slope of the line tangent to the curve at that point.
The difference quotient is the quotient in the formula for the instantaneous rate of change:

Instantaneous rates of change can be used to find solutions to many real-world problems.
The instantaneous rate of change can be found by observing the slope of a function at a point on a
graph by drawing a line tangent to the function at that point.
Instantaneous rates of change can be interpreted to describe real-world situations.
Some functions are not differentiable at a point or points.
The point-slope form of a line can be used to find the equation of a line tangent to the curve of a
function.
Velocity is a change in position relative to time. Instantaneous velocity describes the velocity of an
object at a given instant. Average velocity describes the velocity maintained over an interval of time.
Using the derivative makes it possible to calculate instantaneous velocity even though there is no
elapsed time.

Glossary

the slope of the line connecting the two points  and  on
the curve of ; it is given by .

the slope of a function at a given point; denoted , at a point  it is 

, providing the limit exists.

a function  for which the derivative exists at . In other words, if  exists.

the slope of a function at a given point; at  it is given by 

.

the change in speed or direction at a given instant; a function  represents the
position of an object at time , and the instantaneous velocity or velocity of the object at time  is

given by .

a line that intersects two points on a curve

a line that intersects a curve at a single point
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Graphs of the Parent Functions
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Graphs of the Trigonometric Functions
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Sum-to-Product Formulas

Law of Sines

Law of Cosines
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